Optimization 2

15-411/15-611 Compiler Design

Seth Copen Goldstein

March 25, 2025

Common loop optimizations

- Hoisting of loop-invariant computations
 - pre-compute before entering the loop
- Elimination of induction variables
 - change p=i*w+b to p=b,p+=w, when w,b invariant
- Loop unrolling
 - to improve scheduling of the loop body
- Software pipelining
 - To improve scheduling of the loop body
- Loop permutation
 - to improve cache memory performance

Requires understanding data dependencies

Scalar opts,

DF analysis,

Control flow analysis

Loop Terminology

Loop: Strongly Connected Component of CFG

Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header, source is in loop

Preheader:

Source of the only entry edge

Natural Loop:

A Loop with only a single loop header

Loop optimizations: Hoisting of loop-invariant computations

Loop-invariant computations

A definition

t = x op y

in a loop is (conservatively) loop-invariant if

- x and y are constants, or
- all reaching definitions of x and y are outside the loop, or
- only one definition reaches x (and y), and that definition is loop-invariant
 - so keep marking iteratively

Loop-invariant computations

• If not in SSA Be carefu

Of course, not an issue in SSA

```
t = expr;
for ()
    s = t * 2;
    t = loop_invari
    x = t + 2;
}
```

```
t1 = expr;
L1:
    brc L2;
    t2 = phi(t1, t3);
    s = t2 * 2;
    t3 = loop_invariant_expr;
    x1 = t3 * 2;
    jmp L1;
L2:
```

 Even though t's two reaching expressions are each invariant, s is not invariant...

Hoisting

 In order to "hoist" a loop-invariant computation out of a loop, we need a place to put it

 We could copy it to all immediate predecessors (except along the back-edge) of the loop header...

 ...But we can avoid code duplication by ensuring there is a pre-header

Hoisting Uses Pre-Headers

Hoisting Uses Pre-Headers

General Hoisting conditions

For a loop-invariant definition

$$d$$
 $t = x op y$

- we can hoist d into the loop's pre-header only if
 - 1. d's block dominates all loop exits at which t is live-out, and
 - 2/d is the only definition of t in the loop, and
 - 3. vis not live-out of the pre-header

We need to be careful...

All hoisting conditions must be satisfied!

```
L0:

t = 0

L1:

i = i + 1

t = a * b

M[i] = t

if i<N goto L1

L2:

x = t
```

```
L0:
L1:
 if i>=N goto L2
 t = a * b
M[i] = t
 goto L1
L2:
x = t
```

```
LO:
 t = 0
L1:
 i = i + 1
 M[i] = t
 M[j] = t
 if i<N goto L1
L2:
```

OK

violates 1,3

violates 2

We need to be careful...

All hoisting conditions must be satisfied!

```
L0:
    t = 0
L1:
    i = i + 1
    t = a * b
    M[i] = t
    if i<N goto L1
L2:
    x = t
```

```
L0:
 t = 0
L1:
 if i>=N goto L2
 t = a / b
M[i] = t
 goto L1
L2:
x = t
```

```
L0:
t = 0
L1:
 i = i + 1
 t = a * b
M[i] = t
 t = 0
M[j] = t
 if i<N goto L1
L2:
```

OK

violates 1,3

violates 2

SSA Hoisting conditions

For a loop-invariant definition

$$d: t = x op y$$

- we can hoist d into the loop's pre-header only if
 - 1. d's block dominates all loop exits at which t is live-out,
 - 2 d is the only definition of t in the loop, and
 - 3. t is not live-out of the pre-header

Condition 1:

- Can be violated if?
- Why would you?

trivial

easy

easy

Enabling Transformations

Convert while into repeat-until

```
while (e) {
   = loopiny // does not dominate all loop exits
  S
  repeat {
      = loopinv
    until (!e)
```

Enabling Transformations

- More Generally, add landing pad
 - For any speculative code:
 add test before pre-header

Should You?

- Does Loop Body always execute?
- Do we speculate?
 - Our Use profiling information?
- Register Pressure?

LICM subsumed by PRE

- Don't have to implement Loop invariant code motion if you implement PRE, since PRE subsumes it anyway!
- (But, PRE is difficult)

Loop optimizations: Induction-variable Elimination Strength reduction

The basic idea of IVE

- Suppose we have a loop variable
 - i initially 0; each iteration i = i + 1

and a variable that linearly depends on it:

$$x = i * c1 + c2$$

- In such cases, we can try to
 - initialize $x = i_o * c1 + c2$ (execute once)
 - increment x by c1 each iteration

Induction Variable

Basic Induction Variable has the form:

$$X = X \pm C$$

where C is constant or loop-invariant

Derived Induction Variable has form:

$$X = C_1 * Y \pm C_2$$
where

- Y is a Basic induction variable
- C₁ and C₂ are constants

Clearly, j & k do not need to be computed anew each time since they are related to i and i changes linearly.

But, then we don't even need j (or j')

Do we need i?

Rewrite comparison

H:

But, a+(n*4) is loop invariant

Invariant code motion on a+(n*4)

H:

now, we do copy propagation and eliminate k

Copy propagation

Voila!

Compare original and result of IVE

```
i <- 0
H:
    if i >= n goto exit
    j <- i * 4
    k <- j + a
    M[k] <- 0
    i <- i + 1
    goto H</pre>
```

Voila!

What we did

- identified induction variables (i,j,k)
- strength reduction (changed * into +)
- dead-code elimination (j <- j')
- useless-variable elimination (j' <- j' + 4)
 (This can also be done with ADCE)
- loop invariant identification & code-motion
- almost useless-variable elimination (i)
- copy propagation

Is it faster?

- On some hardware, adds are much faster than multiplies
- Fewer instructions (better \$ behavior)
- Furthermore, one fewer value is computed,
 - thus potentially saving a register
 - and decreasing the possibility of spilling
- Can be used to eliminate bounds checking in loop

Loop preparation

- Before attempting IVE, it is best to first perform :
 - constant propagation & constant folding
 - copy propagation
 - loop-invariant hoisting

How to do it, step 1

- First, find the basic IVs
 - scan loop body for defs of the form

$$x = x + c$$
 or $x = x - c$
where c is loop-invariant

record these basic IVs as

$$x = (x, 0, c)$$

– this represents the IV: x = x * c

Representing IVs

Characterize all induction variables by:

where the offset and multiple are loop-invariant

• IOW, after an induction variable is defined it equals:

offset + multiple * base-variable

How to do it, step 2

Scan for derived IVs of the form

$$k = 1 + c2$$

- where i is a basic IV,
 this is the only def of k in the loop, and
 c1 and c2 are loop invariant
- We say k is in the family of i)
- Record as k = (i, c2, c1)

How to do it, step 3

Iterate, looking for derived IVs of the form

$$k = j * c1 + c2$$

- where IV $j \neq (i, a, b)$, and
- this is the only def of k in the loop, and
- there is no def of i between the def of j and the def of k
- c1 and c2 are loop invariant
- Record as k = (i, a*c1, b*c1+c2)

H:

So, j & k are in family of i

Identifying Induction Variables

Two steps:

- Find Basic IVs of form $i \leftarrow i \pm c$
- Find Derived IVs of form $k \leftarrow j * c \text{ or } k \leftarrow j \pm c$

Finding Basic IVs

- Maintain two tables:
 - basic: Holds all vars that can be basic IV
 - other: Holds all vars that cannot be basic IV
- Scan stmts in loop:
 - if i \leftarrow i \pm c and I \notin other, then put in basic
 - if i ← anything else, then remove from basic
 and put in other

Finding Derived IVs

- Scan statements to create worklist W
 - if var defined more than once and var ∉ basic,
 then, put into other
 - if stmt uses any var ∈ basic, insert into W
- Repeat until W is empty:
 - if s has form "k ← j * x" or "k ← j ± x" AND k ∉ other AND x is loop invariant, then
 - if j ∈ basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W

Finding Derived IVs

- Repeat until W is empty:
 - if s has form "k ← j * x" or "k ← j ± x" AND
 k ∉ other AND
 x is loop invariant, then
 - if j ∈ basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W
 - else if $j \in derivedTable$, then
 - —if only def of j reaching k is in loop AND only 1 def reaches k AND no assignment to i between j & k, then put k in derivedTable put allestmats using k into W

Tracking tuples

As we gather IVs we record:
 (base, offset, multiple) for each one

• For IV k:

- if it is basic, the record: (k, 0, c)
- else if defined as "k ← j * x" AND j has (i, a, b) record: (i, a*x, b*x)
- else if defined as "k ← j ± x" AND j has (i,a,b)
 record: (i, a±x, b)

IV Optimizations

© 2019-21 Goldstein

- Once we have identified all IVs and recorded their tuples, we perform 3 optimizations:
 - strength reduction
 - useless-variable elimination
 - Comparison rewriting

How to do it, step 4

This is the strength reduction step

For an induction variable k = (i, c1, c2)

- initialize k = i * c2 + c1 in the preheader
 replace k's def in the loop by

$$k = k + c2$$

make sure to do this after i's def

How to do it, step 5

This is the comparison rewriting step

- For an induction variable k = (i/ak/b)
 - If k used only in definition and comparison
 - There exists another variable, j, in the same class and is not "useless" and $j=(i,a_i,b)$
- Rewrite k < n as $j < (b_j/b_k)(n-a_k)+a_j$
- Note: since they are in same class:

$$(j-a_j)/b_j = (k-a_k)/b_k$$

Notes

- Are the c1, c2 constant, or just invariant?
 - if constant, then you can keep folding them: they're always a constant even for derived IVs
 - otherwise, they can be expressions of loop-invariant variables

But if constant, can find IVs of the type

$$x = i/b$$

and know that it's legal, if b evenly divides the stride...

Is it faster? (2)

- On some hardware, adds are much faster than multiplies
- But...not always a win!
 - Constant multiplies might otherwise be reduced to shifts/adds that result in even better code than IVE
 - Scaling of addresses (i*4) might come for free on your processor's address modes
- So maybe: only convert i*c1+c2 when c1 is loop invariant but not a constant
- Or, can be used to eliminate bound check!

Loop Unrolling

- For loops with a small body:
 - significant portion of time spent incrementing and testing induction variables
 - May be stalled due to dependencies (more on this later)
- Loop unrolling reduces overhead (and increases opportunity for superscalar to tolerate latencies) by copying body of loop

Unroll Mechanism

• A loop L with header h and backedges $s_i \rightarrow h$

 copy L to a new loop L' with header h' and backedges s'_i→h'

- changes edges $s_i \rightarrow h$ in L to $s_i \rightarrow h'$
- change backedges in L' from s'_i→h
- Change IVs
- Must deal with potential left over iterations in an epilogue

IV changes for unrolling

- Eliminate IV in L
- create new IV, i' ←i+c that dominates all back edges of new loop
- Change uses of IV, i, to be proper offset
- change final test of IV to account for Δ unrolls.
- Finally, insert epilogue to deal with left overs.

Simple Example

```
i <- 0 •
                             i <- 0
                              H:
H:
cmp i, n.
                              cmp i, n
jg exit
                             jg exit
sum < - sum + a[i]
                             sum < - sum + a[i]
i <- i + 1
                             i <- i + 1
jmp H
                             jmp H1:
exit:
                             cmp i, n
                             jg exit
                              sum <- sum + a[i]
                              i <- i + 1
```

Simple Example

```
i <- 0
H:
cmp i, n
jg exit
sum < - sum + a[i]
i < -i + 1
jmp H1:
cmp i, n
jg exit
sum < - sum + a[i]
i <- i + 1
jmp H:
```

```
i <- 0
H:
cmp i, n
jg exit
sum <- sum + a[i]</pre>
```

```
cmp i, n
jg exit
sum <- sum + a i+
i <- i + 2
jmp H:
```

Simple Example

```
i <- 0
                              i <- 0
H:
                              H:
cmp i, n
                              jg exi
jg exit
sum < - sum + a[i]
                              sum < - sum + a[i]
⟨cmp i, n
                              sum < - sum + a[i+1]
                              i < -i + 2
ljg exit
                              jmp H:
sum < - sum + a[i+1]
                              exit:
jmp H:
                              H1:
                              sum <- sum + a[i]</pre>
                              i <- i + 1
                              jmp H1:
```

Common loop optimizations

- Hoisting of loop-invariant computations
 - pre-compute before entering the loop
- Elimination of induction variables
 - change p=i*w+b to p=b,p+=w, when w,b invariant
- Loop unrolling
 - to to improve scheduling of the loop body
- Software pipelining
 - To improve scheduling of the loop body
- Loop permutation
 - to improve cache memory performance

Requires understanding data dependencies

Dependencies in Loops

- Loop independent data dependence occurs between accesses in the same loop iteration.
- Loop-carried data dependence occurs between accesses across different loop iterations.
- There is data dependence between access a at iteration i-kand access b at iteration i when:

deplence distre

- -,a and b access the same memory location
- There is a path from a to b
- Either a or b is a write

Defining Dependencies

- Flow Dependence
- Anti-Dependence
- Output Dependence

Example Dependencies

```
S1) a=0;
S2) b=a;
S3) c=a+d+e;
S4) d=b;
S5) b=5+e;
```

These are scalar dependencies. The same idea holds for memory accesses.

- What can we do with this information?
- What are anti- and flow- called "false" dependences?

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}</pre>
```

Data Dependence in Loops

- Dependence can flow across iterations of the loop.
- Dependence information is annotated with iteration information.
- If dependence is across iterations it is loop carried otherwise loop independent.

Unroll Loop to Find Dependencies

Distance/Direction of the dependence is also important.

Iteration Space

Every iteration generates a point in an n-dimensional space, where n is the depth of the loop nest.

Distance Vector

```
for (i=0; i<n; i++) {
    A[i] = B[i];
    B[i+1] = A[i];
}</pre>
```


Distance vector is the difference between the target and source iterations.

$$\mathbf{d} = \mathbf{I}_{t} \mathbf{-I}_{s}$$

Exactly the distance of the dependence, i.e.,

$$I_s + d = I_t$$

Example of Distance Vectors


```
for (i=0; i<n; i++)
  for (j=0; j<m; j++) {
      = A[i,j];
    B[i,j+1] = ;
         = B[i,j];
    C[i+1,j] = ;
C[i+1,j+1] ;
```

	$A_{1,2} = A_{1,2}$ $B_{1,3} = B_{1,2}$ $C_{2,2} = C_{1,3}$	$\begin{array}{ccc} A_{2,2} = & = A_{2,2} \\ B_{2,3} = & = B_{2,2} \\ C_{3,2} = & = C_{2,3} \end{array}$
$A_{0,1} = = A_{0,1}$ $B_{0,2} = = B_{0,1}$ $C_{1,1} = = C_{0,2}$	$A_{1,1} = A_{1,1}$ $B_{1,2} = B_{1,1}$ $C_{2,1} = C_{1,2}$	$B_{2,2} = B_{2,1}$
$ \begin{array}{ccc} A_{0,0} & = & = & A_{0,0} \\ B_{0,1} & = & = & B_{0,0} \\ C_{1,0} & = & = & C_{0,1} \end{array} $	$A_{1,0} = A_{1,0}$ $B_{1,1} = B_{1,0}$ $C_{2,0} = C_{1,1}$	$A_{2,0} = A_{2,0}$ $B_{2,1} = B_{2,0}$ $C_{3,0} = C_{2,1}$

Example of Distance Vectors

```
for (i=0; i<n; i++)
  for (j=0; j<m; j++) {
    A[i,j] = ;
        = A[i,j];
    B[i,j+1] = ;
        = B[i,j];
    C[i+1,j] = ;
        = C[i,j+1] ;
```

A yields:
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

A yields: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ B yields: $\begin{bmatrix} 0 \\ 1 \\ \end{bmatrix}$ C yields: $\begin{bmatrix} 1 \\ -1 \\ \end{bmatrix}$