
15-411/15-611 Compiler Design

Seth Copen Goldstein

Loop Optimization – 2

Locality

April 1, 2025

• Review

– Loop Transformation Theory

– Unimodular Transformations

• A Data Locality Algorithm

– Reuse -> (Localized Vector Space) -> Locality

– Reuse

▪ Self-Temporal

▪ Self-Spatial

▪ Group Spatial

SRP Algorithm

Today

15-411/611 2

• Loop Transformation Theory

– Iteration spaces

– Dependence information

– Dependence Analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

Review

15-411/611 3

Loop Transformation Theory

• Iteration Space

• Dependence vectors

• Unimodular transformations

15-411/611 4

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)

 for (j=0; j<4; j++) {

}

3

2

4

15-411/611 5

Loop Nests and the Iter space

• General form of tightly nested loop

• The iteration space is a convex polyhedron in Zn
bounded by the loop bounds.

• Each iteration is a node in the polyhedron
identified by its vector: p=(p1, p2, …, pn)

for I1 := low1 to high1 by step1
 for I2 := low2 to high2 by step2
 …

 for Ii := lowi to highi by stepi
 …

 for In := lown to highn by stepn
 Stmts

15-411/611 6

Lexicographic Order

. and , because

positivehically lexicograp are and Both

. t simply thaor , 3, levelat

 than lesshically lexicograp is say that We

1

1

1

1

2

0

1

1

:below and vectorsheConsider t

b0a0

ba

baba

 ba

ba

 ba

3























−

−
=



















−
=

15-411/611 7

Data Dependences

Loop carried: between two statements instances
 in two different iterations of a loop.
Loop independent: between two statements
 instances in the same loop iteration.

Lexicographically forward: the source comes before the target.
Lexicographically backward: otherwise.

The right-hand side of an assignment is considered
to precede the left-hand side.

15-411/611 8

There is a loop-carried, lexically forward, flow
dependence from S2 to S3.

Data Dependence in Loops

S2

S3

(1,3)

Data dependence graph for statements in a loop

(1,3) := iteration distance is 1, latency is 3.

(S1) for i = 2 to 9 do

 (S2) X[i] = Y[i] + Z[i]

(S3) A[i] = X[i-1] + 1

(S4) end for

i = 2 i = 3 i = 4

(s2) X[2]=Y[2]+Z[2] X[3]=Y[3]+Z[3] X[4]=Y[4]+Z[4]
(s3) A[2]=X[1]+1 A[3]=X[2]+1 A[4]=X[3]+1

From Wolfe15-411/611 9

Dependence Vectors

• Dependence vector in an n-nested loop is denoted as a
vector: d=(d1, d2, …, dn).

• Each di is a possibly infinite range of ints in
 , where

• A single dep vector represents a set of distance vectors.

• A distance vector defines a distance in the iteration
space.

• A dependence vector is a distance vector if each di is a
singleton.

 maxmin , ii dd

 and}{},{ maxminmaxmin
iiii dddd −

15-411/611 10

Other defs

• Common ranges in dependence vectors

– [1, ] as + or >

– [- , -1] as – or <

– [- , ] as  or *

• A distance vector is the difference between
the target and source iterations (for a
dependent ref), e.g., d = It-Is

15-411/611 11

The General Problem

DO i1 = L1, U1

 DO i2 = L2, U2

 ...

 DO in = Ln, Un

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...

 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

 ENDDO

 ...

 ENDDO

ENDDO

A dependence exists from S1 to S2 if:

– There exist  and  such that

•  <  (control flow requirement)

• fi () = gi () for all i, 1 ≤ i ≤ m (common access requirement)

15-411/611 12

• Looking for an interger solution to:

fi () = gi () for all i, 1 ≤ i ≤ m

• N-deep loop nest

• M subscripts per array reference

• General case, too hard

• Restrict to linear functions of loop-indices

• System of linear equations (2xn variables
and m equations)

General Solver?

15-411/611 13

Conservative Testing

• Consider only linear subscript expressions

• For each pair of R/W references:

o Create subscript pair at each position

o Perform test based on complexity of pair:
ZIV, SIV, MIV, Coupled, …

o Prove independent or get direction/distance

• Merge each pair's information into a single
dependence vector

15-411/611 14

Examples

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

15-411/611 15

Create Subscript Pairs

15-411/611 16

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

<A[I2 + 1],A[I2]>

<A[I2 + 1],A[I2 + 1]>

<A[I2 + 1],A[I2 + 2]>

Do Strong SIV

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 17

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]>

<A[I2 + 1],A[I2 + 1]>

<A[I2 + 1],A[I2 + 2]>

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 18

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]>
<A[I2 + 1],A[I2 + 1]> 0

<A[I2 + 1],A[I2 + 2]>

Do Strong SIV

Do Strong SIV

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 19

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]
<A[I2 + 1],A[I2]> 1
<A[I2 + 1],A[I2 + 1]> 0

<A[I2 + 1],A[I2 + 2]>

Merge

I1

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←

← A[0]

←A[1]

←A[2]

A[1] ←​

← A[0]​

←A[1]​

←A[2]​

I2

15-411/611 20

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

A[2] ←

← A[1]

←A[2]

←A[3]

A[3] ←

← A[2]

←A[3]

←A[4]

<A[I2 + 1],A[I2]> 1
<A[I2 + 1],A[I2 + 1]> 0

<A[I2 + 1],A[I2 + 2]> -1

*
1

*
0

*
-1

Examples

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

15-411/611 21

0
*
0

Examples

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

(0,1,0)

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

15-411/611 22

Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors

15-411/611 23

Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [0 1] + [1]

A[I2] [0 1] + [0]

A[I2 + 2] [0 1] + [2]

I1
I2

I1
I2

I1
I2

These references all belong to the same
uniformly generated set: H = [0 1]

15-411/611 24

Loop Transforms

• A loop transformation changes the order in
which iterations in the iteration space are
visited.

• For example, Loop Interchange

for i := 0 to n

 for j := 0 to m

 body

for j := 0 to m

 for i := 0 to n

 body
i

j

j

i15-411/611 25

Unimodular Transforms

• Interchange
 permute nesting order

• Reversal
 reverse order of iterations

• Skewing
 scale iterations by an outer loop index

15-411/611 26

Interchange

• Change order of loops

• For some permutation p of 1 … n

• When is this legal?

for I1 := …

 for I2 := …

 …

 for In := …

 body

for Ip(1) := …

 for Ip(2) := …

 …

 for Ip(n) := …

 body

15-411/611 27

Transform and matrix notation

• If dependences are vectors in iter space,
then transforms can be represented as
matrix transforms

• E.g., for a 2-deep loop, interchange is:

• Since, T is a linear transform, Td is
transformed dependence:









=

















1

2

2

1

01

10

p

p

p

p








=

01

10
T









=

















1

2

2

1

01

10

d

d

d

d

15-411/611 28

Reversal

• Reversal of ith loop reverses its traversal, so it
can be represented as:
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost is:








−
=















−

210

01 1

2

1

p

p

p

p








−
=

10

01
T

15-411/611 29

Skewing

• Skew loop Ij by a factor f w.r.t. loop Ii maps

• Example for 2D

,...),...,,...,(1 ji ppp ,...),...,,...,(1 iji fpppp +










+
=

















12

1

2

1

11

01

pp

p

p

p








=

11

01
T

15-411/611 30

Loop Skewing Example

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

 for I2 := I1 to 6+I1
 A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}

15-411/611 31

Our Goal: Increase locality

Is there locality to exploit? Use Reuse Analysis to
determine amount of
possible reuse.

Can we transform loop to
turn reuse into locality? Use dependence

information to determine
space of possible
transformations.

Transform Loop using SRP
Perform unimodular
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep

15-411/611 32

Predicting Cache Behavior through

“Locality Analysis”

• Definitions:

– Reuse:
accessing a location that has been accessed in the past

– Locality:
accessing a location that is now found in the cache

• Key Insights

– Locality only occurs when there is reuse!

– BUT, reuse does not necessarily result in locality.
– Why not?

15-411/611 33

Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be
finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an
iteration is expected to fit within the cache

3. Find data locality:

– reuse  localized iteration space  locality

15-411/611 34

Types of Data Reuse

for i = 0 to 2

 for j = 0 to 100

 A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

i

j

B[j][0]

i

j

B[j][0] & B[j+1][0]

Self
Spatial

Self
Temporal

Group
(temporal)

15-411/611 35

Kinds of reuse and the factor

for i = 0 to N-1

 for j = 0 to N-1

 f(A[i],A[j]);

What kinds of reuse are there?
A[i]?

A[j]?

15-411/611 36

Kinds of reuse and the factor

for I1 := 0 to 5
 for I2 := 0 to 6
 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-411/611 37

Kinds of reuse and the factor

for I1 := 0 to 5
 for I2 := 0 to 6
 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

self-temporal in 1, self-spatial in 2
Also, group in 1 and 2

What is different about this and previous?

for i = 0 to N-1

 for j = 0 to N-1

 f(A[i],A[j]);

15-411/611 38

Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors

15-411/611 39

Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [0 1] + [1]

A[I2] [0 1] + [0]

A[I2 + 2] [0 1] + [2]

I1
I2

I1
I2

I1
I2

These references all belong to the same
uniformly generated set: H = [0 1]

15-411/611 40

• Why should we quantify reuse?

• How do we quantify locality?

Quantifying Reuse

15-411/611 41

Quantifying Reuse

• Why should we quantify reuse?

• How do we quantify locality?

• Use vector spaces to identify loops with reuse

• We convert that reuse into locality by making
the “best” loop the inner loop

• Metric: memory accesses/iter of innermost loop.
No locality → mem access

15-411/611 42

Self-Temporal

• For a reference, A[Hi+c], there is self-temporal
reuse between m and n when Hm+c=Hn+c, i.e.,
H(r)=0, where r=m-n.

• The direction of reuse is r.

• The self-temporal reuse vector space is: RST = Ker H

• There is locality if RST is in the localized vector
space.

Recall that for nxm matrix A,
the ker A = nullspace(A) = {xm|Ax = 0}

15-411/611 43

Example of self-temporal reuse

Access H ker H reuse? Local?

C[I1,I3] 1 0 0 span{(0,1,0)} n in I2

 0 0 1

A[I1,I2] 1 0 0 span{(0,0,1)}

 0 1 0

B[I2,I3] 0 1 0 span{(1,0,0)}

 0 0 1

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

15-411/611 44

Self Temporal Reuse & Locality

• Reuse is sdim(Rst)

• RST  L = locality

• # of mem refs =
1

𝑠d𝑖𝑚 𝑅𝑆𝑇∩𝐿

15-411/611 45

Self-Spatial

• Occurs when we access in order

– A[i,j]: best gain, l

– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?

15-411/611 46

Self-Spatial

• Occurs when we access in order

– A[i,j]: best gain, l

– A[i,j*k]: best gain, l/k if |k| <= l

• How do we get spatial reuse for UG: H?

• Since all but last index must be identical,
so, set last row in H to 0, Hs

self-spatial reuse vector space = RSS

 RSS = ker HS

• Notice, ker H  ker Hs

• If, Rss
 L = RST

 L, then no additional benefit to SS
15-411/611 47

Example of self-spatial reuse

Access Hs ker Hs reuse? Local?

C[I1,I3] 1 0 0 span{(0,1,0),
 0 0 0 (0,0,1)}

A[I1,I2] 1 0 0 span{(0,0,1),

 0 0 0 (0,1,0)}

B[I2,I3] 0 1 0 span{(1,0,0),

 0 0 0 (0,0,1)}

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

15-411/611 48

Self-spatial reuse/locality

• Dim(RSS) is dimensionality of reuse vector
space.

• If RSS=0 → no reuse

• If RSS=RST no extra reuse from spatial

• Reuse of each element is k/lsdim(R_SS)

where, s is number of iters per dim.

• RSSL is amount of reuse exploited, therefore
number of memory references generated is:
 k/lsdim(R_SSL)

15-411/611 49

Group Temporal

• Two refs A[Hi+c] and A[Hi+d] can have group
temporal reuse in L iff

– they are from same uniformly generated set

– There is an r  L s.t. Hr = c – d

• if c-d = rp, then there is group temporal reuse,
RGT = ker H+span{rp}

• However, there is no extra benefit if RGT  L =
RST  L

15-411/611 50

Our Goal: Increase locality

Is there locality to exploit? Use Reuse Analysis to
determine amount of
possible reuse.

Can we transform loop to
turn reuse into locality? Use dependence

information to determine
space of possible
transformations.

Transform Loop using SRP
Perform unimodular
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep

15-411/611 54

Example of ST reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0

 1

15-411/611 56

Example of SS reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0 Hs = 0

 1 0

15-411/611 57

Example of GT reuse

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

Group-Temporal: span{(1,0),(0,1)} 3

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

Uniformly Generated Set:
 {A[I2], A[I2+1] ,A[I2+2]} H = 0

 1

15-411/611 58

Turning Reuse into Locality

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

Group-Temporal: span{(1,0),(0,1)} 3

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

15-411/611 59

I1

I2

The Problem

• How to increase locality by transforming loop nest

• Matrix Mult is simple as it is both

– legal to tile

– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
(unimodular transformations)

15-411/611 60

But...is the transform legal?

• Distance/direction vectors give a partial
order among points in the iteration space

• A loop transform changes the order in
which 'points' are visited

• The new visit order must respect the
dependence partial order!

15-411/611 61

But...is the transform legal?

i

j

for i = 0 to TS

 for j = 0 to N-2

 A[j+1] =

 (A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

15-411/611 62

But...is the transform legal?

i

j

for i = 0 to TS

 for j = 0 to N-2

 A[j+1] =

 (A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

j

15-411/611 63

But...is the transform legal?

• Skewing...

15-411/611 64

But...is the transform legal?

• Skewing...now we can
block

15-411/611 65

But...is the transform legal?

• Skewing...now we can loop
interchange

15-411/611 66

Unimodular transformations

• Express loop transformation as a matrix multiplication

• Check if any dependence is violated by multiplying the
distance vector by the matrix – if the resulting vector is
still lexicographically positive, then the involved
iterations are visited in an order that respects the
dependence.

Reversal

1 0

0 -1

Interchange

0 1

1 0

1 1

0 1

Skew

15-411/611 67

• Inner most loop(s) will convert their reuse
into locality

• We can use unimodular transforms to
make the best loop the innermost
(obeying dependencies)

• Sometimes reuse is along multiple
dimensions, then we need to tile

Turning Reuse -> Locality

15-411/611 68

• Tiling a loop nest is legal if it is
 fully permutable

• I.e., all dependences in loop nest are

– lexicographically positive, and,

– Outer-loops are non-negative

• Transformation to make dependencies
legal and then to tile also called:

– Strip-mine and interchange

– Unroll and jam

• How big to make tile?

Tiling

15-411/611 69

Matrix Multiply

• Fully permutable & L in two loops

• Canonical simple case: Matrix Multiply

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

=
I1

I3
I2

I2

I3I2+1

In next iteration of I2 previous data that could be
reused has been replaced in cache.

15-411/611 70

Tiling solves problem
for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

=
I1

I3
I2

I2

I2+1

for II2 := 1 to n by s

 for II3 := 1 to n by s

 for I1 := 1 to n

 for I2 := II2 to min(II2 + s - 1,n)

 for I3 := II3 to min(II3 + s - 1,n)

 C[I1,I3] += A[I1,I2] * B[I2,I3];

I3

15-411/611 71

How much Reuse is Locality?

15-411/611 73

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

Group-Temporal: span{(1,0),(0,1)} 3

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

If L, localized space, is
 span{(0,1)} -> 1/l

 span{(1,0)} -> 1/ls
 span{(0,1),(1,0)} -> 1/ls

How much Reuse is Locality?

15-411/611 74

Type reuse space reuse factor

Self-Temporal: Ker(H) = span{(1,0)} s

Self-Spatial: Ker(Hs) = span{(1,0),(0,1)} l

Group-Temporal: span{(1,0),(0,1)} 3

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

If L, localized space, is
 span{(0,1)} -> 1/l

 span{(1,0)} -> 1/ls
 span{(0,1),(1,0)} -> 1/ls So, we want to tile!

• Of course, exponential in depth of loop nest

• But, loop nest depth is usually small

• And, simplify to look at only elementary
basis vectors carrying reuse

• Furthermore, ignore loops

– With no reuse

– Must not be innermost due to dependencies

• For each of the remaining loops, look at all
subsets to determine which can/should be
innermost

Finding best L that is legal

15-411/611 75

• Heuristic to:

– make a loop nest fully permutable

– Or, partition loops into non-negative outer
loops and remaining loops

• Thrm: N deep loop nest with lex-pos deps
and a

SRP

15-411/611 76

• Removing serializing loops(using P)

• Try and find a fully permutable from
remaining loops 1 loop at a time (using SR)

• If succeed

– rewrite loops using R

• rewrite loop bounds using T

• If skewed, rewrite indices to compensate

– Potentially Tile

Using SRP

15-411/611 77

Loop Skewing Example

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

 for I2 := I1 to 6+I1
 A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}

15-411/611 78

	Slide 1
	Slide 2: Today
	Slide 3: Review
	Slide 4: Loop Transformation Theory
	Slide 5: Iteration Space
	Slide 6: Loop Nests and the Iter space
	Slide 7: Lexicographic Order
	Slide 8: Data Dependences
	Slide 9: Data Dependence in Loops
	Slide 10: Dependence Vectors
	Slide 11: Other defs
	Slide 12: The General Problem
	Slide 13: General Solver?
	Slide 14: Conservative Testing
	Slide 15: Examples
	Slide 16: Create Subscript Pairs
	Slide 17: Do Strong SIV
	Slide 18: Do Strong SIV
	Slide 19: Do Strong SIV
	Slide 20: Merge
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Uniformly Generated references
	Slide 24: Eg of Uniformly generated sets
	Slide 25: Loop Transforms
	Slide 26: Unimodular Transforms
	Slide 27: Interchange
	Slide 28: Transform and matrix notation
	Slide 29: Reversal
	Slide 30: Skewing
	Slide 31: Loop Skewing Example
	Slide 32: Our Goal: Increase locality
	Slide 33: Predicting Cache Behavior through “Locality Analysis”
	Slide 34: Steps in Locality Analysis
	Slide 35: Types of Data Reuse
	Slide 36: Kinds of reuse and the factor
	Slide 37: Kinds of reuse and the factor
	Slide 38: Kinds of reuse and the factor
	Slide 39: Uniformly Generated references
	Slide 40: Eg of Uniformly generated sets
	Slide 41: Quantifying Reuse
	Slide 42: Quantifying Reuse
	Slide 43: Self-Temporal
	Slide 44: Example of self-temporal reuse
	Slide 45: Self Temporal Reuse & Locality
	Slide 46: Self-Spatial
	Slide 47: Self-Spatial
	Slide 48: Example of self-spatial reuse
	Slide 49: Self-spatial reuse/locality
	Slide 50: Group Temporal
	Slide 54: Our Goal: Increase locality
	Slide 56: Example of ST reuse
	Slide 57: Example of SS reuse
	Slide 58: Example of GT reuse
	Slide 59: Turning Reuse into Locality
	Slide 60: The Problem
	Slide 61: But...is the transform legal?
	Slide 62: But...is the transform legal?
	Slide 63: But...is the transform legal?
	Slide 64: But...is the transform legal?
	Slide 65: But...is the transform legal?
	Slide 66: But...is the transform legal?
	Slide 67: Unimodular transformations
	Slide 68: Turning Reuse -> Locality
	Slide 69: Tiling
	Slide 70: Matrix Multiply
	Slide 71: Tiling solves problem
	Slide 73: How much Reuse is Locality?
	Slide 74: How much Reuse is Locality?
	Slide 75: Finding best L that is legal
	Slide 76: SRP
	Slide 77: Using SRP
	Slide 78: Loop Skewing Example

