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• Review

– Loop Transformation Theory

– Unimodular Transformations

• A Data Locality Algorithm 

– Reuse -> (Localized Vector Space) -> Locality

– Reuse

▪ Self-Temporal

▪ Self-Spatial

▪ Group Spatial

SRP Algorithm

Today
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• Loop Transformation Theory

– Iteration spaces

– Dependence information

– Dependence Analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

Review
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Loop Transformation Theory

• Iteration Space

• Dependence vectors

• Unimodular transformations
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Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of 
the loop nest.

for (i=0; i<n; i++) {

 

}

for (i=0; i<n; i++) 

 for (j=0; j<4; j++) {

 

}

3

2

4
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Loop Nests and the Iter space

• General form of tightly nested loop

• The iteration space is a convex polyhedron in Zn 
bounded by the loop bounds.

• Each iteration is a node in the polyhedron 
identified by its vector: p=(p1, p2, …, pn)

for I1 := low1 to high1 by step1
   for I2 := low2 to high2 by step2
      …

       for Ii := lowi to highi by stepi
        …

    for In := lown to highn by stepn
            Stmts
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Lexicographic Order
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Data Dependences

Loop carried: between two statements instances
                      in two different iterations of a loop.
Loop independent: between two statements 
                               instances in the same loop iteration.

Lexicographically forward: the source comes before the target.
Lexicographically backward: otherwise.

The right-hand side of an assignment is considered
to precede the left-hand side.
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There is a loop-carried, lexically forward, flow 
dependence from S2 to S3. 

Data Dependence in Loops

S2

S3

(1,3)

Data dependence graph for statements in a loop

(1,3) := iteration distance is 1, latency is 3.

(S1) for i = 2 to 9 do

 (S2)     X[i] = Y[i] + Z[i]

(S3)     A[i] = X[i-1] + 1

(S4) end for

i = 2  i = 3  i = 4

(s2)   X[2]=Y[2]+Z[2]      X[3]=Y[3]+Z[3]    X[4]=Y[4]+Z[4]
(s3)   A[2]=X[1]+1          A[3]=X[2]+1    A[4]=X[3]+1

From Wolfe15-411/611 9



Dependence Vectors

• Dependence vector in an n-nested loop is denoted as a 
vector: d=(d1, d2, …, dn).

• Each di is a possibly infinite range of ints in                      
               ,  where

• A single dep vector represents a set of distance vectors.

• A distance vector defines a distance in the iteration 
space.

• A dependence vector is a distance vector if each di is a 
singleton.

 maxmin , ii dd

  and}{},{ maxminmaxmin
iiii dddd −
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Other defs

• Common ranges in dependence vectors

– [1, ] as + or >

– [- , -1] as – or <

– [- , ] as   or *

• A distance vector is the difference between 
the target and source iterations (for a 
dependent ref), e.g.,  d = It-Is
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The General Problem

DO i1 = L1, U1

 DO i2 = L2, U2

   ...

  DO in = Ln, Un

 S1  A(f1(i1,...,in),...,fm(i1,...,in)) = ...

 S2  ... = A(g1(i1,...,in),...,gm(i1,...,in))

  ENDDO

  ...

 ENDDO

ENDDO

A dependence exists from S1 to S2 if:

– There exist  and  such that

•  <  (control flow requirement)

• fi () = gi () for all i, 1 ≤ i ≤ m (common access requirement)
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• Looking for an interger solution to:

fi () = gi () for all i, 1 ≤ i ≤ m

• N-deep loop nest

• M subscripts per array reference

• General case, too hard

• Restrict to linear functions of loop-indices

• System of linear equations (2xn variables 
and m equations)

General Solver?

15-411/611 13



Conservative Testing

• Consider only linear subscript expressions

• For each pair of R/W references:

o Create subscript pair at each position

o Perform test based on complexity of pair: 
ZIV, SIV, MIV, Coupled, …

o Prove independent or get direction/distance

• Merge each pair's information into a single 
dependence vector
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Examples

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}
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Create Subscript Pairs
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for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

<A[I2 + 1],A[I2]>

<A[I2 + 1],A[I2 + 1]>

<A[I2 + 1],A[I2 + 2]>



Do Strong SIV

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2
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for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]>

<A[I2 + 1],A[I2 + 1]>

<A[I2 + 1],A[I2 + 2]>



I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2
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for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]>         
<A[I2 + 1],A[I2 + 1]>   0

<A[I2 + 1],A[I2 + 2]>

Do Strong SIV



Do Strong SIV

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 19

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]>         1
<A[I2 + 1],A[I2 + 1]>   0

<A[I2 + 1],A[I2 + 2]>  



Merge

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 20

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

<A[I2 + 1],A[I2]>         1
<A[I2 + 1],A[I2 + 1]>   0

<A[I2 + 1],A[I2 + 2]>  -1

*
1

*
0

*
-1



Examples

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]
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Examples

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]

(0,1,0)

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

15-411/611 22



Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are 
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors
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Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [ 0 1 ]      + [ 1 ]

A[I2]   [ 0 1 ]       + [ 0 ]

 

A[I2 + 2] [ 0 1 ]       + [ 2 ]

I1
I2

I1
I2

I1
I2

These references all belong to the same 
uniformly generated set: H = [ 0 1]
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Loop Transforms

• A loop transformation changes the order in 
which iterations in the iteration space are 
visited.

• For example, Loop Interchange

for i := 0 to n

  for j := 0 to m

    body

for j := 0 to m

  for i := 0 to n

    body
i

j

j

i15-411/611 25



Unimodular Transforms

• Interchange
 permute nesting order

• Reversal
 reverse order of iterations

• Skewing
 scale iterations by an outer loop index
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Interchange

• Change order of loops

• For some permutation p of 1 … n

• When is this legal?

for I1 := …

   for I2 := …

    …

      for In := …

         body

for Ip(1) := …

   for Ip(2) := …

    …

      for Ip(n) := …

         body
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Transform and matrix notation

• If dependences are vectors in iter space, 
then transforms can be represented as 
matrix transforms

• E.g., for a 2-deep loop, interchange is:

• Since, T is a linear transform, Td is 
transformed dependence:









=

















1

2

2

1

01

10

p

p

p

p








=

01

10
T









=

















1

2

2

1

01

10

d

d

d

d
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Reversal

• Reversal of ith loop reverses its traversal, so it 
can be represented as: 
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost is:








−
=















−

210

01 1

2

1

p

p

p

p








−
=

10

01
T
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Skewing

• Skew loop Ij by a factor f w.r.t. loop Ii maps

• Example for 2D

,...),...,,...,( 1 ji ppp ,...),...,,...,( 1 iji fpppp +










+
=

















12

1

2

1

11

01

pp

p

p

p





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11
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T
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Loop Skewing Example

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

  for I2 := I1 to 6+I1
    A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}
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Our Goal: Increase locality

Is there locality to exploit? Use Reuse Analysis to 
determine amount of 
possible reuse.

Can we transform loop to 
turn reuse into locality? Use dependence 

information to determine 
space of possible 
transformations.

Transform Loop using SRP
Perform unimodular 
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep
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Predicting Cache Behavior through 

“Locality Analysis”

• Definitions:

– Reuse: 
accessing a location that has been accessed in the past

– Locality:
accessing a location that is now found in the cache

• Key Insights

– Locality only occurs when there is reuse!

– BUT, reuse does not necessarily result in locality.
– Why not?
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Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be 
finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an 
iteration is expected to fit within the cache

3. Find data locality:

– reuse  localized iteration space  locality 
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Types of Data Reuse

for i = 0 to 2

 for j = 0 to 100

       A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

i

j

B[j][0]

i

j

B[j][0] & B[j+1][0]

Self
Spatial

Self
Temporal

Group
(temporal)
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Kinds of reuse and the factor

for i = 0 to N-1

    for j = 0 to N-1

  f(A[i],A[j]);

What kinds of reuse are there?
A[i]?

A[j]?
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Kinds of reuse and the factor

for I1 := 0 to 5
 for I2 := 0 to 6
  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-411/611 37



Kinds of reuse and the factor

for I1 := 0 to 5
 for I2 := 0 to 6
  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

self-temporal in 1, self-spatial in 2
Also, group in 1 and 2

What is different about this and previous?

for i = 0 to N-1

    for j = 0 to N-1

  f(A[i],A[j]);
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Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are 
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors
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Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [ 0 1 ]      + [ 1 ]

A[I2]   [ 0 1 ]       + [ 0 ]

 

A[I2 + 2] [ 0 1 ]       + [ 2 ]

I1
I2

I1
I2

I1
I2

These references all belong to the same 
uniformly generated set: H = [ 0 1]
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• Why should we quantify reuse?

• How do we quantify locality?

Quantifying Reuse
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Quantifying Reuse

• Why should we quantify reuse?

• How do we quantify locality?

• Use vector spaces to identify loops with reuse

• We convert that reuse into locality by making 
the “best” loop the inner loop

• Metric: memory accesses/iter of innermost loop. 
No locality → mem access
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Self-Temporal

• For a reference, A[Hi+c], there is self-temporal 
reuse between m and n when Hm+c=Hn+c, i.e., 
H(r)=0, where r=m-n.

• The direction of reuse is r.

• The self-temporal reuse vector space is: RST = Ker H

• There is locality if RST is in the localized vector 
space.

Recall that for nxm matrix A,
the ker A = nullspace(A) = {xm|Ax = 0} 
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Example of self-temporal reuse

Access H ker H reuse? Local? 

C[I1,I3] 1 0 0 span{(0,1,0)} n in I2  

 0 0 1

A[I1,I2] 1 0 0 span{(0,0,1)} 

 0 1 0

B[I2,I3] 0 1 0 span{(1,0,0)}

 0 0 1

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]
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Self Temporal Reuse & Locality

• Reuse is sdim(Rst)

• RST  L = locality

• # of mem refs = 
1

𝑠d𝑖𝑚 𝑅𝑆𝑇∩𝐿
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Self-Spatial

• Occurs when we access in order

– A[i,j]: best gain, l

– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?
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Self-Spatial

• Occurs when we access in order

– A[i,j]: best gain, l

– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?

• Since all but last index must be identical, 
so, set last row in H to 0, Hs

self-spatial reuse vector space = RSS

  RSS = ker HS

• Notice, ker H  ker Hs

• If, Rss
 L = RST

 L, then no additional benefit to SS
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Example of self-spatial reuse

Access Hs ker Hs reuse? Local? 

C[I1,I3] 1 0 0 span{(0,1,0),   
 0 0 0          (0,0,1)}

A[I1,I2] 1 0 0 span{(0,0,1),

 0 0 0          (0,1,0)}

B[I2,I3] 0 1 0 span{(1,0,0),

 0 0 0          (0,0,1)}

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]
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Self-spatial reuse/locality

• Dim(RSS) is dimensionality of reuse vector 
space.

• If RSS=0 → no reuse

• If RSS=RST no extra reuse from spatial

• Reuse of each element is k/lsdim(R_SS)

where, s is number of iters per dim.

• RSSL is amount of reuse exploited, therefore 
number of memory references generated is:
  k/lsdim(R_SSL)
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Group Temporal

• Two refs A[Hi+c] and A[Hi+d] can have group 
temporal reuse in L iff

– they are from same uniformly generated set

– There is an r  L s.t. Hr = c – d

• if c-d = rp, then there is group temporal reuse, 
RGT = ker H+span{rp}

• However, there is no extra benefit if RGT  L = 
RST  L
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Our Goal: Increase locality

Is there locality to exploit? Use Reuse Analysis to 
determine amount of 
possible reuse.

Can we transform loop to 
turn reuse into locality? Use dependence 

information to determine 
space of possible 
transformations.

Transform Loop using SRP
Perform unimodular 
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep
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Example of ST reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0

   1
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Example of SS reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)}  s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0    Hs = 0

   1    0
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Example of GT reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)}  s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

Group-Temporal: span{(1,0),(0,1)}  3

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0

   1
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Turning Reuse into Locality

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)}  s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)}  l

Group-Temporal: span{(1,0),(0,1)}  3

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-411/611 59

I1

I2



The Problem

• How to increase locality by transforming loop nest

• Matrix Mult is simple as it is both

– legal to tile

– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
(unimodular transformations)
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But...is the transform legal?

• Distance/direction vectors give a partial 
order among points in the iteration space

• A loop transform changes the order in 
which 'points' are visited

• The new visit order must respect the 
dependence partial order!
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But...is the transform legal?

i

j

for i = 0 to TS

  for j = 0 to N-2

    A[j+1] =

     (A[j] + A[j+1] + A[j+2])/3;

• What other visit 
order is legal here?
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But...is the transform legal?

i

j

for i = 0 to TS

   for j = 0 to N-2

     A[j+1] =

  (A[j] + A[j+1] + A[j+2])/3;

• What other visit 
order is legal here?

j
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But...is the transform legal?

• Skewing...
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But...is the transform legal?

• Skewing...now we can 
block
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But...is the transform legal?

• Skewing...now we can loop 
interchange
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Unimodular transformations

• Express loop transformation as a matrix multiplication

• Check if any dependence is violated by multiplying the 
distance vector by the matrix – if the resulting vector is 
still lexicographically positive, then the involved 
iterations are visited in an order that respects the 
dependence. 

Reversal

1   0

0   -1

Interchange

0    1

1    0

1    1

0    1

Skew
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• Inner most loop(s) will convert their reuse 
into locality

• We can use unimodular transforms to 
make the best loop the innermost
(obeying dependencies)

• Sometimes reuse is along multiple 
dimensions, then we need to tile

Turning Reuse -> Locality
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• Tiling a loop nest is legal if it is 
          fully permutable

• I.e., all dependences in loop nest are

– lexicographically positive, and,

– Outer-loops are non-negative

• Transformation to make dependencies 
legal and then to tile also called:

– Strip-mine and interchange

– Unroll and jam

• How big to make tile?

Tiling
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Matrix Multiply

• Fully permutable & L in two loops

• Canonical simple case: Matrix Multiply

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]

=
I1

I3
I2

I2

I3I2+1

In next iteration of I2 previous data that could be 
reused has been replaced in cache.
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Tiling solves problem
for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]

=
I1

I3
I2

I2

I2+1

for II2 := 1 to n by s

   for II3 := 1 to n by s

      for I1 := 1 to n

         for I2 := II2 to min(II2 + s - 1,n)

            for I3 := II3 to min(II3 + s - 1,n)

               C[I1,I3] += A[I1,I2] * B[I2,I3];

I3
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How much Reuse is Locality?

15-411/611 73

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)}  s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)}  l

Group-Temporal: span{(1,0),(0,1)}  3

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

If L, localized space, is 
 span{(0,1)} -> 1/l

 span{(1,0)} -> 1/ls
 span{(0,1),(1,0)} -> 1/ls



How much Reuse is Locality?
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Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)}  s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)}  l

Group-Temporal: span{(1,0),(0,1)}  3

for I1 := 0 to 5

 for I2 := 0 to 6

  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

If L, localized space, is 
 span{(0,1)} -> 1/l

 span{(1,0)} -> 1/ls
 span{(0,1),(1,0)} -> 1/ls             So, we want to tile!



• Of course, exponential in depth of loop nest

• But, loop nest depth is usually small

• And, simplify to look at only elementary 
basis vectors carrying reuse

• Furthermore, ignore loops

– With no reuse

– Must not be innermost due to dependencies

• For each of the remaining loops, look at all 
subsets to determine which can/should be 
innermost

Finding best L that is legal
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• Heuristic to:

– make a loop nest fully permutable

– Or, partition loops into non-negative outer 
loops and remaining loops

• Thrm: N deep loop nest with lex-pos deps 
and a 

SRP
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• Removing serializing loops(using P)

• Try and find a fully permutable from 
remaining loops 1 loop at a time (using SR)

• If succeed

– rewrite loops using R

• rewrite loop bounds using T

• If skewed, rewrite indices to compensate

– Potentially Tile

Using SRP
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Loop Skewing Example

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

  for I2 := I1 to 6+I1
    A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}
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