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Today
• Alias analysis

• Load elimination

• Load-store forwarding

• Store elimination

• Lame alias analysis with SSA
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Optimizations
• Optimizations covered so far


• Constant propagation / folding

• Copy propagation (SSA)

• Dataflow optimization

• Locality optimization (e.g. loop optimizations)

• Loop invariant code motion

• Lazy code motion


• What’s left?

• Optimizing memory accesses

• Inlining

• Control-flow optimizations

• Instruction scheduling



Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays


• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other


• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?


• Becomes tricky in the presence of pointers

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c) {

  c->red   = c->red * 2;

  c->green = c->red / 2;

  c->blue  = c->red / 4;

}



Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays


• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other


• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?


• Becomes tricky in the presence of pointers

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c) {

  c->red   = c->red * 2;

  c->green = c->red / 2;

  c->blue  = c->red / 4;

}

Two redundant memory accesses!



Optimizing Memory Accesses
• Dependence analysis and loop opts targeted arrays


• Interchange and tiling for better locality

• Generally assumed that arrays don’t alias each other


• LICM to reduce work per iteration

• Lazy code motion (re)moves redundant expressions

• What about accesses to non-array memory?


• Becomes tricky in the presence of pointers

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

What if there were two different objects?



Optimizing Memory Accesses
• Standard optimizations like constant/copy propagation 

work on local variables

• SSA renaming exposes explicit dataflow relationships

• Memory and pointers represent less explicit dataflow

• Alias analysis allows compiler to reason about 

potentially-overlapping memory accesses

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}



Optimizing Memory Accesses
• Standard optimizations like constant/copy propagation 

work on local variables

• SSA renaming exposes explicit dataflow relationships

• Memory and pointers represent less explicit dataflow

• Alias analysis allows compiler to reason about 

potentially-overlapping memory accesses

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

How many redundant accesses are there now?



Optimizing Memory Accesses

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 

• Abstract assembly has a 
complete mess of memory 
accesses

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}



Optimizing Memory Accesses
• Abstract assembly has a 

complete mess of memory 
accesses


• Which of these are redundant 
loads? ?

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 



Optimizing Memory Accesses
• Abstract assembly has a 

complete mess of memory 
accesses


• Which of these are redundant 
loads?


• Depends on if c and d are 
“aliases”.

?

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← M[d]

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 



Alias Analysis
• Alias analysis is how compilers 

reason about whether two 
memory locations may, must, 
or must not be the same at 
runtime.


• Results of alias analysis drive 
memory access optimizations.

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 



Alias Analysis

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 

Conservatively assuming c may-alias d



Alias Analysis

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  byte tmp = d->red;

  c->green = tmp / 2;

  c->blue  = tmp / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← M[d]

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 

Conservatively assuming c may-alias d

corresponding source-level caching



Alias Analysis

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  c->red   = d->red * 2;

  c->green = d->red / 2;

  c->blue  = d->red / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;
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 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 

Assuming c must-not-alias d



Alias Analysis

struct color {

    byte red;

    byte green;

    byte blue;

};

int shade(color* c, color* d) {

  byte tmp = d->red;

  c->red   = tmp * 2;

  c->green = tmp / 2;

  c->blue  = tmp / 4;

}

shade:

 x0 ← M[d]

 x1 ← x0 * 2;

 M[c] ← x1;

 x2 ← x0

 x3 ← x2 / 2;

 c2 ← c + 1;

 M[c2] ← x3;

 x4 ← x2

 x5 ← x4 / 4;

 c3 ← c + 2;

 M[c3] ← x5; 

Assuming c must-not-alias d

corresponding source-level caching



Aliasing Possibilities
• The possible aliasing relationships depends on the 

programming language.

• Java:


• Only has references to objects and arrays

• Objects and their fields are statically typed

• No pointers to locals

• Call-by-value

class Color {

    byte red;

    byte green;

    byte blue;

};

class Rectangle {

  int width;

  int height;

}



Aliasing Possibilities
• Pascal


• Only has pointers to objects and arrays

• Objects and their fields are statically typed

• No pointers to locals

• Call-by-value and call by reference

• Nested procedures



Aliasing Possibilities
• C


• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning



Aliasing Possibilities
• C0


• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning



Aliasing Possibilities
• C0


• unions

• pointers to structs and arrays

• pointers to locals

• pointers to fields

• pointers to array elements

• pointer arithmetic

• type punning



Aliasing Relations
• Primarily interested in:


• For any two pointers in the program, what set of 
objects could they point to?

var x var y var x var y var x var y

no overlap

“must-not-alias”

overlap

“may-alias”

same object

“must-alias”



Aliasing Relations
• Primarily interested in:


• For any two pointers in the program, what set of 
objects could they point to?

var x var y var x var y var x var y

no overlap

“must-not-alias”

overlap

“may-alias”

same object

“must-alias”

reorder at will treat conservatively cache reads

propagate writes



Type-based Alias Analysis
• Types severely restrict aliasing in C0, Java

• Preserve enough type information so alias 

analysis can distinguish types of pointer 
variables and field accesses.

24

r->a[x]

a

r

i next

0 16 24 32

struct rec {

    int a[4];

    size_t i;

    struct rec *next;

} *r;

r->i



Type-based Alias Analysis
• Types severely restrict aliasing in C0, Java

• Preserve enough type information so alias 

analysis can distinguish types of pointer 
variables and field accesses.

25

r->a[x]

a

r

i next

0 16 24 32

struct rec {

    int a[4];

    size_t i;

    struct rec *next;

} *r;

r->iMost modern compilers

make at least some use of types


in alias analysis.



Allocation Sites
• Allocation sites can distinguish new pointers 

from old pointers.

26

List* add(List* l, int a) {

  List* result = malloc(…);

  result->next = l;

  result->val = a;

  return result;

}

Most modern compilers

make use of allocation sites


for alias analysis.

var l var result

malloc1



Allocation Sites
• Allocation sites can distinguish new pointers 

from other new pointers.

27

List* add2(List* l, int a) {

  List* result = malloc(…);

  result->next = l;

  result->val = a;

  List* m = malloc(…);

  . . .

  return result;

}

Most modern compilers

make use of allocation sites


for alias analysis.

var l var result

malloc1

malloc2

var m



Allocation Sites
• Allocation sites can distinguish new pointers 

from other new pointers.

28

List* add2(List* l, int a) {

  List* result = malloc(…);

  result->next = l;

  result->val = a;

  List* m = malloc(…);

  . . .

  return result;

}

Any issues with this?
var l var result

malloc1

malloc2

var m



Flow-Sensitive Alias Analysis
• Aliasing relationships between variables 

change as the program executes.

• Being accurate in the general case of 

pointers to pointers requires a flow-
sensitive analysis.

29



Flow-Sensitive Pointer Analysis
• Aliasing relationships between variables 

change as the program executes.

• Being accurate in the general case of 

pointers to pointers requires a flow-
sensitive analysis.


• Many compilers implement simpler forms of 
alias analysis which we cover near the end.


• More advanced forms of alias analysis are 
often used for program analysis and 
understanding (i.e. not optimization).

30



What is Flow-Sensitivity?

31



Flow-Sensitivity
• A flow-sensitive analysis distinguishes 

information about variables at different 
program locations.


• A flow-insensitive analysis merges 
information about variables across the 
whole program (function).

32



Simple Flow-Sensitive Alias Analysis
• At every program point P, compute the set of 

tuples that represent known aliasing 
relationships after executing the statement at P.

33

(t, d, k)

Variable alias class offset
Ranges over


program 
temporaries

Ranges over

views of 
storage

Ranges over

integers

d

0 k
t



Simple Flow-Sensitive Alias Analysis

34

(t, d, k)

Variable alias class offset
 M[c2] ← x3;


Ranges over

program 

temporaries

Ranges over

views of 
storage

Ranges over

integers

P
k

t

d

• At every program point P, compute the set of 
tuples that represent known aliasing 
relationships after executing the statement at P.

k
t

d

k
t

d



Abstract Memory Locations
• Alias classes (d) allow us to tune the precision of the 

analysis and deal with different languages differently.

• They represent possibly-overlapping views of storage.

• Add an offset to represent abstract memory locations.

35

(t, d, k)

Variable alias class
Ranges over


program 
temporaries

Ranges over

views of 
storage

• locals of type τ

• structs of type τ

• arrays of type τ

• struct fields S.f

• globals of type τ



in[start] = A


in[P] = ∪ in[q]


out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis 

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the 

statement in terms of aliasing before the statement. 

• Iteratively solve the dataflow equations.

36

q ∈ pred(P)



in[start] = A


in[P] = ∪ in[q]


out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis 

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the 

statement in terms of aliasing before the statement. 

• Iteratively solve the dataflow equations.

37

q ∈ pred(P)



in[start] = A


in[P] = ∪ in[q]


out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis 

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the 

statement in terms of aliasing before the statement. 

• Iteratively solve the dataflow equations.

38

q ∈ pred(P)
void compute(struct T* x) {

  

     . . .


}

Initial relation A

(x, struct T, 0) x points to 

some struct T



in[start] = A


in[P] = ∪ in[q]


out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis 

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the 

statement in terms of aliasing before the statement. 

• Iteratively solve the dataflow equations.

39

q ∈ pred(P)
void compute(struct T* x) {

  

     y = x->f;


}

predecessor relations in[q]

(x, struct T, 0)

x points to



in[start] = A


in[P] = ∪ in[q]


out[P] = transP(in[P])

Dataflow Analysis
• After defining alias classes for our language, flow-sensitive analysis 

falls into the general category of forward dataflow analysis.

• Define a relation for each statement expressing aliasing after the 

statement in terms of aliasing before the statement. 

• Iteratively solve the dataflow equations.

40

q ∈ pred(P)
void compute(struct T* x) {

  

     y = x->f;


}

transfer function


what values could 
y become?



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

41

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc(…)

Statement trans(A)
(A - A(t)) ∪ A(b↦t) 

Assume A(t) 
represents the

set of all tuples 
mentioning the


variable t.

Assume A(b↦t) 
represents the

set of all tuples 
by substituting t 

for b.



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

42

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc(…)

Statement trans(A)

(A - A(t)) 

∪ 


{(t, d, i)| (b, d, i - k) ∈ A}) 

We can handle pointer arithmetic

by making use of statically-known 

offsets



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

43

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc(…)

Statement trans(A)

(A - A(t)) 

∪ 


unknown(t) 



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

44

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc(…)

Statement trans(A)

(A - A(t)) 

∪ 


unknown(t) 

Depends on the type of t

and represents the set of unknown 

locations for the type, e.g.

(t, struct S, 0)



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

45

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc(…)

Statement trans(A)

A

“Ignoring stores” works because we 
conservatively treat loads as 

unknown



Transfer Functions
• Transfer function for simple alias analysis is a pretty 

straightforward case analysis on the instruction.

46

 t ← b

 t ← b + k

 t ← b ⨁ c

 t ← M[b]

 M[a] ← b

 if a > b goto L

 goto L 

 f(a … )

 t ← alloc99(…)

Statement trans(A)

(A - A(t)) 

∪ 


(t, alloc99, 0) 

We can track each allocation 
separately.



Dataflow solution to may-alias
• After solving dataflow equations, answering 

p may-alias q before a program point P is:

47

p may-alias q at P

⇔ 


(p, d, k) ∈ in[P] ∧ (q, d, k) ∈ in[P] 

Assuming we set up alias classes d

to be non-overlapping



Dataflow solution to may-alias
• After solving dataflow equations, answering 

p may-alias q before a program point P is:

48

p may-alias q at P

⇔ 


(p, d1, k1) ∈ in[P] ∧ (q, d2, k2) ∈ in[P]

∧ ((d1, k1), (d2, k2)) ∈ overlap 

Assuming we have additional

overlap relation



The Heap Triple Crown
• Three optimizations based on alias analysis 

work great together.

• Load Elimination

• Load-Store Forwarding

• Store Elimination


• All three require correct (conservative) 
aliasing information.

49



Load Elimination
• Many programs have redundant loads

• Reusing a previously-loaded value (safely, 

after alias analysis) is a form of common 
subexpression elimination.


• Can be done together or in a separate 
(lightweight) pass.


• Can be done locally or globally.

50



Load Elimination Illustration

51

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 

 y1 ← ⨁(x0)

remove read

reuse first read



Load Elimination Illustration

52

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 

 y1 ← ⨁(x0)

remove read

reuse first read

p must-alias q



Load Elimination Illustration

53

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 

 y1 ← ⨁(x0)

remove read

reuse first read

no writes

that may-alias p



Load Elimination Illustration

54

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 

 y1 ← ⨁(x0)

remove read

reuse first read

must dominate

uses of x1



Load Elimination Illustration

55

 x0 ← M[p]

 x1 ← M[q]

 y1 ← ⨁(x1)

 x0 ← M[p]

 

 y1 ← ⨁(x0)

remove read

reuse first read

must dominate

uses of x1

p must-alias q

SSA guarantees this!

SSA equivalence

 is good enough!



Load-Store Forwarding
• Many programs store to memory and then 

immediately load the value back.

• Reusing a previously-stored value (safely, 

after alias analysis) is a slightly different 
form of common subexpression elimination.


• Can be done together or in a separate 
(lightweight) pass.


• Can be done locally or globally.

56



Load-Store Forwarding Illustration

57

 M[p] ← x0 

 x1 ← M[q]

 y1 ← ⨁(x1)

 M[p] ← x0 

 

 y1 ← ⨁(x0)

remove read

reuse stored value



Load-Store Forwarding Illustration

58

 M[p] ← x0 

 x1 ← M[q]

 y1 ← ⨁(x1)

 M[p] ← x0 

 

 y1 ← ⨁(x0)

remove read

reuse stored value

must dominate

uses of x1

no writes

that may-alias p

p must-alias q



Store Elimination
• Many programs store to memory and then 

immediately overwrite the previously-
stored value.


• Eliminating redundant stores is slightly 
different than CSE.


• Can be done together or in a separate 
(lightweight) pass.


• Can be done locally or globally.

59



Store Elimination Illustration

60

 M[p] ← x0 

 M[q] ← x1

 M[p] ← x0 

 M[q] ← x1

remove write



Store Elimination Illustration

61

 M[p] ← x0 

 M[q] ← x1

 M[p] ← x0 

 M[q] ← x1

remove writeno reads

that may-alias p

p must-alias q



Implementing LE/LSF/SE
• How to compute the loads/stores are 

available?

62



Implementing LE/LSF/SE
• How to compute the loads/stores that are 

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

63



Implementing LE/LSF/SE
• How to compute the loads/stores that are 

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

64

Loads and stores add 
to the GEN set for an 

instruction

Stores and calls (other 
side effects) add to the 

KILL set, using the 
results from alias 

analysis

IN and OUT sets store 
expressions that are 

available to be reused



Implementing LE/LSF/SE
• How to compute the loads/stores that are 

available?

• More dataflow analysis!

• Use the standard GEN and KILL strategy.

• OUT[P] = IN[P] - KILL[P] + GEN[P]

65

Going to cover this in 
more detail when we 

discuss dominator-
based global value 

numbering



Lame Alias Analysis
• (examples on board)

66


