
15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein

CF Optimizations
And Instruction Scheduling

April 17, 2025

15-411/611 © 2019-2025 Titzer/Goldstein

Today

● Extended basic blocks
● Control flow optimizations

○ Jump threading

○ Tail duplication

● Instruction Scheduling

2

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

● Traditional definition of basic block
○ Straight-line sequence with single entry and single exit (SESE)

○ Implies no internal control flow

● Extended basic block (EBB)
○ A set of blocks B1, B2 … Bn where only B1 has multiple predecessors and

all other blocks have exactly one predecessor in the sequence

B1

B2 B3

B4

CFG B1

B2

B3

B4

EBB
EBB

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

● Extended basic block (EBB)
○ A set of blocks B1, B2 … Bn where only B1 has multiple predecessors and

all other blocks have exactly one predecessor in the sequence

B1

B2 B3

B4

CFG B1

B2

B3

B4

EBB EBB

B5 B6

B7

B7

EBB
B5

B6

15-411/611 © 2019-2025 Titzer/Goldstein

Extended Basic Blocks

● Extended basic block (EBB)
○ A set of blocks B1, B2 … Bn where only B1 has multiple predecessors and

all other blocks have exactly one predecessor in the sequence

B1

B2 B3

B4

CFG B1

B2

B3

B4

EBB EBB

B5 B6

B7

B7

EBB
B5

B6
What about critical edges?

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● Recall from (deconstructing) SSA

A critical edge is any edge that
connects a block with multiple
successors to a block with
multiple predecessors.

✗

multiple successors

multiple predecessors

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● Splitting critical edges is required for correct SSA
deconstruction.

● Also benefits some optimizations like lazy code motion.

Splitting critical edges is an
easy local transformation.

multiple successors

multiple predecessors

✓

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

Critical edges make conditional
control flow seem unnecessarily
general.

BA

✗ ✗

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

Splitting critical edges can
make for larger EBBs.

BA

EBB

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

Splitting critical edges can
make for larger EBBs.

BA

EBB

Conditional branches will then
always look like an if, with
dominated successors with just
one predecessor.

15-411/611 © 2019-2025 Titzer/Goldstein

Using Extended Basic Blocks

● Extended basic blocks allow many local analyses to work on a
larger scope

● Example: Local Value numbering to Global Value Numbering

15-411/611 © 2019-2025 Titzer/Goldstein

Global Value Numbering using Dominators

● Recall: LVN finds redundant computations in a basic block
● Dominator-based GVN algorithm trades accuracy for speed
● Propagate local value numbering map from dominator to

dominated nodes

t0 ← x0 - y0
u0 ← x0 + y0
v0 ← x0 - y0

v1 ← x0 - y0 u1 ← x0 + y0

u2 ← ɸ(u0,u1)
v2 ← ɸ(v0,v1)
z ← u2 - v2

B1

B2 B3

B4

B1

B2 B3

B4

Dominator tree

LVN

op inputs result

+ x0 y0 u0

LVN
LVN

15-411/611 © 2019-2025 Titzer/Goldstein

Global Value Numbering using Dominators

● Recall: LVN finds redundant computations in a basic block
● Dominator-based GVN algorithm trades accuracy for speed
● Propagate local value numbering map from dominator to

dominated nodes

t0 ← x0 - y0
u0 ← x0 + y0
v0 ← x0 - y0

v1 ← x0 - y0 u1 ← x0 + y0

u2 ← ɸ(u0,u1)
v2 ← ɸ(v0,v1)
z ← u2 - v2

B1

B2 B3

B4

B1

B2 B3

B4

Dominator tree

LVN

op inputs result

+ x0 y0 u0

LVN
LVN

What if we don’t have a dominator
tree (yet)?

15-411/611 © 2019-2025 Titzer/Goldstein

Global Value Numbering using Dominators

● Recall: LVN finds redundant computations in a basic block
● EBB-based GVN algorithm trades accuracy for speed
● Propagate local value numbering map along EBB edges

t0 ← x0 - y0
u0 ← x0 + y0
v0 ← x0 - y0

v1 ← x0 - y0 u1 ← x0 + y0

u2 ← ɸ(u0,u1)
v2 ← ɸ(v0,v1)
z ← u2 - v2

B1

B2 B3

B4

B1

B2 B3

LVN

op inputs result

+ x0 y0 u0

LVN

EBB-GVN is less accurate but
cheaper than dominator-based

GVN.

Extended Basic
Block

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

Use DF solver

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

Use DF solver
Use DF solver

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

Use DF solver
Use DF solver

Use DF solver

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

Use DF solver
Use DF solver

Use DF solver

Use DF solver

15-411/611 © 2019-2025 Titzer/Goldstein

Control Flow Optimizations: Tail duplication

● Often, merges in the control flow complicate analyses
● Dataflow equations with unions
● Missed value numbering opportunities
● Merges are not in predecessors’ EBBs
● Merges often have φs, harder to reason through

Use DF solver
Use DF solver

Use DF solver

Use DF solver

What about problems that are not
necessarily dataflow problems?

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication

● One solution: duplicate code at joins
○ Eliminate the source of imprecision in dataflow analysis

○ Generates new specialization opportunities

○ Eliminates jumps

B1

B2 B3

B4

CFG B1

B2 B3

B4 B4

duplicate

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication

● One solution: duplicate code at joins
○ Eliminate the source of imprecision in dataflow analysis

○ Generates new specialization opportunities

○ Eliminates jumps

B1

B2 B3

B4

CFG B1

B2 B3

B4 B4

duplicate

B1

B2 B3

B4 B4

eliminate
gotos

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …

join
A Φ merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …

join
Instructions that have a
Φ as an input at the join
point might benefit tail
duplication.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …
z2 ← f(y2)

join
Duplicate instructions
that use a Φ as an input
and rewrite with their
respective Φ inputs.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …
z2 ← f(y2)

join
Remove the Φ.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …
z2 ← f(y2)

join
What about the old
instruction that was
duplicated?

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z1 ← f(y4)

y2 ← …
z2 ← f(y2)

join
Uses of the old
instruction need to be
updated. But to what?

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z4 ← Φ(z1,z2,z3)

y2 ← …
z2 ← f(y2)

join
Introduce a new Φ to
merge all the previous
computations and rewrite
uses to use it.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Transformation

y1 ← …
z1 ← f(y1)

y3 ← …
z3 ← f(y3)

y4 ← Φ(y1,y2,y3)

z4 ← Φ(z1,z2,z3)

y2 ← …
z2 ← f(y2)

join
The duplicated
instructions can be
optimized in the context
of their new blocks with
their new inputs.

15-411/611 © 2019-2025 Titzer/Goldstein

Tail Duplication Summary

● Tail duplication copies join blocks to allow more optimization
from context of predecessors.

● With SSA and edge split form, it’s possible to do this without
introducing new control flow.

● Like any optimization that copies code, it is a tradeoff
○ Increased code size, I-cache pressure

○ Specialization opportunities

○ More precise analyses

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Often programs have “jumps to jumps”
○ Can show up late, after other transformations

○ Critical edge splitting can often produce empty blocks, but don’t know this
until after SSA deconstruction or lazy code motion is done

● Sometimes a “jump to a branch” where the branch outcome will
be known
○ Arises in compiling complex conditional expressions (&& and ||)

○ Can occur for other kinds of complex conditions

● Two approaches
○ “Thread” branches

○ Duplicate target block

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 1: direct jump to empty block with jump
○ Rewrite first jump with second jump’s destination

x ← y + z
goto B2

goto B3

w ← 0

B1

B2

B3

x ← y + z
goto B3

goto B3

w ← 0

B1

B2

B3

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 1: direct jump to empty block with jump
○ Rewrite first jump with second jump’s destination

○ Delete empty block if no remaining predecessors

x ← y + z
goto B2

goto B3

w ← 0

B1

B2

B3

x ← y + z
goto B3

goto B3

w ← 0

B1

B2

B3

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 2: conditional branch to empty block with jump
○ Rewrite first conditional branch with second jump’s destination

x ← y + z
if cond B2 else B4

goto B3

w ← 0

B1

B2

B3

goto B3

x ← y + z
if cond B3 else B4

goto B3

w ← 0

B1

B2

B3

goto B3

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 2: conditional branch to empty block with jump
○ Rewrite first conditional branch with second jump’s destination

x ← y + z
if cond B2 else B4

goto B3

w ← 0

B1

B2

B3

goto B3

x ← y + z
if cond B3 else B4

goto B3

w ← 0

B1

B2

B3

goto B3

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 2: conditional branch to empty block with jump
○ Rewrite first conditional branch with second jump’s destination

○ Avoid introducing critical edges if necessary

x ← y + z
if cond B2 else B4

goto B3

w ← 0

B1

B2

B3

goto B3

x ← y + z
if cond B3 else B4

w ← 0

B1

B2

B3

goto B3

critical

other
edges

other
edges

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome

cond ← true
goto B2

if cond B3 else B4

B1

B2

B3 B4

cond ← true
goto B3

if cond B3 else B4

B1

B2

B3 B4

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome

cond ← true
goto B2

if cond B3 else B4

B1

B2

B3 B4

cond ← true
goto B3

if cond B3 else B4

B1

B2

B3 B4

Why wouldn’t block merging and
branch folding optimize this?

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome
○ Target block may other predecessors; outcome only known on this path

cond ← true
goto B2

if cond B3 else B4

B1

B2

B3 B4

cond ← true
goto B3

if cond B3 else B4

B1

B2

B3 B4

cond = ? cond = ?

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome
○ Target block may other predecessors; outcome only known on this path

○ In SSA, target block cond will thus be a Φ

cond ← true
goto B2

if Φ B3 else B4

B1

B2

B3 B4

cond ← true
goto B3

if Φ B3 else B4

B1

B2

B3 B4

cond = ? cond = ?

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome
○ In SSA form with critical edges split, this looks like a double diamond with

a Φ as the second condition

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c2 B5 else B6

B3

B5 B6

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c2 B5 else B6

B3

B5 B6

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome
○ In SSA form with critical edges split, this looks like a double diamond with

a Φ as the second condition

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c2 B5 else B6

B3

B5 B6

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c0 B5 else B6

B3

B5 B6

15-411/611 © 2019-2025 Titzer/Goldstein

Jump Threading

● Form 3: direct jump to block with conditional branch that will
have a known outcome
○ In SSA form with critical edges split, this looks like a double diamond with

a Φ as the second condition

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c2 B5 else B6

B3

B5 B6

if x B2 else B3
B1

B2

B4

c1 ← false

c2 ← Φ(c0, c1)
if c0 B5 else B6

B3

B5 B6
critical

15-411/611 © 2019-2025 Titzer/Goldstein

Instruction Scheduling

● Instruction latency and instruction-level parallelism are critical
to good performance
○ Instruction x ← a + b cannot executed until a and b are done

○ Latency of a and b determined by their operation

○ Latency of x determined by the + operation

● Depends entirely on CPU’s specific microarchitecture
○ Functional units: CPU resources able to execute different kinds of

instructions
○ Pipelining: latency between starting and instruction and result available

○ Issue bandwidth: how many instructions can be “started” per cycle

○ Out-of-order execution: CPUs execute instructions when inputs are ready

15-411/611 © 2019-2025 Titzer/Goldstein

Instruction Scheduling

● Compilers can model a specific CPU’s characteristics and
reorder sequences of instructions for better performance

● Basic block (local) or inter-block (superlocal) scopes are typical
○ Global instruction scheduling generally not used; too many interactions

with other optimizations
● We’ll focus on local instruction scheduling.

15-411/611 © 2019-2025 Titzer/Goldstein

(Board)

