
15-411/15-611 Compiler Design

Seth Copen Goldstein

Loop Optimization - 1

March 27, 2025

Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

Requires
understanding

data dependencies

15-411/611 2

• Goals:

– Improving Locality

– Automatic Vectorization

• Key Ideas:

– Locality

– Iteration Spaces

– Data Dependence

– Unimodular Transformations

– Other Transformations

Data-Dependent

Loop Transformations

15-411/611 3

Loop
Transformation
Theory

• Review Locality

• Iteration spaces

• Dependency analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

• A Data Locality Optimizing Algorithm, Wolf&Lam

• Automatic Vectorization

Plan

15-411/611 4

• Review Locality

• Iteration spaces

• Dependency analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

• A Data Locality Optimizing Algorithm, Wolf&Lam

• Automatic Vectorization

Today

15-411/611 5

Recall: Locality

• Principle of Locality: Programs tend to use
data and instructions with addresses near
or equal to those they have used recently

• Temporal locality:

– Recently referenced items are likely
to be referenced again in the near future

• Spatial locality:

– Items with nearby addresses tend
to be referenced close together in time

15-411/611 6

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,

and
cheaper

(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Recall: Memory Hierarchy

15-411/611 7

Layout of C Arrays in Memory

• C arrays allocated in row-major order
– each row in contiguous memory locations

• Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements

– if block size (B) > sizeof(aij) bytes, exploit spatial locality
• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
– for (i = 0; i < n; i++)

sum += a[i][0];

– accesses distant elements

– no spatial locality!
• miss rate = 1 (i.e. 100%)

15-411/611 8

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C
 1/L 1.0 0.0

matmult/mm.c

L = # of elements per cache line

15-411/611 9

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0 1/L 1/L

matmult/mm.c

15-411/611 10

L = # of elements per cache line

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C
 1.0 0.0 1.0

matmult/mm.c

15-411/611 11

L = # of elements per cache line

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1+1/L

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 2/L

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}15-411/611 12

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik (1+1/L)

jki / kji (2)

kij / ikj (2/L)

Cycles per inner loop iteration

15-411/611 13

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */

 for (i1 = i; i1 < i+B; i1++)

 for (j1 = j; j1 < j+B; j1++)

 for (k1 = k; k1 < k+B; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c

15-411/611 17

Blocking Summary

• No blocking: (9/8) n3 misses

• Blocking: (1/(4B)) n3 misses

• Use largest block B, such that B satisfies 3B2 < C
– Fit three blocks in cache! Two input, one output.

• Reason for dramatic difference:

– Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

– But program has to be written properly

15-411/611 20

Or, compiled properly!

The Problem

• How to increase locality by transforming loop nest

• Matrix Mult is simple as it is both

– legal to tile

– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
(unimodular transformations)

15-411/611 24

Loop Transformation Theory

• Iteration Space

• Dependence vectors

• Unimodular transformations

15-411/611 25

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)

 for (j=0; j<4; j++) {

}

3

2

4

15-411/611 26

Loop Nests and the Iter space

• General form of tightly nested loop

• The iteration space is a convex polyhedron in Zn
bounded by the loop bounds.

• Each iteration is a node in the polyhedron
identified by its vector: p=(p1, p2, …, pn)

for I1 := low1 to high1 by step1
 for I2 := low2 to high2 by step2
 …

 for Ii := lowi to highi by stepi
 …

 for In := lown to highn by stepn
 Stmts

15-411/611 27

Lexicographical Ordering

• Iterations are executed in lexicographic
order.

• for p=(p1, p2, …, pn) and q=(q1, q2, …, qn)

if p≻k q iff for 1  k  n,

  1  i < k, (pi = qi) and pk > qk

• For MM:

– (1,1,1), (1,1,2), (1,1,3), …,
(1,2,1), (1,2,2), (1,2,3), …,
…,
(2,1,1), (2,1,2), (2,1,3), …

– (1,2,1) ≻2 (1,1,2), (2,1,1) ≻1 (1,4,2), etc.

15-411/611 28

Handy Representation:

“Iteration Space”

• each position represents an iteration

for i = 0 to N-1

 for j = 0 to N-1

 A[i][j] = B[j][i];

i

j

15-411/611 29

Visitation Order in Iteration Space

• Note: iteration space is not data space

for i = 0 to N-1

 for j = 0 to N-1

 A[i][j] = B[j][i];

i

j

15-411/611 30

When Do Cache Misses Occur?

for i = 0 to N-1

 for j = 0 to N-1

 A[i][j] = B[j][i];

i

j

i

j

A B

15-411/611 31

When Do Cache Misses Occur?

for i = 0 to N-1

 for j = 0 to N-1

 A[i][j] = B[j][i];

i

j

i

j

A B

Hit

Miss

15-411/611 32

When Do Cache Misses Occur?

for i = 0 to N-1

 for j = 0 to N-1

 A[i+j][0] = i*j;

i

j

15-411/611 33

When Do Cache Misses Occur?

i

j

Hit

Miss

15-411/611 34

for i = 0 to N-1

 for j = 0 to N-1

 A[i+j][0] = i*j;

Optimizing the Cache Behavior of

Array Accesses

• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”

– can we transform loop (i.e., change the order of
the iterations) to produce better behavior?

• evaluate the cost of various alternatives

– does the new ordering/layout still produce
correct results?

• use “dependence analysis”

15-411/611 35

Examples of Loop Transformations

• Loop Interchange

• Cache Blocking

• Skewing

• Loop Reversal

• …

(we will briefly discuss the first two)

Can improve locality

Can enable above

15-411/611 36

Loop Interchange

• (assuming N is large relative to cache size)

for i = 0 to N-1

 for j = 0 to N-1

 A[j][i] = i*j;

i

j

for j = 0 to N-1

 for i = 0 to N-1

 A[j][i] = i*j;

j

i

Hit

Miss

15-411/611 37

Impact on Visitation Order

in Iteration Space

i

j

for i = 0 to N-1

 for j = 0 to N-1

 f(A[i],A[j]);

for JJ = 0 to N-1 by B

 for i = 0 to N-1

 for j = JJ to max(N-1,JJ+B-1)

 f(A[i],A[j]);

i

j

15-411/611 38

Dependencies in Loops

• Loop independent data dependence occurs between
accesses in the same loop iteration.

• Loop-carried data dependence occurs between
accesses across different loop iterations.

• There is data dependence between
 access a at iteration i-k and
 access b at iteration i when:

– a and b access the same memory location

– There is a path from a to b

– Either a or b is a write

15-411/611 42

Defining Dependencies

• Flow Dependence W ➔ R f

• Anti-Dependence R ➔ W a

• Output Dependence W ➔ W o

true

false

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;

15-411/611 43

Example Dependencies
S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;
source type target due to

 S1 f S2 a

 S1 f S3 a

 S2 f S4 b

 S3 a S4 d

 S4 a S5 b

 S2 o S5 b

1

2

3

4

5

What can we do with this information?
What are anti- and flow- called “false” dependences?

These are scalar dependencies. The same
idea holds for memory accesses.

15-411/611 44

Data Dependence in Loops

• Dependence can flow across iterations of
the loop.

• Dependence information is annotated with
iteration information.

• If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

15-411/611 45

Data Dependence in Loops

• Dependence can flow across iterations of
the loop.

• Dependence information is annotated with
iteration information.

• If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

f loop independent

f loop carried

15-411/611 46

Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}
f loop independent

f loop carried

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance/Direction of the

dependence is also important.

15-411/611 47

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)

 for (j=0; j<4; j++) {

}

3

2

4

15-411/611 48

Distance Vector

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance vector is the difference between

the target and source iterations.

d = It-Is

Exactly the distance of the dependence, i.e.,

Is + d = It

15-411/611 49

Example of Distance Vectors

for (i=0; i<n; i++)

 for (j=0; j<m; j++){

 A[i,j] = ;

 = A[i,j];

 B[i,j+1] = ;

 = B[i,j];

 C[i+1,j] = ;

 = C[i,j+1] ;

 }

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

i

j

15-411/611 50

Example of Distance Vectors

for (i=0; i<n; i++)

 for (j=0; j<m; j++){

 A[i,j] = ;

 = A[i,j];

 B[i,j+1] = ;

 = B[i,j];

 C[i+1,j] = ;

 = C[i,j+1] ;

 }

j

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

A yields:
0

0
B yields:

0

1
C yields:

1

-1

i

15-411/611 51

Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors

15-411/611 52

Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
 A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [0 1] + [1]

A[I2] [0 1] + [0]

A[I2 + 2] [0 1] + [2]

I1
I2

I1
I2

I1
I2

These references all belong to the same
uniformly generated set: H = [0 1]

15-411/611 53

Data Dependences

Loop carried: between two statements instances
 in two different iterations of a loop.
Loop independent: between two statements
 instances in the same loop iteration.

Lexically forward: the source comes before the target .
Lexically backward: otherwise.

The right-hand side of an assignment is considered
to precede the left-hand side.

15-411/611 54

Lexicographic Order

Example of vectors

. and , because

positivehically lexicograp are and Both

. t simply thaor , 3, levelat

 than lesshically lexicograp is say that We

1

1

1

1

2

0

1

1

:below and vectorsheConsider t

b0a0

ba

baba

 ba

ba

 ba

3























−

−
=



















−
=

15-411/611 56

Dependence Vectors

• Dependence vector in an n-nested loop is denoted as
a vector: d=(d1, d2, …, dn).

• Each di is a possibly infinite range of ints in
 , where

• So, a single dep vector represents a set of distance
vectors.

• A distance vector defines a distance in the iteration
space.

• A dependence vector is a distance vector if each d i is
a singleton.

 maxmin , ii dd

 and}{},{ maxminmaxmin
iiii dddd −

15-411/611 60

Other defs

• Common ranges in dependence vectors

– [1, ] as + or >

– [- , -1] as – or <

– [- , ] as  or *

• A distance vector is the difference between
the target and source iterations (for a
dependent ref), e.g., d = It-Is

15-411/611 61

Examples

for I1 := 1 to n

 for I2 := 1 to n

 for I3 := 1 to n

 C[I1,I3] += A[I1,I2] * B[I2,I3]

(0,1,0)

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

15-411/611 62

Plausible Dependence vectors

• A dependence vector is plausible iff it is
lexicographically non-negative.

• All sequential programs have plausible
dependence vectors. Why?

• Plausible: (1,-1)

• implausible (-1,0)
(-1,0)

1

1

2

2

3

3

j

i

[1,1] [1,2] [1,3]

(0,1)

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

(0,-1)

(1,-1) (-1,0)

1

1

2

2

3

3

j

i

[1,1] [1,2] [1,3]

(0,1)

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

(0,-1)

(1,-1)

15-411/611 63

Loop Transforms

• A loop transformation changes the order in
which iterations in the iteration space are
visited.

• For example, Loop Interchange

for i := 0 to n

 for j := 0 to m

 body

for j := 0 to m

 for i := 0 to n

 body
i

j

j

i15-411/611 64

Unimodular Transforms

• Interchange
 permute nesting order

• Reversal
 reverse order of iterations

• Skewing
 scale iterations by an outer loop index

15-411/611 65

Interchange

• Change order of loops

• For some permutation p of 1 … n

• When is this legal?

for I1 := …

 for I2 := …

 …

 for In := …

 body

for Ip(1) := …

 for Ip(2) := …

 …

 for Ip(n) := …

 body

15-411/611 66

Transform and matrix notation

• If dependences are vectors in iter space,
then transforms can be represented as
matrix transforms

• E.g., for a 2-deep loop, interchange is:

• Since, T is a linear transform, Td is
transformed dependence:









=

















1

2

2

1

01

10

p

p

p

p








=

01

10
T









=

















1

2

2

1

01

10

d

d

d

d

15-411/611 67

Reversal

• Reversal of ith loop reverses its traversal, so
it can be represented as:

15-411/611 68

Reversal

• Reversal of ith loop reverses its traversal, so it
can be represented as:
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost is:








−
=















−

210

01 1

2

1

p

p

p

p








−
=

10

01
T

15-411/611 69

Skewing

• Skew loop Ij by a factor f w.r.t. loop Ii maps

• Example for 2D

,...),...,,...,(1 ji ppp ,...),...,,...,(1 iji fpppp +










+
=

















12

1

2

1

11

01

pp

p

p

p








=

11

01
T

15-411/611 70

Loop Skewing Example

for I1 := 0 to 5

 for I2 := 0 to 6

 A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

 for I2 := I1 to 6+I1
 A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}

15-411/611 71

But...is the transform legal?

• Distance/direction vectors give a partial
order among points in the iteration space

• A loop transform changes the order in
which 'points' are visited

• The new visit order must respect the
dependence partial order!

15-411/611 72

But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

 for j = 0 to N-1

 A[i+1][j] += A[i][j];

15-411/611 73

But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

 for j = 0 to N-1

 A[i+1][j+1] += A[i][j];

15-411/611 74

But...is the transform legal?

i

j

for i = 0 to TS

 for j = 0 to N-2

 A[j+1] =

 (A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

15-411/611 75

But...is the transform legal?

i

j

for i = 0 to TS

 for j = 0 to N-2

 A[j+1] =

 (A[j] + A[j+1] + A[j+2])/3;

• What other visit
order is legal here?

j

15-411/611 76

But...is the transform legal?

• Skewing...

15-411/611 77

But...is the transform legal?

• Skewing...now we can
block

15-411/611 78

But...is the transform legal?

• Skewing...now we can loop
interchange

15-411/611 79

Unimodular transformations

• Express loop transformation as a matrix multiplication

• Check if any dependence is violated by multiplying the
distance vector by the matrix – if the resulting vector is
still lexicographically positive, then the involved
iterations are visited in an order that respects the
dependence.

Reversal

1 0

0 -1

Interchange

0 1

1 0

1 1

0 1

Skew

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam

15-411/611 80

Finding Data Dependences

15-411/611 86

The General Problem

DO i1 = L1, U1

 DO i2 = L2, U2

 ...

 DO in = Ln, Un

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...

 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

 ENDDO

 ...

 ENDDO

ENDDO

A dependence exists from S1 to S2 if:

– There exist  and  such that

•  <  (control flow requirement)

• fi () = gi () for all i, 1 ≤ i ≤ m (common access requirement)

15-411/611 87

• Looking for an interger solution to:

fi () = gi () for all i, 1 ≤ i ≤ m

• N-deep loop nest

• M subscripts per array reference

• General case, too hard

• Restrict to linear functions of loop-indices

• System of linear equations (2xn variables
and m equations)

General Solver?

15-411/611 88

Basics: Conservative Testing

• Consider only linear subscript expressions

• Finding integer solutions to system of linear
Diophantine Equations is NP-Complete

• Most common approximation is Conservative
Testing, i.e., See if you can assert

 “No dependence exists between two
 subscripted references of the same array”

• Never incorrect, may be less than optimal

15-411/611 89

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a
pair of references

Subscript: A PAIR of subscript positions in a pair of
array references

For Example:

 A(I,j) = A(I,k) + C

 <I,I> is the first subscript

 <j,k> is the second subscript

15-411/611 90

Basics: Complexity

A subscript is said to be

– ZIV if it contains no index
zero index variable

– SIV if it contains only one index
single index variable

– MIV if it contains more than one index
multiple index variable

For Example:

 A(5,I+1,j) = A(1,I,k) + C

 First subscript is ZIV

 Second subscript is SIV

 Third subscript is MIV

15-411/611 91

Basics: Separability

• A subscript is separable if its indices do not
occur in other subscripts

• If two different subscripts contain the same
index they are coupled

For Example:

 A(I+1,j) = A(k,j) + C

 Both subscripts are separable
 A(I,j,j) = A(I,j,k) + C

 Second and third subscripts are coupled

15-411/611 92

Basics:Coupled Subscript Groups

• Why are they important?

 Coupling can cause imprecision in dependence
testing

 DO I = 1, 100

S1 A(I+1,I) = B(I) + C

S2 D(I) = A(I,I) * E

 ENDDO

15-411/611 93

Dependence Testing: Overview

• Partition subscripts of a pair of array references into separable
and coupled groups

• Classify each subscript as ZIV, SIV or MIV

– Reason for classification is to reduce complexity of the tests.

• For each separable subscript apply single subscript test.
Continue until prove independence.

• Deal with coupled groups

• If independent, done

• Otherwise, merge all direction vectors computed in the previous
steps into a single set of direction vectors

15-411/611 94

Step 1: Subscript Partitioning

• Partitions the subscripts into separable and minimal coupled
groups

• Notations

// S is a set of m subscript pairs S1, S2, ...Sm each enclosed in

n loops with indexes I1, I2, ... In, which is to be

partitioned into separable or minimal coupled groups.

// P is an output variable, containing the set of partitions

// np is the number of partitions

15-411/611 95

Subscript Partitioning Algorithm

procedure partition(S,P, np)

 np = m;

 for i := 1 to m do Pi = {Si};

 for i := 1 to n do begin

 k := <none>

 for each remaining partition Pj do

 if there exists s  Pj such that s contains Ii then

 if k = < none > then k = j;

 else begin Pk = Pk  Pj; discard Pj; np = np – 1; end

 end

 end partition

15-411/611 96

Step 2: Classify as ZIV/SIV/MIV

• Easy step

• Just count the number of different indices in a
subscript

15-411/611 97

Step 3: Applying Single Subscript Tests

• ZIV Test

• SIV Test

– Strong SIV Test

– Weak SIV Test

• Weak-zero SIV

• Weak Crossing SIV

• SIV Tests in Complex Iteration Spaces

15-411/611 98

ZIV Test

DO j = 1, 100

S A(e1) = A(e2) + B(j)

 ENDDO

e1,e2 are constants or loop invariant symbols

If (e1-e2)!=0 No Dependence exists

15-411/611 99

Strong SIV Test

• Strong SIV subscripts are of the form

𝑎𝑖 + 𝑐1, 𝑎𝑖 + 𝑐2

• For example the following are strong SIV
subscripts

𝑖 + 1, 𝑖

4𝑖 + 2,4𝑖 + 4

15-411/611 100

Strong SIV Test Example

DO k = 1, 100

 DO j = 1, 100

S1 A(j+1,k) = ...

S2 ... = A(j,k) + 32

 ENDDO

ENDDO

15-411/611 101

Strong SIV Test 𝑎𝑖 + 𝑐1, 𝑎𝑖 + 𝑐2

Dependence exists if: 𝑑 ≤ 𝑈 − 𝐿

15-411/611 102

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎

Weak SIV Tests

• Weak SIV subscripts are of the form

𝑎1𝑖 + 𝑐1, 𝑎2𝑖 + 𝑐2
• For example the following are weak SIV

subscripts

15-411/611 103

𝑖 + 1,5

2𝑖 + 1, 𝑖 + 5

2𝑖 + 1,−2𝑖

Geometric view of weak SIV

15-411/611 104

Weak-zero SIV Test

• Special case of Weak SIV where one of the
coefficients of the index is zero,
i.e., one of the references is always to the same
location

• The test consists merely of checking whether
the solution is an integer and is within loop

bounds 𝑖 =
𝑐2−𝑐1

𝑎1
 and, L  i  U

15-411/611 105

Weak-zero SIV Test

15-411/611 106

Weak-zero SIV & Loop Peeling

DO i = 1, N

S1 Y(i, N) = Y(1, N) + Y(N, N)

 ENDDO

subscript pairs:

15-411/611 107

Weak-zero SIV & Loop Peeling

DO i = 1, N

S1 Y(i, N) = Y(1, N) + Y(N, N)

 ENDDO

Can be loop peeled to...

 Y(1, N) = Y(1, N) + Y(N, N)

 DO i = 2, N-1

S1 Y(i, N) = Y(1, N) + Y(N, N)

 ENDDO

 Y(N, N) = Y(1, N) + Y(N, N)

15-411/611 108

Weak-crossing SIV Test

• Special case of Weak SIV where the coefficients
of the index are equal in magnitude but
opposite in sign

• The test consists merely of checking whether

the solution index, 𝑖 =
𝑐2−𝑐1

2𝑎

 is 1. within loop bounds and is

 2. either an integer or has a non-integer

 part equal to 1/2

15-411/611 109

Weak-crossing SIV Test

𝑎𝑖 + 𝑐1, −𝑎𝑖 + 𝑐2

15-411/611 110

Weak-crossing SIV &

Loop Splitting
 DO i = 1, N

 S1 A(i) = A(N-i+1) + C

 ENDDO

This loop can be split into...

 DO i = 1,(N+1)/2

 A(i) = A(N-i+1) + C

 ENDDO

 DO i = (N+1)/2 + 1, N

 A(i) = A(N-i+1) + C

 ENDDO

15-411/611 111

Breaking Conditions

• Consider the following example
 DO I = 1, L

S1 A(I + N) = A(I) + B

 ENDDO

• If L<=N, then there is no dependence from S1 to
itself

• L<=N is called the Breaking Condition

15-411/611 117

Using Breaking Conditions

• Using breaking conditions then can generate alternative code if
it would help

 IF (L<=N) THEN

 A(N+1:N+L) = A(1:L) + B

 ELSE

 DO I = 1, L

S1 A(I + N) = A(I) + B

 ENDDO

 ENDIF

15-411/611 118

Index Set Splitting

DO I = 1,100

 DO J = 1, I

S1 A(J+20) = A(J) + B

 ENDDO

ENDDO

For values of

there is no dependence

I 
d − U0 − L0()
U1 − L1

=
20 − −1()

1
= 21

15-411/611 119

Index Set Splitting

• This condition can be used to create a part of
the loop that is independent
 DO I = 1,20

 DO J = 1, I

S1a A(J+20) = A(J) + B

 ENDDO

 ENDDO

 DO I = 21,100

 DO J = 1, Ix

S1b A(J+20) = A(J) + B

 ENDDO

 ENDDO

Now the inner loop for the
first nest is independent.

15-411/611 120

How are we doing so far?

• Empirical study froom Goff, Kennedy, & Tseng
– Look at how often independence and exact dependence

information is found in 4 suites of fortran programs

– Compare ZIV, SIV (strong, weak-0, weak-crossing, exact),
MIV, Delta

– Check usefulness of symbolic analysis

• ZIV used 44% of time and proves 85% of indep

• Strong-SIV used 33% of time and proves 5%
(success per application 97%)

• S-SIV, 0-SIV, x-SIV used 41%

• MIV used only 5% of time

• Delta used 8% of time, proves 5% of indep

• Coupled subscripts rare (20% overall, but concentrated)

15-411/611 121

• GCD-based testing

• Banerjee Inequalities

• Delta Test

• Omega Test

• ...

More Complex Tests

15-411/611 125

Merging Results

• After we test all subscripts we have vectors for each
partition. Now we need to merge these into a set of
direction vectors for the memory reference

• Since we partitioned into separable sets we can do
cross-product of vectors from each partition.

• Start with a single vector = (*,*,…,*) of length depth
of loop nest.

• Foreach parition, for each index involved in vector
create new set from
 old vector-these_indicies x this set

15-411/611 128

Example Merge

For I

 For J

S1 A[J-1] = …

S2 … = A[J]

For subscript in A using S1 as source and S2 as target: J has
DV of -1

Merge -1 into (*,*) -> (*,-1). What does this mean?

• (<,-1): true dep in outer loop

• (=,-1): anti-dep from S2 to S1 → (=,1)

• (>,-1): anti-dep from S2 to S1 in outer loop → (<,-1)
15-411/611 129

	Slide 1
	Slide 2: Common loop optimizations
	Slide 3: Data-Dependent Loop Transformations
	Slide 4: Plan
	Slide 5: Today
	Slide 6: Recall: Locality
	Slide 7: Recall: Memory Hierarchy
	Slide 8: Layout of C Arrays in Memory
	Slide 9: Matrix Multiplication (ijk)
	Slide 10: Matrix Multiplication (kij)
	Slide 11: Matrix Multiplication (jki)
	Slide 12: Summary of Matrix Multiplication
	Slide 13: Core i7 Matrix Multiply Performance
	Slide 17: Blocked Matrix Multiplication
	Slide 20: Blocking Summary
	Slide 24: The Problem
	Slide 25: Loop Transformation Theory
	Slide 26: Iteration Space
	Slide 27: Loop Nests and the Iter space
	Slide 28: Lexicographical Ordering
	Slide 29: Handy Representation: “Iteration Space”
	Slide 30: Visitation Order in Iteration Space
	Slide 31: When Do Cache Misses Occur?
	Slide 32: When Do Cache Misses Occur?
	Slide 33: When Do Cache Misses Occur?
	Slide 34: When Do Cache Misses Occur?
	Slide 35: Optimizing the Cache Behavior of Array Accesses
	Slide 36: Examples of Loop Transformations
	Slide 37: Loop Interchange
	Slide 38: Impact on Visitation Order in Iteration Space
	Slide 42: Dependencies in Loops
	Slide 43: Defining Dependencies
	Slide 44: Example Dependencies
	Slide 45: Data Dependence in Loops
	Slide 46: Data Dependence in Loops
	Slide 47: Unroll Loop to Find Dependencies
	Slide 48: Iteration Space
	Slide 49: Distance Vector
	Slide 50: Example of Distance Vectors
	Slide 51: Example of Distance Vectors
	Slide 52: Uniformly Generated references
	Slide 53: Eg of Uniformly generated sets
	Slide 54: Data Dependences
	Slide 56: Lexicographic Order Example of vectors
	Slide 60: Dependence Vectors
	Slide 61: Other defs
	Slide 62: Examples
	Slide 63: Plausible Dependence vectors
	Slide 64: Loop Transforms
	Slide 65: Unimodular Transforms
	Slide 66: Interchange
	Slide 67: Transform and matrix notation
	Slide 68: Reversal
	Slide 69: Reversal
	Slide 70: Skewing
	Slide 71: Loop Skewing Example
	Slide 72: But...is the transform legal?
	Slide 73: But...is the transform legal?
	Slide 74: But...is the transform legal?
	Slide 75: But...is the transform legal?
	Slide 76: But...is the transform legal?
	Slide 77: But...is the transform legal?
	Slide 78: But...is the transform legal?
	Slide 79: But...is the transform legal?
	Slide 80: Unimodular transformations
	Slide 86
	Slide 87: The General Problem
	Slide 88: General Solver?
	Slide 89: Basics: Conservative Testing
	Slide 90: Basics: Indices and Subscripts
	Slide 91: Basics: Complexity
	Slide 92: Basics: Separability
	Slide 93: Basics:Coupled Subscript Groups
	Slide 94: Dependence Testing: Overview
	Slide 95: Step 1: Subscript Partitioning
	Slide 96: Subscript Partitioning Algorithm
	Slide 97: Step 2: Classify as ZIV/SIV/MIV
	Slide 98: Step 3: Applying Single Subscript Tests
	Slide 99: ZIV Test
	Slide 100: Strong SIV Test
	Slide 101: Strong SIV Test Example
	Slide 102: Strong SIV Test a. i. c 1,a. i. c 2
	Slide 103: Weak SIV Tests
	Slide 104: Geometric view of weak SIV
	Slide 105: Weak-zero SIV Test
	Slide 106: Weak-zero SIV Test
	Slide 107: Weak-zero SIV & Loop Peeling
	Slide 108: Weak-zero SIV & Loop Peeling
	Slide 109: Weak-crossing SIV Test
	Slide 110: Weak-crossing SIV Test a. i. c 1, a. i. c 2
	Slide 111: Weak-crossing SIV & Loop Splitting
	Slide 117: Breaking Conditions
	Slide 118: Using Breaking Conditions
	Slide 119: Index Set Splitting
	Slide 120: Index Set Splitting
	Slide 121: How are we doing so far?
	Slide 125: More Complex Tests
	Slide 128: Merging Results
	Slide 129: Example Merge

