
15-411/15-611 Compiler Design

Ben L. Titzer and Seth Copen Goldstein

Alias Analysis

and Load/Store Elimination

April 10, 2025

Today
• Alias analysis

• Load elimination

• Load-store forwarding

• Store elimination

• Lame alias analysis with SSA

15-411/611 2

Optimizations
• Optimizations covered so far

• Constant propagation / folding

• Copy propagation (SSA)

• Dataflow optimization

• Locality optimization (e.g. loop optimizations)

• Loop invariant code motion

• Lazy code motion

• What’s left?

• Optimizing memory accesses

• Inlining

• Control-flow optimizations

• Instruction scheduling

Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays

• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other

• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?

• Becomes tricky in the presence of pointers

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c) {

 c->red = c->red * 2;

 c->green = c->red / 2;

 c->blue = c->red / 4;

}

Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays

• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other

• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?

• Becomes tricky in the presence of pointers

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c) {

 c->red = c->red * 2;

 c->green = c->red / 2;

 c->blue = c->red / 4;

}

Two redundant memory accesses!

Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays

• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other

• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?

• Becomes tricky in the presence of pointers

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

What if there were two different objects?

Optimizing Memory Accesses
• Standard optimizations like constant/copy propagation

work on local variables

• SSA renaming exposes explicit dataflow relationships

• Memory and pointers represent less explicit dataflow

• Alias analysis allows compiler to reason about

potentially-overlapping memory accesses

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

Optimizing Memory Accesses
• Standard optimizations like constant/copy propagation

work on local variables

• SSA renaming exposes explicit dataflow relationships

• Memory and pointers represent less explicit dataflow

• Alias analysis allows compiler to reason about

potentially-overlapping memory accesses

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

How many redundant accesses are there now?

Optimizing Memory Accesses

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

• Abstract assembly has a
complete mess of memory
accesses

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

Optimizing Memory Accesses
• Abstract assembly has a

complete mess of memory
accesses

• Which of these are redundant
loads? ?

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Optimizing Memory Accesses
• Abstract assembly has a

complete mess of memory
accesses

• Which of these are redundant
loads?

• Depends on if c and d are
“aliases”.

?

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Alias Analysis
• Alias analysis is how compilers

reason about whether two
memory locations may, must,
or must not be the same at
runtime.

• Results of alias analysis drive
memory access optimizations.

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Alias Analysis

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Conservatively assuming c may-alias d

Alias Analysis

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 byte tmp = d->red;

 c->green = tmp / 2;

 c->blue = tmp / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Conservatively assuming c may-alias d

corresponding source-level caching

Alias Analysis

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 c->red = d->red * 2;

 c->green = d->red / 2;

 c->blue = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← x0

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Assuming c must-not-alias d

Alias Analysis

struct color {

 byte red;

 byte green;

 byte blue;

};

int shade(color* c, color* d) {

 byte tmp = d->red;

 c->red = tmp * 2;

 c->green = tmp / 2;

 c->blue = tmp / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← x0

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5;

Assuming c must-not-alias d

corresponding source-level caching

Aliasing Possibilities
• The possible aliasing relationships depends on the

programming language.

• Java:

• Only has references to objects and arrays

• Objects and their fields are statically typed

• No pointers to locals

• Call-by-value

class Color {

 byte red;

 byte green;

 byte blue;

};

class Rectangle {

 int width;

 int height;

}

Aliasing Possibilities
• Pascal

• Only has pointers to objects and arrays

• Objects and their fields are statically typed

• No pointers to locals

• Call-by-value and call by reference

• Nested procedures

Aliasing Possibilities
• C

• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning

Aliasing Possibilities
• C0

• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning

Aliasing Possibilities
• C0

• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning

Aliasing Relations
• Primarily interested in:

• For any two pointers in the program, what set of
objects could they point to?

var x var y var x var y var x var y

no overlap

“must-not-alias”

overlap

“may-alias”

same object

“must-alias”

Aliasing Relations
• Primarily interested in:

• For any two pointers in the program, what set of
objects could they point to?

var x var y var x var y var x var y

no overlap

“must-not-alias”

overlap

“may-alias”

same object

“must-alias”

reorder at will treat conservatively cache reads

propagate writes

Type-based Alias Analysis
• Types severely restrict aliasing in C0, Java

• Preserve enough type information so alias

analysis can distinguish types of pointer
variables and field accesses.

24

r->a[x]

a

r

i next

0 16 24 32

struct rec {

 int a[4];

 size_t i;

 struct rec *next;

} *r;

r->i

Type-based Alias Analysis
• Types severely restrict aliasing in C0, Java

• Preserve enough type information so alias

analysis can distinguish types of pointer
variables and field accesses.

25

r->a[x]

a

r

i next

0 16 24 32

struct rec {

 int a[4];

 size_t i;

 struct rec *next;

} *r;

r->iMost modern compilers

make at least some use of types

in alias analysis.

Allocation Sites
• Allocation sites can distinguish new pointers

from old pointers.

26

List* add(List* l, int a) {

 List* result = malloc(…);

 result->next = l;

 result->val = a;

 return result;

}

Most modern compilers

make use of allocation sites

for alias analysis.

var l var result

malloc1

Allocation Sites
• Allocation sites can distinguish new pointers

from other new pointers.

27

List* add2(List* l, int a) {

 List* result = malloc(…);

 result->next = l;

 result->val = a;

 List* m = malloc(…);

 . . .

 return result;

}

Most modern compilers

make use of allocation sites

for alias analysis.

var l var result

malloc1

malloc2

var m

Allocation Sites
• Allocation sites can distinguish new pointers

from other new pointers.

28

List* add2(List* l, int a) {

 List* result = malloc(…);

 result->next = l;

 result->val = a;

 List* m = malloc(…);

 . . .

 return result;

}

Any issues with this?
var l var result

malloc1

malloc2

var m

Flow-Sensitive Alias Analysis
• Aliasing relationships between variables

change as the program executes.

• Being accurate in the general case of

pointers to pointers requires a flow-
sensitive analysis.

29

Flow-Sensitive Pointer Analysis
• Aliasing relationships between variables

change as the program executes.

• Being accurate in the general case of

pointers to pointers requires a flow-
sensitive analysis.

• Many compilers implement simpler forms of
alias analysis which we cover near the end.

• More advanced forms of alias analysis are
often used for program analysis and
understanding (i.e. not optimization).

30

What is Flow-Sensitivity?

31

Flow-Sensitivity
• A flow-sensitive analysis distinguishes

information about variables at different
program locations.

• A flow-insensitive analysis merges
information about variables across the
whole program (function).

32

Simple Flow-Sensitive Alias Analysis
• At every program point P, compute the set of

tuples that represent known aliasing
relationships after executing the statement at P.

33

(t, d, k)

Variable alias class offset
Ranges over

program
temporaries

Ranges over

views of
storage

Ranges over

integers

d

0 k
t

Simple Flow-Sensitive Alias Analysis

34

(t, d, k)

Variable alias class offset
 M[c2] ← x3;

Ranges over

program

temporaries

Ranges over

views of
storage

Ranges over

integers

P
k

t

d

• At every program point P, compute the set of
tuples that represent known aliasing
relationships after executing the statement at P.

k
t

d

k
t

d

Abstract Memory Locations
• Alias classes (d) allow us to tune the precision of the

analysis and deal with different languages differently.

• They represent possibly-overlapping views of storage.

• Add an offset to represent abstract memory locations.

35

(t, d, k)

Variable alias class
Ranges over

program
temporaries

Ranges over

views of
storage

• locals of type τ

• structs of type τ

• arrays of type τ

• struct fields S.f

• globals of type τ

in[start] = A

in[P] = ∪ in[q]

out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the

statement in terms of aliasing before the statement.

• Iteratively solve the dataflow equations.

36

q ∈ pred(P)

in[start] = A

in[P] = ∪ in[q]

out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the

statement in terms of aliasing before the statement.

• Iteratively solve the dataflow equations.

37

q ∈ pred(P)

in[start] = A

in[P] = ∪ in[q]

out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the

statement in terms of aliasing before the statement.

• Iteratively solve the dataflow equations.

38

q ∈ pred(P)
void compute(struct T* x) {

 . . .

}

Initial relation A

(x, struct T, 0) x points to

some struct T

in[start] = A

in[P] = ∪ in[q]

out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the

statement in terms of aliasing before the statement.

• Iteratively solve the dataflow equations.

39

q ∈ pred(P)
void compute(struct T* x) {

 y = x->f;

}

predecessor relations in[q]

(x, struct T, 0)

x points to

in[start] = A

in[P] = ∪ in[q]

out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the

statement in terms of aliasing before the statement.

• Iteratively solve the dataflow equations.

40

q ∈ pred(P)
void compute(struct T* x) {

 y = x->f;

}

transfer function

what values could
y become?

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

41

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc(…)

Statement trans(A)
(A - A(t)) ∪ A(b↦t)

Assume A(t)
represents the

set of all tuples
mentioning the

variable t.

Assume A(b↦t)
represents the

set of all tuples
by substituting t

for b.

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

42

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc(…)

Statement trans(A)

(A - A(t))

∪

{(t, d, i)| (b, d, i - k) ∈ A})

We can handle pointer arithmetic

by making use of statically-known

offsets

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

43

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc(…)

Statement trans(A)

(A - A(t))

∪

unknown(t)

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

44

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc(…)

Statement trans(A)

(A - A(t))

∪

unknown(t)

Depends on the type of t

and represents the set of unknown

locations for the type, e.g.

(t, struct S, 0)

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

45

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc(…)

Statement trans(A)

A

“Ignoring stores” works because we
conservatively treat loads as

unknown

Transfer Functions
• Transfer function for simple alias analysis is a pretty

straightforward case analysis on the instruction.

46

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L

 f(a …)

 t ← alloc99(…)

Statement trans(A)

(A - A(t))

∪

(t, alloc99, 0)

We can track each allocation
separately.

Dataflow solution to may-alias
• After solving dataflow equations, answering

p may-alias q before a program point P is:

47

p may-alias q at P

⇔

(p, d, k) ∈ in[P] ∧ (q, d, k) ∈ in[P]

Assuming we set up alias classes d

to be non-overlapping

Dataflow solution to may-alias
• After solving dataflow equations, answering

p may-alias q before a program point P is:

48

p may-alias q at P

⇔

(p, d1, k1) ∈ in[P] ∧ (q, d2, k2) ∈ in[P]

∧ ((d1, k1), (d2, k2)) ∈ overlap

Assuming we have additional

overlap relation

The Heap Triple Crown
• Three optimizations based on alias analysis

work great together.

• Load Elimination

• Load-Store Forwarding

• Store Elimination

• All three require correct (conservative)
aliasing information.

49

Load Elimination
• Many programs have redundant loads

• Reusing a previously-loaded value (safely,

after alias analysis) is a form of common
subexpression elimination.

• Can be done together or in a separate
(lightweight) pass.

• Can be done locally or globally.

50

Load Elimination Illustration

51

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 y1 ← ⨁(x0)

remove read

reuse first read

Load Elimination Illustration

52

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 y1 ← ⨁(x0)

remove read

reuse first read

p must-alias q

Load Elimination Illustration

53

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 y1 ← ⨁(x0)

remove read

reuse first read

no writes

that may-alias p

Load Elimination Illustration

54

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 y1 ← ⨁(x0)

remove read

reuse first read

must dominate

uses of x1

Load Elimination Illustration

55

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 y1 ← ⨁(x0)

remove read

reuse first read

must dominate

uses of x1

p must-alias q

SSA guarantees this!

SSA equivalence

 is good enough!

Load-Store Forwarding
• Many programs store to memory and then

immediately load the value back.

• Reusing a previously-stored value (safely,

after alias analysis) is a slightly different
form of common subexpression elimination.

• Can be done together or in a separate
(lightweight) pass.

• Can be done locally or globally.

56

Load-Store Forwarding Illustration

57

 M[p] ← x0

 x1 ← M[q]

 y1 ← ⨁(x1)

 M[p] ← x0

 y1 ← ⨁(x0)

remove read

reuse stored value

Load-Store Forwarding Illustration

58

 M[p] ← x0

 x1 ← M[q]

 y1 ← ⨁(x1)

 M[p] ← x0

 y1 ← ⨁(x0)

remove read

reuse stored value

must dominate

uses of x1

no writes

that may-alias p

p must-alias q

Store Elimination
• Many programs store to memory and then

immediately overwrite the previously-
stored value.

• Eliminating redundant stores is slightly
different than CSE.

• Can be done together or in a separate
(lightweight) pass.

• Can be done locally or globally.

59

Store Elimination Illustration

60

 M[p] ← x0

 M[q] ← x1

 M[p] ← x0

 M[q] ← x1

remove write

Store Elimination Illustration

61

 M[p] ← x0

 M[q] ← x1

 M[p] ← x0

 M[q] ← x1

remove writeno reads

that may-alias p

p must-alias q

Implementing LE/LSF/SE
• How to compute the loads/stores are

available?

62

Implementing LE/LSF/SE
• How to compute the loads/stores that are

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

63

Implementing LE/LSF/SE
• How to compute the loads/stores that are

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

64

Loads and stores add
to the GEN set for an

instruction

Stores and calls (other
side effects) add to the

KILL set, using the
results from alias

analysis

IN and OUT sets store
expressions that are

available to be reused

Implementing LE/LSF/SE
• How to compute the loads/stores that are

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

65

Going to cover this in
more detail when we

discuss dominator-
based global value

numbering

Lame Alias Analysis
• (examples on board)

66

