
Assignment 0
Why3 Mechanics

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, January 26, 2024
20 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

Working With Why3

Before you begin this assignment, you will need to install Why3 and the relevant provers. To do
so, please follow the installation instructions on the course website (https://www.cs.cmu.edu/
~15414/why3_install.html). To help you out with Why3, we’ve provided some useful com-
mands below. We assume a simple Unix command line. If you use a Docker image, you will have
to modify them as explained in the installation instructions.

• You can execute code in Why3 using

why3 execute <filename>.mlw --use=<module> ’<exp>’

For example

why3 execute mystery2.mlw --use=Mystery2 ’g 17’;

will evaluate the expression g 17 in the module Mystery2 which must be contained in the
file mystery2.mlw.

• You can check the sytax of the code and examine the verification condition with

why3 prove <filename>.mlw

Contrary to intuition, this command does not actually prove anything!

• To verify using the command line, run

why3 prove -P <prover> <filename>.mlw

for example, with <prover> = alt-ergo. This is useful for simple programs where more
fine-grained control over the provers is unnecessary. However, your final submission should
include proof sessions as created by the IDE.

ASSIGNMENT 0 DUE 23:59PM, FRIDAY, JANUARY 26, 2024
20 PTS

http://www.cs.cmu.edu/~15414/assignments.html
https://www.cs.cmu.edu/~15414/why3_install.html
https://www.cs.cmu.edu/~15414/why3_install.html

Why3 Mechanics HW0.2

• To open the Why3 IDE, run

why3 ide <filename>.mlw

– When you attempt to prove the goals in a file <filename>.mlw using the IDE, a folder
called <filename> will be created, containing a proof session. Make sure that you always
save the current proof session when you exit the IDE. To check your session after the
fact, you can run the following two commands with version 1.4.0 of Why3:

why3 replay <filename> # should indicate that session is okay

why3 session info --stats <filename> # prints a summary of the goals

If you are using version 1.7.0, then you should run the following two commands:

why3 replay <filename> # should indicate that session is okay

prints proof statistics for each given session

why3 session info --session-stats <filename>

– Even though you can modify code directly from the IDE, you may want to use a differ-
ent editor (VSCode, Emacs, etc.) and then refresh the IDE session with Command-R or
the Save all and Refresh session in the File menu.

What To Hand In

You should hand in the file asst0.zip, which you can generate by running make. This will include
the raw mystery2.mlw file, as well as the proof sessions created by the IDE in the mystery2/

directory.

1 Mystery, Take 2 (20 pts)

In lecture we recognized that a mystery function computes Fibonacci numbers on nonnegative
inputs. We then expressed this property with suitable pre- and post-conditions. In order to verify
that the function is correct, we then needed loop invariants and also a loop variant to guarantee
termination. In this problem we ask you to walk through the same process with a second mystery
function g. Determine by experimentation what this function is supposed to compute, write logi-
cal contracts to express its correctness, and then verify the function in Why3. You should hand in
a file mystery2.mlw with the completed module Mystery2 included in asst0.zip.

ASSIGNMENT 0 DUE 23:59PM, FRIDAY, JANUARY 26, 2024
20 PTS

Why3 Mechanics HW0.3

1 module Mystery2

2

3 use int.Int

4

5 let g (n : int) : int =

6 let ref a = 0 in

7 let ref b = 0 in

8 let ref c = 0 in

9 while b <= n do

10 b <- b + c + 1 ;

11 c <- c + 2 ;

12 a <- a + 1

13 done ;

14 a-1

15

16 end (* module Mystery2 *)

ASSIGNMENT 0 DUE 23:59PM, FRIDAY, JANUARY 26, 2024
20 PTS

	Mystery, Take 2 (20 pts)

