
Assignment 2
Count On It: Unary Verification

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, February 9, 2024
65 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst2.zip to Assignment 2 (Code). You can generate this file by running
make handin. This will include your solution unary.mlw and the proof session in unary/.

• Submit a PDF containing your answers to the written questions to Assignment 2 (Written).
You may use the file asst2-sol.tex as a template and submit asst2-sol.pdf. You can
generate this file by running make sol (assuming you have pdflatex in your system).

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst2.tex and a solution template asst2-sol.tex in the handout to get you started on this.

ASSIGNMENT 2 DUE 23:59PM, FRIDAY, FEBRUARY 9, 2024
65 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Count On It: Unary Verification HW2.2

1 The Count’s Number of the Day (50 pts)

Unary counters, based on the unary numeral system, use a single symbol to represent numbers
in a linear, additive fashion. In this problem, you are asked to implement and verify some simple
functions over unary counters.

Each function you write should be verified against contracts expressing the correct-
ness of your implementation.

Consider the following type ucount (which you can find in the file unary.mlw) that represents
unary counters:

1 type ucount = Z | S ucount

Z represents zero, and it is the base case for the unary counter, analogous to the digit 0 in the
decimal system. S ucount represents the successor, indicating the next number of the sequence.
For example, if you have a counter representing the number two, applying S to it would produce
a representation of the number tree. In this system, natural numbers are constructed by repeat-
edly applying the successor constructor S to the base Z. For instance, the number three would be
represented as S (S (S Z)), indicating three applications of the successor function to zero.

To reason about unary counters, we will use a data structure ctr with a ghost field model

that will help us verify some simple functions over unary counters. More information about data
structure and ghost variables is available in the lecture notes from Lecture 3 and Lecture 4.

1 type ctr = {counter: ucount ; ghost model: int}

In ctr, the ghost model corresponds to the integer value of the unary counter.
Task 1 (10 pts). Specify a predicate eq_ctr_int that relates a unary number to its integer value by
a set of axioms. Hint: you may want to specify one axiom for each case, i.e., zero and successor.

1 predicate eq_ctr_int (c:ucount) (n:int)

Task 2 (5 pts). Write data structure invariants that relate the unary counter counter with the ghost
model. Do not forget the by clause of the data structure invariant.
Note: Your contracts for the following functions must be related to the ghost model. You can also
use the functions that you already defined when writing the code for other functions.
Task 3 (5 pts). Define a function is_zero that returns true if counter c is zero and false otherwise.

1 let is_zero (c: ctr) : bool

Task 4 (10 pts). Define a function succ that returns the successor of the counter c.
1 let succ(c:ctr) : ctr

Task 5 (10 pts). Define a function compare_ctr that compares two unary counters and returns true
if they represent the same number or false otherwise.

1 let compare_ctr (c1: ctr) (c2: ctr) : bool

Task 6 (5 pts). Define a function to_int converting a unary number counter c to the integer it
represents.

1 let to_int (c:ctr) : int

Task 7 (5 pts). Define a function to_ctr converting an integer a to a unary counter.
1 let to_ctr (a:int) : ctr

ASSIGNMENT 2 DUE 23:59PM, FRIDAY, FEBRUARY 9, 2024
65 PTS

http://www.cs.cmu.edu/~15414/lectures/03-datastructures.pdf
http://www.cs.cmu.edu/~15414/lectures/04-ghosts.pdf

Count On It: Unary Verification HW2.3

2 It’s a Question of Semantics (15 pts)

In this collection of problems we work with the simple while language from Lecture 5.

Task 8 (10 pts). Conjecture the semantics of the following program (let’s call it α0):

1 ?(n >= 0) ;

2 x <- n ;

3 y <- 1 ;

4 while (x > y)

5 (x <- div (x+y) 2 ;

6 y <- div n x)

where div is integer division. You should describe your conjectured semantics in terms of the
relation between ω and ν in

ωJα0Kν

For the while loop, describe ωinit at the beginning of the loop and ωdone at the end, but you do not
need to describe the intermediate states.

Task 9 (5 pts). Define the semantics of a for-loop

for x e1 e2 α

which goes through the values for x between the values of e1 and e2. It starts at the value of e1
and counts up or down to the value of e2, inclusively, executing α each time.

ASSIGNMENT 2 DUE 23:59PM, FRIDAY, FEBRUARY 9, 2024
65 PTS

http://www.cs.cmu.edu/~15414/lectures/05-semantics.pdf

	The Count's Number of the Day (50 pts)
	It's a Question of Semantics (15 pts)

