CF Optimizations
And Instruction Scheduling

15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein
April 17, 2025

Today

e Extended basic blocks

e Control flow optimizations
O Jump threading
O Tail duplication

e Instruction Scheduling

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

e Traditional definition of basic block
O Straight-line sequence with single entry and single exit (SESE)
O Implies no internal control flow

e Extended basic block (EBB)

O Asetofblocks B,, B, ... B, where only B1 has multiple predecessors and
all other blocks have exactly one predecessor in the sequence

CFG B EBB:[& |
— ~ EBB._
= B3 89 B4
_¢_1
i L2

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

e Extended basic block (EBB)

O Asetofblocks B, B, ... B, where only B1 has multiple predecessors and
all other blocks have exactly one predecessor in the sequence

cre EBB [or] EBB
g ﬁ _____ o]

B2 B3 é - é
B5 | | B6 EBB .
| | LB B7
l :

B7 B6 |

s e S

B4

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

e Extended basic block (EBB)

O Asetofblocks B, B, ... B, where only B1 has multiple predecessors and
all other blocks have exactly one predecessor in the sequence

CFG EBB B1 EBB ----------
; i _____ .
B2 B3 B3
== EBB_
C] quadl) i
l | -
B7 | B6 |
B o What about critical edges?
B4

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

e Recall from (deconstructing) SSA

A critical edge is any edge that multiple successors
connects a block with multiple X
successors to a block with

multiple predecessors.
multiple predecessors

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

e Splitting critical edges is required for correct SSA

deconstruction.

e Also benefits some optimizations like lazy code motion.

Splitting critical edges is an
easy local transformation.

15-411/611

4

multiple successors

v

multiple predecessors M

© 2019-2025 Titzer/Goldstein

Splitting Critical Edges

Critical edges make conditional

control flow seem unnecessarily \ N /
general.

A B

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Splitting Critical Edges

Splitting critical edges can

make for larger EBBs. /\

© 2019-2025 Titzer/Goldstein

15-411/611

Splitting Critical Edges

Splitting critical edges can

make for larger EBBs. /\

| | |
Conditional branches will then \/ -----------------------
always look like an if, with
dominated successors with just A

one predecessor.

© 2019-2025 Titzer/Goldstein

Using Extended Basic Blocks

e Extended basic blocks allow many local analyses to work on a
larger scope
e Example: Local Value numbering to Global Value Numbering

15-411/611 © 2019-2025 Titzer/Goldstein

Global Value Numbering using Dominators

e Recall: LVN finds redundant computations in a basic block

e Dominator-based GVN algorithm trades accuracy for speed

e Propagate local value numbering map from dominator to
dominated nodes

B1
t0 — x0 - yo
U, < %, + v, B1 op inputs | result
Vo < X, = ¥, //'\\ [+ X, Yo |u0 }
B2 y y B3 | |
vV, — X, - ¥, u — X, +y, B2 C;D
B4
; LVN LVN
B4 LVN
u, < *(uy,u,) Dominator tree

15-411/611 2 2 © 2019-2025 Titzer/Goldstein

B2

Global Value Numbering using Dominators

Recall: LVN finds redundant computations in a basic block

Dominator-based GVN algorithm trades accuracy for speed

Propagate local value numbering map from dominator to

dominated nodes

What if we don’t have a dominator
tree (yet)?

]

15-411/611

B1

t0 — X, - Y,

U, < %, + v, B1 op inputs | result

iy N
Y ¥ B3 |

B4
¥ LVN

B4 LN LVN

Dominator tree

© 2019-2025 Titzer/Goldstein

Global Value Numbering using Dominators

e Recall: LVN finds redundant computations in a basic block
e EBB-based GVN algorithm trades accuracy for speed
e Propagate local value numbering map along EBB edges

B1
t0 — X, - Yy,
U, — %X, + ¥y, inputs | result
VO «— X - YO [+ Xy Yo | Uy }
B2 y y B3
vV, — X, - ¥, u1<—x+y0
¥ LVN VN
B4

u, < ¢(uo,u1)

Extended Basic

Block
Z —u, -V .
15-411/611 2 2 © 2019-2025 Titzer/Goldstein

v, «— ¢ (vo,vl)

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions

Missed value numbering opportunities

Merges are not in predecessors’ EBBs

Merges often have @s, harder to reason through

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions |[Use DF solver
Missed value numbering opportunities

Merges are not in predecessors’ EBBs

Merges often have @s, harder to reason through

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions
Missed value numbering opportunities
Merges are not in predecessors’ EBBs

Merges often have @s, harder to reason through

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions
Missed value numbering opportunities
Merges are not in predecessors’ EBBs
Merges often have @s, harder to reason through

© 2019-2025 Titzer/Goldstein

15-411/611

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions
Missed value numbering opportunities
Merges are not in predecessors’ EBBs
Merges often have @s, harder to reason through

© 2019-2025 Titzer/Goldstein

15-411/611

Control Flow Optimizations: Tail duplication

Often, merges in the control flow complicate analyses
Dataflow equations with unions
Missed value numbering opportunities
Merges are not in predecessors’ EBBs
Merges often have @s, harder to reason through

What about problems that are not
necessarily dataflow problems?

© 2019-2025 Titzer/Goldstein

Tail Duplication

e One solution: duplicate code at joins
O Eliminate the source of imprecision in dataflow analysis
O Generates new specialization opportunities

O Eliminates jumps

CFG B1 B1

—T e a—
B2 B3 + B2 B3

B4 B4l B4

duplicate

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication

e One solution: duplicate code at joins

O Eliminate the source of imprecision in dataflow analysis

O Generates new specialization opportunities

O Eliminates jumps

CFG

B1

—

B2

B3

_¢_1

15-411/611

B4

—>

B1
B2 B3
A A
B4 B4

duplicate

© 2019-2025 Titzer/Goldstein

eliminate
gotos

15-411/611

Tail Duplication Transformation

© 2019-2025 Titzer/Goldstein

A ® merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.

15-411/611

Tail Duplication Transformation

© 2019-2025 Titzer/Goldstein

Instructions that have a
® as an input at the join
point might benefit tail
duplication.

15-411/611

© 2019-2025 Titzer/Goldstein

il Duplication Transformation

\ I3 — f ij J

Duplicate instructions
that use a ® as an input
and rewrite with their
respective ® inputs.

15-411/611

Tail Duplication Transformation

© 2019-2025 Titzer/Goldstein

Remove the ©.

15-411/611

Duplication Transformation

Tali
yl <o
z, < £(y,))
join

z, « £(y,)

© 2019-2025 Titzer/Goldstein

What about the old
instruction that was
duplicated?

15-411/611

Tai
yl <o
z, — £(y.)
join

Duplication Transformation

Uses of the old
instruction need to be
updated. But to what?

© 2019-2025 Titzer/Goldstein

15-411/611

join

z,)— ®(z,,2,,2,)

© 2019-2025 Titzer/Goldstein

Il Duplication Transformation

Introduce a new @ to
merge all the previous
computations and rewrite
uses to use it.

Tail Duplication Transformation

The duplicated
instructions can be
optimized in the context
z, — ®(z,,2,,2,)) of their new blocks with
their new inputs.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Summary

e Tail duplication copies join blocks to allow more optimization
from context of predecessors.

e With SSA and edge split form, it's possible to do this without
introducing new control flow.

e Like any optimization that copies code, it is a tradeoff
O Increased code size, I-cache pressure
O Specialization opportunities

O More precise analyses

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Often programs have “jumps to jumps”
O Can show up late, after other transformations

O Critical edge splitting can often produce empty blocks, but don’t know this
until after SSA deconstruction or lazy code motion is done

e Sometimes a “jump to a branch” where the branch outcome will
be known
O Arises in compiling complex conditional expressions (&& and ||)
O Can occur for other kinds of complex conditions
e [wo approaches
O “Thread” branches

O Duplicate target block

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Jump Threading

e Form 1: direct jump to empty block with jump

O Rewrite first jump with second jump’s destination

B1

B2

B3

X<—y+z
goto B2

—>

goto B3

B1

B2

B3

© 2019-2025 Titzer/Goldstein

X<—y+z
goto B3

QOt(:Q

w0

Jump Threading

e Form 1: direct jump to empty block with jump

O Rewrite first jump with second jump’s destination

O Delete empty block if no remaining predecessors

B1 X—y+z
goto B2

B2 l +
goto B3

B3
w0

B1 X—y+z
goto B3
ad
B3
w0

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Jump Threading

e Form 2: conditional branch to empty block with jump

O Rewrite first conditional branch with second jump’s destination

B1

B2

B3

X<—y+z

if cond B2 else B4

goto B3

B1

—» =

B3

© 2019-2025 Titzer/Goldstein

X<—y+z
if cond B3 else B4

goto B3

goto B3

15-411/611

Jump Threading

e Form 2: conditional branch to empty block with jump

O Rewrite first conditional branch with second jump’s destination

B1

B2

B3

X<—y+z

if cond B2 else B4

goto B3

B1

—» =

B3

© 2019-2025 Titzer/Goldstein

X<—y+z
if cond B3 else B4

/

goto B3

15-411/611

Jump Threading

e Form 2: conditional branch to empty block with jump

Rewrite first conditional branch with second jump’s destination

@)
@)
B1 XYy +Zz
if cond B2 else B4
B2
goto B3
B3
other
edges WO

Avoid introducing critical edges if necessary

goto B3

B1

X<—y+z
if cond B3 else B4
» B2
critical
B3
other
— w20
edges

© 2019-2025 Titzer/Goldstein

goto B3

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

B1 B1
cond « true cond « true
goto B2 goto B3
B2 + B2
if cond B3 else B4 if cond B3 else B4
B3 Y B4 B3 3 B4

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

B1
cond < true cond < true
goto B2 goto B3
B2 3 + B2
if cond B3 else B4 if cond B3 else B4
B3 ¢ ' B4 B3 ' B4

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

O Target block may other predecessors; outcome only known on this path

B1 B1
cond < true cond < true
goto B2 cond = ? goto B3 cond = ?
B2 L / + B2 /
if cond B3 else B4 if cond B3 else B4
B3 Y B4 B3 Y B4

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome
O Target block may other predecessors; outcome only known on this path
O In SSA, target block cond will thus be a @

B1 B1
cond < true cond < true
goto B2 cond = ? goto B3 cond = ?
B2 L / —> B2 /
if ® B3 else B4 if ® B3 else B4
B3 Y B4 B3 Y B4

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

O In SSA form with critical edges split, this looks like a double diamond with
a ¢ as the second condition

B1 B1

if x B2 else B3 if x B2 else B3
B2 — L___B3 By —t | B3

C, false C, false

84 \ﬁ—‘ + B4 \ﬁ \

c, < ®(c,, c,) c, < ®(c,, c,)

if c, BS else B6 if c, BS else B6

| |

B5 4 | _B6 B5 4) / B6

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

O In SSA form with critical edges split, this looks like a double diamond with
a ¢ as the second condition

B1 B1

if x B2 else B3 if x B2 else B3
B2 — L___B3 By —t | B3

C, false C, false

84 \ﬁ—‘ + B4 \ﬁ \

¢, — ®(cy, ¢y) T

if c, BS else B6 if C, B5 else B6

| |

B5 4 | _B6 B5 4) / B6

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

e Form 3: direct jump to block with conditional branch that will
have a known outcome

O In SSA form with critical edges split, this looks like a double diamond with
a ¢ as the second condition

B1 B1
if x B2 else B3 if x B2 else B3

B2 — L___B3 By —t | B3

C, false C, false

B4 \—l—‘ + B4 \—l

c, < ®(c,, c,)
if c, B5 else B6 if C, B5 else B6

| [critical
B5 | | B6 B5 | Y{ B6

15-411/611 © 2019-2025 Titzer/Goldstein

Instruction Scheduling

e Instruction latency and instruction-level parallelism are critical
to good performance
O Instruction x — a + b cannot executed until a and b are done
O Latency of a and b determined by their operation
O Latency of x determined by the + operation
e Depends entirely on CPU’s specific microarchitecture

O Functional units: CPU resources able to execute different kinds of
instructions
O Pipelining: latency between starting and instruction and result available

O Issue bandwidth: how many instructions can be “started” per cycle

O Out-of-order execution: CPUs execute instructions when inputs are ready

15-411/611 © 2019-2025 Titzer/Goldstein

15-411/611

Instruction Scheduling

Compilers can model a specific CPU’s characteristics and
reorder sequences of instructions for better performance
Basic block (local) or inter-block (superlocal) scopes are typical

O Global instruction scheduling generally not used; too many interactions
with other optimizations

We'll focus on local instruction scheduling.

© 2019-2025 Titzer/Goldstein

(Board)

15-411/611 © 2019-2025 Titzer/Goldstein

