
15-411/15-611 Compiler Design

Seth Copen Goldstein

Partial Redundancy Elimination

April 8, 2025

• Guest lectures

• PRE

Today

15-411/611 2

• Attendance mandatory

• April 22, Jane Street

• April 24, Apple

Guest Lectures

15-411/611 3

•Find computations that are always
performed at least twice on an execution
path and eliminate all but the first

•Usually limited to algebraic expressions

– put in some canonical form

• Almost always improves performance

– except when?

Common Subexpression Elimination

15-411/611 4

CSE Limitation
•Searches for “totally” redundant
expressions

– An expression is totally redundant if it is
recomputed along all paths leading to the
redundant expression

– An expression is partially redundant if it is
recomputed along some but not all paths

:= x+y := x+y

:= x+y

:= x+y

:= x+y

fully redundant partially redundant
15-411/611 5

•Loop invariant expressions are a form of
partially redundant expressions. Why?

Loop Invariant Code Motion

15-411/611 6

x  y * z

a  b * c

x  y * z
a  b * c

a  b * c

*

•Moves computations that produce the same
value on every iteration of a loop outside of
the loop

•When is a statement loop invariant?

– when all its operands are loop invariant...

Loop-Invariant Code Motion

15-411/611 7

•An operand is loop-invariant if
1.it is a constant,
2.all definitions (use ud-chain) are located outside

the loop, or
3.has a single definitions (ud-chain again) which is

inside the loop and that definition is itself loop
invariant

•Can use iterative algorithm to compute loop
invariant statements

Loop Invariance

15-411/611 8

•Naïve approach: move all loop-invariant
statements to the preheader

•Not always valid for statements which
define variables

•If statement s defines v, can only move s if
– s dominates all uses of v in the loop
– s dominates all loop exits

Loop Invariant Code Motion

15-411/611 9

Why?

•Moves computations that are at least
partially redundant to their optimal
computation points and eliminates totally
redundant ones

•Encompasses CSE and loop-invariant code
motion

Partial Redundancy Elimination

15-411/611 10

a := x+y

a := x+y

•Optimal?

– Result used and never recalculated

– Expression placed late as possible Why?

Optimal Computation Point

15-411/611 11

a := x+y

a := x+y

PRE Example

entry

B1
z = a + 1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

What expression is

partially redundant?

What are the optimal

computation points?

15-411/611 12

PRE Example

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

What expression is

partially redundant?

What are the optimal

computation points?

15-411/611 13

PRE Example

entry

B1
z = a +1

x > 3

B2
t1= x * y

a = t1

y < 5

B3
t1= x * y

z < 7

B4
b = t1

B5 B6

B7
c = t1

exit

What expression is

partially redundant?

What are the optimal

computation points?

Not quite right

15-411/611 14

PRE Example

entry

B1
z = a +1

x > 3

B2
t1= x * y

a = t1

y < 5

B3
z < 7

B4
b = t1

B5 B6

B7
c = t1

exit

What expression is

partially redundant?

What are the optimal

computation points?

B3a
t1= x * y

15-411/611 15

Critical Edge Splitting

•In order for PRE to work well, we must split critical
edges

•A critical edge is an edge that connects a block with
multiple successors to a block with multiple
predecessors

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

15-411/611 16

Critical Edge Splitting

•In order for PRE to work well, we must split critical
edges

•A critical edge is an edge that connects a block with
multiple successors to a block with multiple
predecessors

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B2a B3a

15-411/611 17

PRE History

•PRE was first formulated as a bidirectional
data flow analysis by Morel and Renvoise in
1979
•Knoop, Rüthing, and Steffen came up with a
way to do it using several unidirectional
analysis in 1992 (called their approach lazy
code motion)

– this is a much simpler method
– but it is still very complicated

15-411/611 18

• Find Earliest and useful
Determine for each expression the earliest
place(s) it can be computed while still
guaranteeing that it will be used

• Find latest but needed
Postpone the expression as long as possible
without introducing redundancy

• Trading size for speed
An expression may be computed in many
places, but never if already computed

The 60K Plan

15-411/611 21

General Approach to analysis

• Computationally Optimal Placement
• Anticipatable

computing exp is useful along any path to exit
• Earliest

p is the earliest point to compute exp
• Expression can be placed at Ant  Earliest
• Can compute very early and may increase

register ressure alot

• Lazy Code Motion

15-411/611 23

General Approach to analysis

• Computationally Optimal Placement
• Lazy Code Motion

• Latest
Cannot move expression past p on any path

• Isolated
all uses of expression follow immediately after p

• expression should be placed at Latest  ~Isolated

15-411/611 24

• Expression x+y is anticipated at a point p if
x+y is guaranteed to be computed along
any path from p->exit before any
recomputation of x or y

• What kind of data flow is this?

– backwards

– intersection

Anticipatable Expressions

15-411/611 25

Anticipated for ‘x*y’?

15-411/611 26

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Anticipated for ‘x*y’?

15-411/611 27

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Local Transparency (TRANSloc)

•An expression’s value is locally
transparent in a block if there are
no assignments in the block to
variables within the expression

– ie, expression not killed

Block TRANSloc

entry {a+1,x*y}

B1 {a+1,x*y}

B2 {x*y}

B2a {a+1,x*y}

B3 {a+1,x*y}

B3a {a+1,x*y}

B4 {a+1,x*y}

B5 {a+1,x*y}

B6 {a+1,x*y}

B7 {a+1,x*y}

exit {a+1,x*y}

15-411/611 28

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Local Anticipatable (ANTloc)

•An expression’s value is locally
anticipatable in a block if

– there is a computation of the expression
in the block

– the computation can be safely moved to
the beginning of the block

Block ANTloc

entry {}

B1 {a+1}

B2 {x*y}

B2a {}

B3 {}

B3a {}

B4 {x*y}

B5 {}

B6 {}

B7 {x*y}

exit {}

15-411/611 29

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Globally Anticipatable (ANT)

•An expression’s value is globally
anticipatable on entry to a block if

– every path from this point to exit includes a
computation of the expression

– it would be valid to place a computation of an
expression anywhere along these paths

This is like liveness, only for expressions

15-411/611 30

Globally Anticipatable (ANT)

Block ANTin ANTout

entry {a+1} {a+1}

B1 {a+1} {}

B2 {x*y} {x*y}

B2a {x*y} {x*y}

B3 {} {}

B3a {x*y} {x*y}

B4 {x*y} {}

B5 {x*y} {x*y}

B6 {} {}

B7 {x*y} {}

exit {} {}

33

Earliest (EARL)

•An expression’s value is earliest on entry to
a block if

– no path from entry to the block evaluates the
expression to produce the same value as
evaluating it at the block’s entry would

Intuition:

• at this point if we compute the expression we are computing

something completely new

• says nothing about usefulness of computing expression
15-411/611 35

Earliest for ‘x*y’?

15-411/611 36

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Earliest for ‘x*y’?

15-411/611 37

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Block EARLin EARLout

entry {a+1,x*y} {x*y}

B1 {x*y} {x*y}

B2 {x*y} {a+1}

B2a {a+1} {a+1}

B3 {x*y} {x*y}

B3a {x*y} {}

B4 {a+1} {a+1}

B5 {a+1} {a+1}

B6 {x*y} {x*y}

B7 {a+1} {a+1}

exit {a+1,x*y} {a+1,x*y} 40

Earliest (EARL)

Earliest (EARL)

Block EARLin EARLout

entry {a+1,x*y} {x*y}

B1 {x*y} {x*y}

B2 {x*y} {a+1}

B2a {a+1} {a+1}

B3 {x*y} {x*y}

B3a {x*y} {}

B4 {a+1} {a+1}

B5 {a+1} {a+1}

B6 {x*y} {x*y}

B7 {a+1} {a+1}

exit {a+1} {a+1} 42

Block TRANSloc

entry {a+1,x*y}

B1 {a+1,x*y}

B2 {x*y}

B2a {a+1,x*y}

B3 {a+1,x*y}

B3a {a+1,x*y}

B4 {a+1,x*y}

B5 {a+1,x*y}

B6 {a+1,x*y}

B7 {a+1,x*y}

exit {a+1,x*y}

Earliest (EARL)

Block EARLin EARLout

entry {a+1,x*y} {x*y}

B1 {x*y} {x*y}

B2 {x*y} {a+1}

B2a {a+1} {a+1}

B3 {x*y} {x*y}

B3a {x*y} {}

B4 {a+1} {a+1}

B5 {a+1} {a+1}

B6 {x*y} {x*y}

B7 {a+1} {a+1}

exit {a+1} {a+1} 43

Block TRANSloc

entry {}

B1 {}

B2 {a+1}

B2a {}

B3 {}

B3a {}

B4 {}

B5 {}

B6 {}

B7 {}

exit {}

Earliest (EARL)

EARLin EARLout

{a+1,x*y} {x*y}

{x*y} {x*y}

{x*y} {a+1}

{a+1} {a+1}

{x*y} {x*y}

{x*y} {}

{a+1} {a+1}

{a+1} {a+1}

{x*y} {x*y}

{a+1} {a+1}

{a+1} {a+1} 44

Block TRANSloc

entry {}

B1 {}

B2 {a+1}

B2a {}

B3 {}

B3a {}

B4 {}

B5 {}

B6 {}

B7 {}

exit {}

ANTin ANTin

{a+1} {x*y}

{a+1} {x*y}

{x*y} {a+1}

{x*y} {a+1}

{} {a+1,x*y}

{x*y} {a+1}

{x*y} {a+1}

{x*y} {a+1}

{} {a+1,x*y}

{x*y} {a+1}

{} {a+1,x*y}

Earliest (EARL)

Block EARLin EARLout

entry {a+1,x*y} {x*y}

B1 {x*y} {x*y}

B2 {x*y} {a+1}

B2a {a+1} {a+1}

B3 {x*y} {x*y}

B3a {x*y} {}

B4 {a+1} {a+1}

B5 {a+1} {a+1}

B6 {x*y} {x*y}

B7 {a+1} {a+1}

exit {a+1} {a+1} 45

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Computationally Optimal

• It is computationally optimal to compute
expression at entry to block if

• But, it may increase register pressure.

exp () ()ANTin block EARLin block I

15-411/611 46

Anticipated for ‘x*y’ at input?

15-411/611 47

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Anticipated & Early (at input)

15-411/611 48

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Delayedness (DELAY)

•An expression is delayed on entry to a block if

– All paths from entry to block contain an
anticipatable and early computation of exp
(could be this block) AND all uses of exp follow
this block.

– I.e., exp can be delayed to at least this block.

15-411/611 49

Delayed for ‘x*y’

15-411/611 50

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Delayedness (DELAY)

Block DELAYin DELAYout

entry {a+1} {a+1}

B1 {a+1} {}

B2 {x*y} {}

B2a {} {}

B3 {} {}

B3a {x*y} {x*y}

B4 {} {}

B5 {} {}

B6 {} {}

B7 {} {}

exit {} {}

Block ANTin(i)  EARLin(i)

entry {a+1}

B2 {x*y}

B3a {x*y}

52

Lateness (LATE)

•An expression is latest on entry to a block if

– it is the optimal point for computing the
expression and

– on every path from the block entry to exit, any
other optimal computation point occurs after
an expression computation in the original
flowgraph

i.e., there is no “later” placement for this expression

15-411/611 53

Latestness (LATE)

Block LATEin

entry {}

B1 {a+1}

B2 {x*y}

B2a {}

B3 {}

B3a {x*y}

B4 {}

B5 {}

B6 {}

B7 {}

exit {}

55

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Isolatedness (ISOL)

•An optimal placement in a block for the
computation of an expression is isolated iff

– on every path from a successor of the block to
the exit block, every original computation is
preceded by the optimal placement point

15-411/611 56

Isolatedness (ISOL)

Block ISOLin ISOLout

entry {} {}

B1 {a+1} {}

B2 {x*y} {}

B2a {} {}

B3 {} {}

B3a {x*y} {}

B4 {} {}

B5 {} {}

B6 {} {}

B7 {} {}

exit {} {}

58

Optimal Placement

•The set of expression for which a given block
is the optimal computation point is the set of
expressions that are latest and not isolated

15-411/611 60

Redundant Computations

•The set of redundant expressions in a block
consist of those used in the block that are
neither isolated nor latest

15-411/611 62

OPT and REDN

Block OPT REDN

entry {} {}

B1 {a+1} {}

B2 {x*y} {}

B2a {} {}

B3 {} {}

B3a {x*y} {}

B4 {} {x*y}

B5 {} {}

B6 {} {}

B7 {} {x*y}

exit {} {}

remove these

insert these

(if necessary)

15-411/611 63

PRE Example

entry

B1
z = a +1

x > 3

B2
a = x * y

y < 5

B3
z < 7

B4
b = x * y

B5 B6

B7
c = x * y

exit

B2a
B3a

Block OPT REDN

B1 {a+1} {}

B2 {x*y} {}

B3a {x*y} {}

B4 {} {x*y}

B7 {} {x*y}

15-411/611 64

PRE Example

entry

B1
z = a +1

x > 3

B2
t1 = x * y

a = t1

y < 5

B3
z < 7

B4
b = t1

B5
B6

B7
c = t1

exit

B2a

B3a
t1 = x * y

4 data flow analyses later…

15-411/611 65

• Same DF framework we used before

– i.e., bitvectors, iterative algorithm

– On basic blocks

• Will be improved if do some commutativity
analysis

• If using for LICM, remember to check for 0-
trip loops!

Some Details

15-411/611 66

	Slide 1
	Slide 2: Today
	Slide 3: Guest Lectures
	Slide 4: Common Subexpression Elimination
	Slide 5: CSE Limitation
	Slide 6: Loop Invariant Code Motion
	Slide 7: Loop-Invariant Code Motion
	Slide 8: Loop Invariance
	Slide 9: Loop Invariant Code Motion
	Slide 10: Partial Redundancy Elimination
	Slide 11: Optimal Computation Point
	Slide 12: PRE Example
	Slide 13: PRE Example
	Slide 14: PRE Example
	Slide 15: PRE Example
	Slide 16: Critical Edge Splitting
	Slide 17: Critical Edge Splitting
	Slide 18: PRE History
	Slide 21: The 60K Plan
	Slide 23: General Approach to analysis
	Slide 24: General Approach to analysis
	Slide 25: Anticipatable Expressions
	Slide 26: Anticipated for ‘x*y’?
	Slide 27: Anticipated for ‘x*y’?
	Slide 28: Local Transparency (TRANSloc)
	Slide 29: Local Anticipatable (ANTloc)
	Slide 30: Globally Anticipatable (ANT)
	Slide 33: Globally Anticipatable (ANT)
	Slide 35: Earliest (EARL)
	Slide 36: Earliest for ‘x*y’?
	Slide 37: Earliest for ‘x*y’?
	Slide 40: Earliest (EARL)
	Slide 42: Earliest (EARL)
	Slide 43: Earliest (EARL)
	Slide 44: Earliest (EARL)
	Slide 45: Earliest (EARL)
	Slide 46: Computationally Optimal
	Slide 47: Anticipated for ‘x*y’ at input?
	Slide 48: Anticipated & Early (at input)
	Slide 49: Delayedness (DELAY)
	Slide 50: Delayed for ‘x*y’
	Slide 52: Delayedness (DELAY)
	Slide 53: Lateness (LATE)
	Slide 55: Latestness (LATE)
	Slide 56: Isolatedness (ISOL)
	Slide 58: Isolatedness (ISOL)
	Slide 60: Optimal Placement
	Slide 62: Redundant Computations
	Slide 63: OPT and REDN
	Slide 64: PRE Example
	Slide 65: PRE Example
	Slide 66: Some Details

