
Assignment 1
Twists on a Theme

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, September 12, 2025
65 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

Working With Why3

Before you begin this assignment, you will need to install Why3 and the relevant provers. To do
so, please follow the installation instructions on the course website (https://www.cs.cmu.edu/
~15414/misc/installation.pdf).

To help you out with Why3, we’ve provided some useful commands below:

• To verify using the command line, run why3 prove -P <prover> <filename>.mlw. This is
useful for simple programs where more fine-grained control over the provers is unnecessary,
as well as for intermediate checking. However, your final submission should include proof
sessions as created by the IDE.

• To open the Why3 IDE, run why3 ide <filename>.mlw.

– When you attempt to prove the goals in a file filename.mlw using the IDE, a folder
called filename will be created, containing a proof session. Make sure that you always
save the current proof session when you exit the IDE. To check your session after the
fact, you can run the following two commands:

why3 replay filename # should print that everything replayed OK

why3 session info --stats filename # prints a summary of the goals

– Although it’s not possible to modify code directly from the IDE, if you make changes
in a different editor (VSCode, Atom, etc.), you can refresh the IDE session with Ctrl+R.

What To Hand In

You should hand in the file asst1.zip, which you can generate by running make. This will include
all of the raw mlw files, as well as the proof sessions created by the IDE.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, SEPTEMBER 12, 2025
65 PTS

http://www.cs.cmu.edu/~15414/assignments.html
https://www.cs.cmu.edu/~15414/misc/installation.pdf
https://www.cs.cmu.edu/~15414/misc/installation.pdf


Twists on a Theme HW1.2

1 The Fine Print (15 pts)

Unlike software license agreements that nobody ever reads, program contracts should be studied
carefully because they might not mean what you think at first and you may be left holding the
bag. The following is an incorrect attempt to implement an iterative factorial function (which you
can find in the file fact.mlw).

1 module Factorial

2

3 use int.Int

4

5 function fact (n : int) : int

6 axiom fact0: fact 0 = 1

7 axiom factn: forall n. n > 0 -> fact n = n * fact (n - 1)

8

9 let fact(n:int) : int =

10 ensures { result = fact n }

11 let ref i = 0 in

12 let ref r = 1 in

13 while i < n do

14 invariant { r = fact i }

15 variant { n-i }

16 r <- r * i ;

17 i <- i + 1 ;

18 done ;

19 r

20

21 end

Task 1 (15 pts). In each of the following sub-tasks you should change the contracts, and only the
contracts (except in part 4) of the above incorrect implementation, so that the command

why3 prove -P alt-ergo fact.mlw

succeeds in verifying the code.

1. You may remove two lines.

2. You may add disjunction \/ and truth true, as many copies as you wish.

3. You may add comparison < between variables and implication ->, as many copies as you
wish.

4. You may swap any two lines (not restricted to contracts), and add at most two contracts.
Your proof in this case must be correct.

Name your functions fact_i for 1 ≤ i ≤ 4 and place them in the file fact.mlw.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, SEPTEMBER 12, 2025
65 PTS



Twists on a Theme HW1.3

2 Set It Straight (20 pts)

In this problem you are given a partial implementation of a data set finite set of integers in intset.mlw.
This is a generaliztion of the bitset data structure that we implemented in Lecture 3 that does not
place a bound on the size of the elements in the set, although it does place a bound on the number
of elements in the set.

1 type intset = {

2 slots: array int ;

3 used: array bool ;

4 capacity: int ;

5 mutable full: bool ;

6 ghost mutable model: S.fset int

7 }

At the end of the file, there are a set of fully specified and implemented operations on the data
structure: empty, mem, add, and remove.

Task 2 (20 pts). Your task is to supply a set of invariants (and, if helpful, auxiliary spcification such
as predicates or functions) so that all of the provided operations verify completely.

Rules and constraints:

• You may only add logical content before the “do not modify” line: e.g., invariants over
intset, predicates, and functions.

• Do not change the data structure itself.

• Do not change the code of the specifications of of empty, mem, add, or remove.

• While you are allowed to define functions using axioms, you should avoid doing so. This
task can be completed without introducing axioms.

You will find it helpful to look at the contracts and proof (loop invariants, assertions, etc.) of
the provided operations to help you write your invariants. We do not require that you write any
particular invariant, aside from any that you need to verify all of the operations.

Do not modify any code or contracts below the marked line in intset.mlw; add only invariants
and ghost logic above it.

3 Prefix Sums (30 pts)

Let a be an array of integers. The prefix sums of a are defined by b[i] =
∑i

j=0 a[j] for each valid
index i.

Task 3 (5 pts). Define a predicate is_prefix_sums (a : array int) (b : array int) that holds
exactly when b contains the prefix sums of a. Your definition should capture the required length
relation and, for each index i, the value of b[i] in terms of a[0], a[1], . . . , a[i].

Task 4 (10 pts). Write a verified function prefix_sums (a : array int) : array int that re-
turns a new array b such that is prefix sums(a, b) holds. Your function should not modify a itself.

Task 5 (15 pts). Write a verified function prefix_sums_in_place (a : array int) : unit that
overwrites a so that is prefix sums(old a, a) holds. Do not allocate a new array.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, SEPTEMBER 12, 2025
65 PTS



Twists on a Theme HW1.4

Place your implementations in the file prefix.mlw. Place your implementations in the file
prefix.mlw.

Note! Be careful to ensure that your contracts cover ALL of the parts of the functions’ specifi-
cations from the task descriptions.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, SEPTEMBER 12, 2025
65 PTS


	The Fine Print (15 pts)
	Set It Straight (20 pts)
	Prefix Sums (30 pts)

