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Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

       

Requires 
understanding 

data dependencies
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• Goals:

– Improving Locality

– Automatic Vectorization

• Key Ideas:

– Locality

– Iteration Spaces

– Data Dependence

– Unimodular Transformations

– Other Transformations

Data-Dependent

Loop Transformations
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Loop
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Theory



• Review Locality

• Iteration spaces

• Dependency analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

• A Data Locality Optimizing Algorithm, Wolf&Lam

• Automatic Vectorization

Plan
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• Review Locality

• Iteration spaces

• Dependency analysis

• Transformations

– interchange

– reversal

– skewing

– Tiling

• A Data Locality Optimizing Algorithm, Wolf&Lam

• Automatic Vectorization

Today
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Recall: Locality

• Principle of Locality: Programs tend to use 
data and instructions with addresses near 
or equal to those they have used recently

• Temporal locality:  

– Recently referenced items are likely 
to be referenced again in the near future

• Spatial locality:  

– Items with nearby addresses tend 
to be referenced close together in time
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Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 

(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 

costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.

Recall: Memory Hierarchy
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Layout of C Arrays in Memory

• C arrays allocated in row-major order
– each row in contiguous memory locations

• Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements

– if block size (B) > sizeof(aij) bytes, exploit spatial locality
• miss rate = sizeof(aij) / B

• Stepping through rows in one column:
– for (i = 0; i < n; i++)

sum += a[i][0];

– accesses distant elements

– no spatial locality!
• miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
  A B C
  1/L 1.0 0.0

matmult/mm.c

L = # of elements per cache line
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

  for (i=0; i<n; i++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];   

  }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
  A B C
  0.0 1/L 1/L

matmult/mm.c
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

  for (k=0; k<n; k++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
  A B C
  1.0 0.0 1.0

matmult/mm.c
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1+1/L

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 2/L

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }
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Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik (1+1/L)

jki / kji (2)

kij / ikj (2/L)

Cycles per inner loop iteration
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

    int i, j, k;

    for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

             for (k = 0; k < n; k+=B)

   /* B x B mini matrix multiplications */

                  for (i1 = i; i1 < i+B; i1++)

                      for (j1 = j; j1 < j+B; j1++)

                          for (k1 = k; k1 < k+B; k1++)

                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c
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Blocking Summary

• No blocking: (9/8) n3  misses

• Blocking:  (1/(4B)) n3  misses

• Use largest block B, such that B satisfies 3B2 < C
– Fit three blocks in cache!  Two input, one output.

• Reason for dramatic difference:

– Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

– But program has to be written properly
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The Problem

• How to increase locality by transforming loop nest

• Matrix Mult is simple as it is both

– legal to tile

– advantageous to tile

• Can we determine the benefit?
(reuse vector space and locality vector space)

• Is it legal (and if so, how) to transform loop?
(unimodular transformations)
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Loop Transformation Theory

• Iteration Space

• Dependence vectors

• Unimodular transformations
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Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of 
the loop nest.

for (i=0; i<n; i++) {

 

}

for (i=0; i<n; i++) 

 for (j=0; j<4; j++) {

 

}

3

2

4
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Loop Nests and the Iter space

• General form of tightly nested loop

• The iteration space is a convex polyhedron in Zn 
bounded by the loop bounds.

• Each iteration is a node in the polyhedron 
identified by its vector: p=(p1, p2, …, pn)

for I1 := low1 to high1 by step1
   for I2 := low2 to high2 by step2
      …

       for Ii := lowi to highi by stepi
        …

    for In := lown to highn by stepn
            Stmts
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Lexicographical Ordering

• Iterations are executed in lexicographic 
order.

• for p=(p1, p2, …, pn) and q=(q1, q2, …, qn)

if  p≻k q iff for 1  k  n,

  1  i < k, (pi = qi) and pk > qk

• For MM:

– (1,1,1), (1,1,2), (1,1,3), …,
(1,2,1), (1,2,2), (1,2,3), …,
…,
(2,1,1), (2,1,2), (2,1,3), …

– (1,2,1) ≻2 (1,1,2), (2,1,1) ≻1 (1,4,2), etc.
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Handy Representation: 

“Iteration Space”

• each position represents an iteration

for i = 0 to N-1

   for j = 0 to N-1

      A[i][j] = B[j][i];

i

j
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Visitation Order in Iteration Space

• Note: iteration space is not data space

for i = 0 to N-1

   for j = 0 to N-1

     A[i][j] = B[j][i];

i

j
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When Do Cache Misses Occur?

for i = 0 to N-1

    for j = 0 to N-1

        A[i][j] = B[j][i];

i

j

i

j

A B
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When Do Cache Misses Occur?

for i = 0 to N-1

    for j = 0 to N-1

        A[i][j] = B[j][i];

i

j

i

j

A B

Hit

Miss
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When Do Cache Misses Occur?

for i = 0 to N-1

    for j = 0 to N-1

        A[i+j][0] = i*j;

i

j
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When Do Cache Misses Occur?

i

j

Hit

Miss
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Optimizing the Cache Behavior of 

Array Accesses

• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”

– can we transform loop (i.e., change the order of 
the iterations) to produce better behavior?

• evaluate the cost of various alternatives

– does the new ordering/layout still produce 
correct results?

• use “dependence analysis”
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Examples of Loop Transformations

• Loop Interchange

• Cache Blocking

• Skewing

• Loop Reversal

• …

(we will briefly discuss the first two)

Can improve locality

Can enable above
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Loop Interchange

• (assuming N is large relative to cache size)

for i = 0 to N-1

    for j = 0 to N-1

 A[j][i] = i*j;

i

j

for j = 0 to N-1

    for i = 0 to N-1

  A[j][i] = i*j;

j

i

Hit

Miss
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Impact on Visitation Order 

in Iteration Space

i

j

for i = 0 to N-1

    for j = 0 to N-1

       f(A[i],A[j]);

for JJ = 0 to N-1 by B

    for i = 0 to N-1

      for j = JJ to max(N-1,JJ+B-1) 

         f(A[i],A[j]);

i

j
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Dependencies in Loops

• Loop independent data dependence occurs between 
accesses in the same loop iteration.

• Loop-carried data dependence occurs between 
accesses across different loop iterations.

• There is data dependence between 
 access a at iteration i-k and 
 access b at iteration i when: 

– a and b access the same memory location

– There is a path from a to b

– Either a or b is a write
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Defining Dependencies

• Flow Dependence W ➔ R f

• Anti-Dependence R ➔ W a

• Output Dependence W ➔ W o

true

false

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;
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Example Dependencies
S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;
source type target due to

 S1 f S2 a

 S1 f S3 a

 S2 f S4 b

 S3 a S4 d

 S4 a S5 b

 S2 o S5 b

1

2

3

4

5

What can we do with this information?
What are anti- and flow- called “false” dependences?

These are scalar dependencies.  The same 
idea holds for memory accesses.
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Data Dependence in Loops

• Dependence can flow across iterations of 
the loop.

• Dependence information is annotated with 
iteration information.

• If dependence is across iterations it is loop 
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}
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Data Dependence in Loops

• Dependence can flow across iterations of 
the loop.

• Dependence information is annotated with 
iteration information.

• If dependence is across iterations it is loop 
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

f loop independent

f loop carried
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Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}
f loop independent

f loop carried

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance/Direction of the 

dependence is also important.
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Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of 
the loop nest.

for (i=0; i<n; i++) {

 

}

for (i=0; i<n; i++) 

 for (j=0; j<4; j++) {

 

}

3

2

4

15-411/611 48



Distance Vector

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance vector is the difference between 

the target and source iterations.

d = It-Is

Exactly the distance of the dependence, i.e.,

Is + d = It
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Example of Distance Vectors

for (i=0; i<n; i++) 

 for (j=0; j<m; j++){

  A[i,j] =   ;

      = A[i,j];

  B[i,j+1] =   ;

      = B[i,j];

  C[i+1,j] =   ;

      = C[i,j+1] ;

 }

A0,0=   =A0,0

B0,1=   =B0,0

C1,0=   =C0,1

A0,1=   =A0,1

B0,2=   =B0,1

C1,1=   =C0,2

A0,2=   =A0,2

B0,3=   =B0,2

C1,2=   =C0,3

A1,0=   =A1,0

B1,1=   =B1,0

C2,0=   =C1,1

A1,1=   =A1,1

B1,2=   =B1,1

C2,1=   =C1,2

A1,2=   =A1,2

B1,3=   =B1,2

C2,2=   =C1,3

A2,0=   =A2,0

B2,1=   =B2,0

C3,0=   =C2,1

A2,1=   =A2,1

B2,2=   =B2,1

C3,1=   =C2,2

A2,2=   =A2,2

B2,3=   =B2,2

C3,2=   =C2,3

i

j
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Example of Distance Vectors

for (i=0; i<n; i++) 

 for (j=0; j<m; j++){

  A[i,j] =   ;

      = A[i,j];

  B[i,j+1] =   ;

      = B[i,j];

  C[i+1,j] =   ;

      = C[i,j+1] ;

 }

j

A0,0=   =A0,0

B0,1=   =B0,0

C1,0=   =C0,1

A0,1=   =A0,1

B0,2=   =B0,1

C1,1=   =C0,2

A0,2=   =A0,2

B0,3=   =B0,2

C1,2=   =C0,3

A1,0=   =A1,0

B1,1=   =B1,0

C2,0=   =C1,1

A1,1=   =A1,1

B1,2=   =B1,1

C2,1=   =C1,2

A1,2=   =A1,2

B1,3=   =B1,2

C2,2=   =C1,3

A2,0=   =A2,0

B2,1=   =B2,0

C3,0=   =C2,1

A2,1=   =A2,1

B2,2=   =B2,1

C3,1=   =C2,2

A2,2=   =A2,2

B2,3=   =B2,2

C3,2=   =C2,3

A yields:
0

0
B yields:

0

1
C yields:

1

-1

i
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Uniformly Generated references

• f and g are indexing functions: Zn → Zd

– n is depth of loop nest

– d is dimensions of array, A

• Two references A[f(i)] and A[g(i)] are 
uniformly generated if

 f(i) = Hi + cf AND g(i)=Hi+cg

• H is a linear transform

• cf and cg are constant vectors
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Eg of Uniformly generated sets

for I1 := 0 to 5
 for I2 := 0 to 6
  A[I2 + 1] = 1/3 * (A[I2]+ A[I2 + 1] + A[I2 + 2])

A[I2 + 1] [ 0 1 ]      + [ 1 ]

A[I2]   [ 0 1 ]       + [ 0 ]

 

A[I2 + 2] [ 0 1 ]       + [ 2 ]

I1
I2

I1
I2

I1
I2

These references all belong to the same 
uniformly generated set: H = [ 0 1]
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Data Dependences

Loop carried: between two statements instances
                      in two different iterations of a loop.
Loop independent: between two statements 
                               instances in the same loop iteration.

Lexically forward: the source comes before the target .
Lexically backward: otherwise.

The right-hand side of an assignment is considered
to precede the left-hand side.
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Lexicographic Order

Example of vectors

. and ,   because

positivehically lexicograp are  and Both 

. t simply thaor  , 3,  levelat 

 than lesshically lexicograp is say that  We

1

1

1

1

            

2

0

1

1

:below and    vectorsheConsider t

b0a0

ba

baba

 ba

ba

 ba

3























−

−
=



















−
=
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Dependence Vectors

• Dependence vector in an n-nested loop is denoted as 
a vector: d=(d1, d2, …, dn).

• Each di is a possibly infinite range of ints in                      
               ,  where

• So, a single dep vector represents a set of distance 
vectors.

• A distance vector defines a distance in the iteration 
space.

• A dependence vector is a distance vector if each d i is 
a singleton.

 maxmin , ii dd

  and}{},{ maxminmaxmin
iiii dddd −
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Other defs

• Common ranges in dependence vectors

– [1, ] as + or >

– [- , -1] as – or <

– [- , ] as   or *

• A distance vector is the difference between 
the target and source iterations (for a 
dependent ref), e.g.,  d = It-Is
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Examples

for I1 := 1 to n

   for I2 := 1 to n

      for I3 := 1 to n

         C[I1,I3] += A[I1,I2] * B[I2,I3]

(0,1,0)

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}
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Plausible Dependence vectors

• A dependence vector is plausible iff it is 
lexicographically non-negative.

• All sequential programs have plausible 
dependence vectors.  Why?

• Plausible: (1,-1)

• implausible (-1,0)
(-1,0)

1

1

2

2

3

3

j

i

[1,1] [1,2] [1,3]

(0,1)

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

(0,-1)

(1,-1) (-1,0)

1

1

2

2

3

3

j

i

[1,1] [1,2] [1,3]

(0,1)

[2,1] [2,2] [2,3]

[3,1] [3,2] [3,3]

(0,-1)

(1,-1)

15-411/611 63



Loop Transforms

• A loop transformation changes the order in 
which iterations in the iteration space are 
visited.

• For example, Loop Interchange

for i := 0 to n

  for j := 0 to m

    body

for j := 0 to m

  for i := 0 to n

    body
i

j

j
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Unimodular Transforms

• Interchange
 permute nesting order

• Reversal
 reverse order of iterations

• Skewing
 scale iterations by an outer loop index
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Interchange

• Change order of loops

• For some permutation p of 1 … n

• When is this legal?

for I1 := …

   for I2 := …

    …

      for In := …

         body

for Ip(1) := …

   for Ip(2) := …

    …

      for Ip(n) := …

         body
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Transform and matrix notation

• If dependences are vectors in iter space, 
then transforms can be represented as 
matrix transforms

• E.g., for a 2-deep loop, interchange is:

• Since, T is a linear transform, Td is 
transformed dependence:









=

















1

2

2

1

01

10

p

p

p

p








=

01

10
T









=

















1

2

2

1

01

10

d

d

d

d
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Reversal

• Reversal of ith loop reverses its traversal, so 
it can be represented as:
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Reversal

• Reversal of ith loop reverses its traversal, so it 
can be represented as: 
Diagonal matrix with ith element = -1.

• For 2 deep loop, reversal of outermost is:








−
=















−

210

01 1

2

1

p

p

p

p








−
=

10

01
T
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Skewing

• Skew loop Ij by a factor f w.r.t. loop Ii maps

• Example for 2D

,...),...,,...,( 1 ji ppp ,...),...,,...,( 1 iji fpppp +







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Loop Skewing Example

for I1 := 0 to 5

  for I2 := 0 to 6

    A[I2 + 1] := 1/3 * (A[I2] + A[I2 + 1] + A[I2 + 2])

I1

I2

D={(0,1),(1,0),(1-1)}

for I1 := 0 to 5

  for I2 := I1 to 6+I1
    A[I2-I1+1] := 1/3 * (A[I2-I1] + A[I2-I1+ 1] + A[I2-I1+ 2])









=

11

01
T

I1

I2

D={(0,1),(1,1),(1,0)}
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But...is the transform legal?

• Distance/direction vectors give a partial 
order among points in the iteration space

• A loop transform changes the order in 
which 'points' are visited

• The new visit order must respect the 
dependence partial order!
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But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

    for j = 0 to N-1

  A[i+1][j] += A[i][j];
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But...is the transform legal?

• Loop reversal ok?

• Loop interchange ok?

i

j

for i = 0 to N-1

    for j = 0 to N-1

  A[i+1][j+1] += A[i][j];

15-411/611 74



But...is the transform legal?

i

j

for i = 0 to TS

  for j = 0 to N-2

    A[j+1] =

     (A[j] + A[j+1] + A[j+2])/3;

• What other visit 
order is legal here?
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But...is the transform legal?

i

j

for i = 0 to TS

   for j = 0 to N-2

     A[j+1] =

  (A[j] + A[j+1] + A[j+2])/3;

• What other visit 
order is legal here?

j
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But...is the transform legal?

• Skewing...
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But...is the transform legal?

• Skewing...now we can 
block
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But...is the transform legal?

• Skewing...now we can loop 
interchange
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Unimodular transformations

• Express loop transformation as a matrix multiplication

• Check if any dependence is violated by multiplying the 
distance vector by the matrix – if the resulting vector is 
still lexicographically positive, then the involved 
iterations are visited in an order that respects the 
dependence. 

Reversal

1   0

0   -1

Interchange

0    1

1    0

1    1

0    1

Skew

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam
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Finding Data Dependences
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The General Problem

DO i1 = L1, U1

 DO i2 = L2, U2

   ...

  DO in = Ln, Un

 S1  A(f1(i1,...,in),...,fm(i1,...,in)) = ...

 S2  ... = A(g1(i1,...,in),...,gm(i1,...,in))

  ENDDO

  ...

 ENDDO

ENDDO

A dependence exists from S1 to S2 if:

– There exist  and  such that

•  <  (control flow requirement)

• fi () = gi () for all i, 1 ≤ i ≤ m (common access requirement)
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• Looking for an interger solution to:

fi () = gi () for all i, 1 ≤ i ≤ m

• N-deep loop nest

• M subscripts per array reference

• General case, too hard

• Restrict to linear functions of loop-indices

• System of linear equations (2xn variables 
and m equations)

General Solver?
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Basics: Conservative Testing

• Consider only linear subscript expressions

• Finding integer solutions to system of linear 
Diophantine Equations is NP-Complete

• Most common approximation is Conservative 
Testing, i.e., See if you can assert

 “No dependence exists between two          
 subscripted references of the same array”

• Never incorrect, may be less than optimal
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Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a 
pair of references

Subscript: A PAIR of subscript positions in a pair of 
array references

For Example: 

   A(I,j) = A(I,k) + C

   <I,I> is the first subscript

   <j,k> is the second subscript
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Basics: Complexity

A subscript is said to be

– ZIV if it contains no index
zero index variable

– SIV if it contains only one index
single index variable

– MIV if it contains more than one index
multiple index variable

For Example: 

   A(5,I+1,j) = A(1,I,k) + C

   First subscript is ZIV

   Second subscript is SIV

   Third subscript is MIV
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Basics: Separability

• A subscript is separable if its indices do not 
occur in other subscripts

• If two different subscripts contain the same 
index they are coupled

For Example: 

   A(I+1,j) = A(k,j) + C

   Both subscripts are separable
  A(I,j,j) = A(I,j,k) + C

   Second and third subscripts are coupled
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Basics:Coupled Subscript Groups

• Why are they important?

 Coupling can cause imprecision in dependence 
testing

  DO I = 1, 100 

S1  A(I+1,I) = B(I) + C

S2  D(I) = A(I,I) * E

  ENDDO
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Dependence Testing: Overview

• Partition subscripts of a pair of array references into separable 
and coupled groups

• Classify each subscript as ZIV, SIV or MIV

– Reason for classification is to reduce complexity of the tests.

• For each separable subscript apply single subscript test. 
Continue until prove independence.

• Deal with coupled groups

• If independent, done

• Otherwise, merge all direction vectors computed in the previous 
steps into a single set of direction vectors
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Step 1: Subscript Partitioning 

• Partitions the subscripts into separable and minimal coupled 
groups

• Notations

// S is a set of m subscript pairs S1, S2, ...Sm each enclosed in 

n loops with indexes I1, I2, ... In, which is to be 

partitioned into separable or minimal coupled groups.

// P is an output variable, containing the set of partitions

// np is the number of partitions
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Subscript Partitioning Algorithm

procedure partition(S,P, np)

    np = m;

    for i := 1 to m do Pi = {Si};

    for i := 1 to n do begin

     k := <none>

     for each remaining partition Pj do 

      if there exists s  Pj such that s contains Ii then

       if k = < none > then k = j;

       else begin Pk = Pk  Pj; discard Pj; np = np – 1; end 

    end

   end partition
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Step 2: Classify as ZIV/SIV/MIV

• Easy step

• Just count the number of different indices in a 
subscript
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Step 3: Applying Single Subscript Tests

• ZIV Test

• SIV Test

– Strong SIV Test

– Weak SIV Test

• Weak-zero SIV

• Weak Crossing SIV

• SIV Tests in Complex Iteration Spaces
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ZIV Test

DO j = 1, 100 

S   A(e1) = A(e2) + B(j)

 ENDDO

e1,e2 are constants or loop invariant symbols

If (e1-e2)!=0 No Dependence exists 
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Strong SIV Test

• Strong SIV subscripts are of the form

𝑎𝑖 + 𝑐1, 𝑎𝑖 + 𝑐2

• For example the following are strong SIV 
subscripts

𝑖 + 1, 𝑖

4𝑖 + 2,4𝑖 + 4
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Strong SIV Test Example

DO k = 1, 100 

 DO j = 1, 100 

S1  A(j+1,k) = ...

S2       ... = A(j,k) + 32

 ENDDO 

ENDDO
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Strong SIV Test 𝑎𝑖 + 𝑐1, 𝑎𝑖 + 𝑐2

Dependence exists if:  𝑑 ≤ 𝑈 − 𝐿
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Weak SIV Tests

•  Weak SIV subscripts are of the form

𝑎1𝑖 + 𝑐1, 𝑎2𝑖 + 𝑐2
• For example the following are weak SIV 

subscripts
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2𝑖 + 1, 𝑖 + 5

2𝑖 + 1,−2𝑖



Geometric view of weak SIV
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Weak-zero SIV Test

• Special case of Weak SIV where one of the 
coefficients of the index is zero, 
i.e., one of the references is always to the same 
location

• The test consists merely of checking whether 
the solution is an integer and is within loop 

bounds  𝑖 =
𝑐2−𝑐1

𝑎1
    and, L  i  U
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Weak-zero SIV Test
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Weak-zero SIV & Loop Peeling

DO i = 1, N

S1   Y(i, N) = Y(1, N) + Y(N, N)

  ENDDO

subscript pairs:
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Weak-zero SIV & Loop Peeling

DO i = 1, N

S1   Y(i, N) = Y(1, N) + Y(N, N)

  ENDDO

Can be loop peeled to...    

 Y(1, N) = Y(1, N) + Y(N, N)

 DO i = 2, N-1

S1   Y(i, N) = Y(1, N) + Y(N, N)

 ENDDO

  Y(N, N) = Y(1, N) + Y(N, N)
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Weak-crossing SIV Test

• Special case of Weak SIV where the coefficients 
of the index are equal in magnitude but 
opposite in sign

• The test consists merely of checking whether 

the solution index, 𝑖 =
𝑐2−𝑐1

2𝑎

  is 1. within loop bounds and is

     2. either an integer or has a non-integer 

   part equal to 1/2

15-411/611 109



Weak-crossing SIV Test

𝑎𝑖 + 𝑐1, −𝑎𝑖 + 𝑐2
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Weak-crossing SIV & 

Loop Splitting
  DO i = 1, N

 S1  A(i) = A(N-i+1) + C

   ENDDO

This loop can be split into...

   DO i = 1,(N+1)/2

    A(i) = A(N-i+1) + C

   ENDDO

   DO i = (N+1)/2 + 1, N

    A(i) = A(N-i+1) + C

   ENDDO
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Breaking Conditions

• Consider the following example
  DO I = 1, L

S1   A(I + N) = A(I) + B

  ENDDO

• If L<=N, then there is no dependence from S1 to 
itself

• L<=N is called the Breaking Condition
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Using Breaking Conditions

• Using breaking conditions then can generate alternative code if 
it would help

  IF (L<=N) THEN

   A(N+1:N+L) = A(1:L) + B

  ELSE

   DO I = 1, L

S1    A(I + N) = A(I) + B

   ENDDO

  ENDIF
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Index Set Splitting

DO I = 1,100

  DO J = 1, I

S1  A(J+20) = A(J) + B

  ENDDO

ENDDO

For values of

there is no dependence 

 

I 
d − U0 − L0( )
U1 − L1

=
20 − −1( )

1
= 21
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Index Set Splitting

• This condition can be used to create a part of 
the loop that is independent
  DO I = 1,20

   DO J = 1, I

S1a   A(J+20) = A(J) + B

   ENDDO

  ENDDO

  DO I = 21,100

   DO J = 1, Ix

S1b   A(J+20) = A(J) + B

   ENDDO

  ENDDO

Now the inner loop for the 
first nest is independent.
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How are we doing so far?

• Empirical study froom Goff, Kennedy, & Tseng
– Look at how often independence and exact dependence 

information is found in 4 suites of fortran programs

– Compare ZIV, SIV (strong, weak-0, weak-crossing, exact), 
MIV, Delta

– Check usefulness of symbolic analysis

• ZIV used 44% of time and proves 85% of indep

• Strong-SIV used 33% of time and proves 5%
(success per application 97%)

• S-SIV, 0-SIV, x-SIV used 41%

• MIV used only 5% of time

• Delta used 8% of time, proves 5% of indep

• Coupled subscripts rare (20% overall, but concentrated)
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• GCD-based testing

• Banerjee Inequalities

• Delta Test

• Omega Test

• ...

More Complex Tests
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Merging Results

• After we test all subscripts we have vectors for each 
partition.  Now we need to merge these into a set of 
direction vectors for the memory reference

• Since we partitioned into separable sets we can do 
cross-product of vectors from each partition.

• Start with a single vector = (*,*,…,*) of length depth 
of loop nest.

• Foreach parition, for each index involved in vector 
create new set from 
 old vector-these_indicies x this set
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Example Merge

For I

  For J

S1   A[J-1] = …

S2   … = A[J]

For  subscript in A using S1 as source and S2 as target: J has 
DV of -1

Merge -1 into (*,*) -> (*,-1).  What does this mean?

• (<,-1): true dep in outer loop

• (=,-1): anti-dep from S2 to S1 → (=,1)

• (>,-1): anti-dep from S2 to S1 in outer loop → (<,-1)
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