Optimization 2

15-411/15-611 Compiler Design
Seth Copen Goldstein

March 25, 2025

Common loop optimizations

Hoisting of loop-invariant computations Scalar opts,
— pre-compute before entering the loop DF analysis,
Elimination of induction variables Control flow analysis

— change p=i*w+b to p=b,p+=w, when w,b invariant
Loop unrolling
— to improve scheduling of the loop body

Software pipelining Requires
— To improve scheduling of the loop body understanding
Loop permutation data

: dependencies
— to improve cache memory performance

15-411/611

© 2019-21 Goldstein

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header, rehcader
source is in loop oo

Preheader: back
Source of the only entry edge

Natural Loop: et de
A Loop with only a single loop header

L_oop optimizations:
Hoisting of loop-invariant
computations

L_oop-invariant computations

e A definition
t=xo0py
in a loop is (conservatively) loop-invariant if

— X and y are constants, or

— all reaching definitions of x and y are
outside the loop, or

— only one definition reaches x (and y), and
that definition is loop-invariant

e so0 keep marking iteratively

L_oop-invariant computations

e If notin SSA Be carefu Of course, not an issue in SSA
tl = expr;
L1:
brc L2;
t2 = phi(tl, t3);
s=t2* 2;
1Wp_invariant_expr;
t + 2; x1=t3*2;

} jmp L1;
L2:
e Even though t's two reaching expressions are
each invariant, s is not invariant...

15-411/611 © 2019-21 Goldstein

Hoisting

e In order to “hoist” a loop-invariant
computation out of a loop, we need a place
to put it

e We could copy it to all immediate
predecessors (except along the back-edge) of
the loop header...

e ...But we can avoid code duplication by
ensuring there is a pre-header

Hoisting Uses Pre-Headers

=\
=

Hoisting Uses Pre-Headers

preheaders

)\ E
3

General Hoisting conditions

e For a loop-invariant definition

@ t=xo0opy

e we can hoist d into the loop’s pre-head &y
only if

1. d’s block dominates all loop exits at which t is |

e

and ,

2/d is the only definition of t in the loop, and
3. t/is not live-out of the pre-header

15-411/611 © 2019-21 Goldstein 10

-

We need to be careful...

\ -wl,IAII hoisting conditions must be satisfied!

&/
1.0:7 LO:
£ =0, t=0
L1: Ll:
i=1i+1 i=1i+1
t=a*b =a*b
M[i] = € @[i] =t
if i<N goto Ll ty=0
L2: [5] = t
x =t if i<N goto L1

15-411/6

OK

11

L2:

violates 1,3

© 2019-21 Goldstein

violates 2

We need to be careful...

e All hoisting conditions must be satisfied!

LO:
t
Ll:
i=1 1
t = a b
M[i] = t
if i<N goto L1
L2:
x =t

0

+
*

OK

15-411/611

LO: LO:
t=20 t=20
LI L1:
'&_1?11 oto L2 i=1i+1
i=1+1 t=a*b
il =t t=20

goto L1 M[j] =t
L2: if i<N goto L1
x =t L2:

violates 1,3 violates 2

© 2019-21 Goldstein

12

SSA Hoisting conditions

e For a loop-invariant definition p

d:t=xopy M\\
)

e we can hoist d into the loop’s pre-header

15-411/611

only if

1. d’s block dominates all loop exits at whic@ live-out, | easy
and '* — ~
’Qd is the only definition of t in the loop, and trivial
3. tis not live-out of the pre-header easy
~ Condition 1:
* Can be violated if?
L= axl

* Why would you?

© 2019-21 Goldstein

13

Enabling Transformations

e Convert while into repeat-until
while (e) {

T o

[j_=_lo_<_)pinvL// does not dominate all loop exits

repeat {
T
' loopinv
until (!e)

i
——
N u
I

© 2019-21 Goldstein

Enabling Transformations
e More Generally, add landing pad

o For any speculative code:
add test before pre-header

4 >
g

L

Pre-test

Landing Pad

Body

q‘ Post—-test

Should You?

e Does Loop Body always execute?
e Do we speculate?

o Use profiling information?

* Register Pressu rﬁ

LICM subsumed by PRE

e Don’t have to implement Loop invariant
code motion if you implement PRE, since
PRE subsumes it anyway!

e (But, PRE is difficult)

_oop optimizations:
Induction-variable Elimination
Strength reduction

The basic idea of IVE

e Suppose we have a loop variable

— i initially O; each iterationw

e and a variable that linearly depends on it:

@i*clﬂ:z
P

 In such cases, we can try to
— initialize x =i, * ¢1 + c2 (execute once)

— increment x by c1 each iteration

© 2019-21 Goldstein

Induction VVariable

e Basic Induction Variable has the form:

where C is constant or loop-invariant

e Derived Induction Variable has form:
_X=C *Y+C,
where \mjkj

— Y is a Basic induction variable

—C, and C, are constants

Simple Example of IVE

0 -

1 >= n goto exit

Clearly, j & k do not need to be computed anew each
time since they are related to i and i changes linearly.

15-411/611

© 2019-21 Goldstein

21

15-411/611

if i

k <-
M[k]
i <-
goto

Simple Example of IVE

i<-20

0 figgj' <- odg?,;f*
k' <- a &
>= n goto exit
i * 4 if i >= n goto exit
j + a :> j <= 3"~
<_0 k< k'w
i+ 1 M[k] <- 0
H i1<-1i+1 \

j' <= ' + 4|~
k' <- k' + 4
goto H

But, then we don't even need j (or j')

© 2019-21 Goldstein 22

15-411/611

Simple Example of IVE

i<-0

j' <=0 i<-0

k' <- a k' <- a

_ _ _ H:

if 1 >= n goto exit if i >= n goto exit
j <= 3 > k <- k'

k <- k' M[k] <- O
M[k] <- 0 i<-i+1
i<-1i+1 k' <- k' + 4
Jj' <-3' + 4 goto H

k' <- k' + 4

goto H

Do we need i?

© 2019-21 Goldstein 23

Simple Example of IVE

Rewrite comparison

i<-0 i<-0
k' <- a k' <- a
H: H: g//
if 1 >= n goto exit if k' >= ﬂijp{ﬂlfgoto exi
k <- k' :> k <- k'
M[k] <- O M[k] <- O
i<-1i+1 k' <- k' + 4
k' <- k' + 4 goto H
goto H

But, a+(n*4) is loop invariant

15-411/611 © 2019-21 Goldstein 24

15-411/611

Simple Example of IVE

i<-0
k' <- a

Invariant code motion on a+(n*4)

H:

if k' >= a+(n*4)goto exit

k <- k'
M[k] <- 0
k' <- k'
goto H

+ 4

—)

k' <- a
n' <-a+ (n * 4)

if k' >= n' goto exit
k <- k'

M[k] <- O

k' <- k' + 4

goto H

now, we do copy propagation and eliminate k

© 2019-21 Goldstein

25

Simple Example of IVE

Copy propagation
k' <- a k' <- a
- n' <- a + (n * 4) n' <-a+ (n * 4)
H: | H:
| if k' >= n' goto exit if k' >= n' goto exi
.k <- k' jl> M[k'] <- 0 |
M[k] <- 0 k' <- k' + 4
k' <- k' + 4 goto H

goto H

Voilal

15-411/611 © 2019-21 Goldstein 26

Simple Example of IVE

Compare original and result of IVE

if i

k <-
M[k]
i<-
goto

0

>= n goto exit
i* 4

J + a

<- 0

i+1

H

15-411/611

k' <- a
n' <-a+ (n * 4)

if k' >=n'
M[k'] <- 0
k' <- k' + 4
goto H

goto exit

Voilal

© 2019-21 Goldstein

27

What we did

e identified induction variables (i,j, k)
e strength reduction (changed * into +)
e dead-code elimination (j <-j')

 useless-variable elimination (j' <-j' + 4)
(This can also be done with ADCE)

e [oop |nvar|ant identification & code-motion

—._.__—__5

e almost useless variable elimination (i)
—‘_‘—_H_____‘__———-ﬂ
® copy propagation
cf’f—__""w,l

Is It faster?

e On some hardware, adds are much faster
than multiplies

e Fewer instructions (better S behavior)

e Furthermore, one fewer value is computed,
— thus potentially saving a register
— and decreasing the possibility of spilling

e Can be used to eliminate bounds checking
in loop

L_oop preparation

e Before attempting IVE, it is best to first
perform :

— constant propagation & constant folding
— COpy propagation
— loop-invariant hoisting

How to do It, step 1

e First, find the basic IVs H(MS[\ﬁf)
— scan loop body for defs of the form ¢ :
X=X+COrxX=X—=¢C 7(;}(#&

where c is loop-invariant
— record these basic IVs as

@[= 0,c) 7=

— this represents the IV: x =x * ¢

Representing 1Vs

e Characterize all induction variables by:

(base-variable, offset, multiple)

= == —r

\

— where the offset and multiple are loop-invariant

e |OW, after an induction variable is defined it
equals:

offset + multiple * base-variable |

e

How to do It, step 2

e Scan for derived IVs of the form
k =@* cl+c2

— where i is a basic IV,
this is the only def of k in the loop, and
c1 and c2 are loop invariant

e We say@s in the family o@
* Record as k = (i, c2, c1)

How to do It, step 3

e |terate, looking for derived IVs of the form
k=j*cl+c2

— where IVJ'@, and

— this is the only def of k in the loop, and

— there is no def of i between the def of j and the
def of k

— cl and c2 are loop invariant
e Record as k = (i, a*cl, b*cl+c2)

.

Simple Example of IVE
D

if 1 »>= n goto exit
k <- J + a
M[k] <- 0
i<-1i+1

goto H

EJL&%b e, i=0+1%i
i: (i, 0, e, j=0+4*]
k:(i,a,4) ie,k=a+4%j

So, j & k are in family of i

© 2019-21 Goldstein

Ildentifying Induction Variables

e Two steps:
— Find Basic IVsof formi « i ¢
— Find Derived IVs of form k<« j*cork«j £c

Finding Basic Vs

e Maintain two tables:

— basic: Holds all vars that can be basic IV

— other: Holds all vars that cannot be basic IV

e Scan stmtsin loop:
—ifi <« i £cand| ¢ other, then put in basic
-;——-=-'=F' _—

—

—ifi « anythlng else, then remove from basic
:) and put in other

15-411/611 © 2019-21 Goldstein

37

Finding Derived Vs

e Scan statements to create worklist W

— if var defined more than once and var ¢ basic,
then, put into other

— if stmt uses any var € basic, insert into W
e Repeat until W is empty:

— ifshas form “k <« j * x” or “k <~ j £ xX AND
—
k ¢ other AND
x is loop invariant, then

e if j € basic, thhen k is derlived 1V
enter k into derivedTable
put all stmts using kinto W

© 2019-21 Goldstein

Finding Derived Vs

e Repeat until W is empty:

— if s has form “k <« j * x” or “k <~ j £ x” AND
k ¢ other AND
X is loop invariant, then

e if j € basic, then k is derived IV
enter k into derivedTable
put all stmts using kinto W

e else if j € derivedTable, then

T

—if only def of j reaching k is in loop AND
only 1 def reaches k AND
no assignment to i between j & k, then
put k in derivedTable
put all-stmts usine k into W !

Tracking tuples

e As we gather IVs we record:
(base, offset, multiple) for each one

e ForlIVk:
— if it is basic, the record: (k, O, c)
— else if defined as “k «— j * x” AND j has (i, a, b)
record: (i, a*x, b*x)
— else if defined as “k «— j = x” AND j has (i,a,b)
record: (i, atx, b)

IV Optimizations

e Once we have identified all IVs and
recorded their tuples, we perform 3
optimizations:

— strength reduction
— uséfess-variable elimination

— Comparison rewriting

]

How to do It, step 4

e This is the strength reduction step

e For an induction varlable k = 7 (i, c1, c2)

— initialize k=i * c2 + cl.in the preheader

— replace K's def in the Ioop by
k k+c2 J

— make sure to do this afteri’s def

How to do It, step 5

This is the comparison rewriting step

For an induction variable k = Lﬁf)

— If k used only in definition and comparison
— There exists another variable, j, in the same

class and is not “useless” and j=(i, .!)

Rewriterk <nas .
j < (b/by)(n-a)+a;

Note: since they are in same class:
(i-a;)/b; = (k-a,)/b

Notes

e Are the cl, c2 constant, or just [nvariantJ?

— if constant, then you can keep folding them: they’re
always a constant even for derived IVs

— otherwise, they can be expressions of loop-invariant
variables

e But if constant, can find IVs of the type
—i/b .
X =1/
and know that it’s legal, if b evenly divides the
stride...

Is It faster? (2)

e On some hardware, adds are much faster
than multiplies

e But...not always a win!

— Constant multiplies might otherwise be
reduced to shifts/adds that result in even
better code than IVE

— Scaling of addresses (i*4) might come for free
on your processor’s address modes

e So maybe: only convert i*cl+c2 when cl
is loop invariant but not a constant

e Or, can be used to eliminate bound check!

© 2019-21 Goldstein

LLoop Unrolling

e For loops with a small body:

— significant portion of time spent incrementing
and testing induction variables

— May be stalled due to dependencies
(more on this later)
e Loop unrolling reduces overhead (and
increases opportunity for superscalar to
tolerate latencies) by copying body of loop

Unroll Mechanism

e Aloop L with header h and backedges s.—h

— copy Lto a new loop L’ with header h’ and
(backedges s"—h’

— changes edges s—h in Lto s—h’
— change backedges in L’ from s’ —h

o Cha__nge Vs

W . . .
e Must deal with potential left over itera
in an epilogue -

IV changes for unrolling

e EliminateIVinL

e create new |V, i’ «—i+c that dominates all
back edges of new loop

. Changéagés of IV, i, to be proper offset

e change final test of IV to account for A
unrolls.

e Finally, insert epilogue to deal with left
overs. —_—

1 <=0

/ He

/

cmp 1,

Jg exit
sum <-

1 <- 1

o &

exit:

15-411/611

Simple Example

N~

sum + al[i]
+ 1 1

1

© 2019-21 Goldstein

n

sum + af[i]

+ 1

n

sum + al[i]
+ 1

50

1 <=0

cmp 1,
Jg exit
sum <-
1 <= 1

Simple Example

1 <=0

n cmp 1,
Jg exit

sum + a[i] ‘ sum <-
+ 1

cmp 1,
Jg exit
sum <-
1 <= 1
Jmp H:

15-411/611

n

sum + al[i]

-

n

sum + af[i]

+ 1

© 2019-21 Goldstein

51

Simple Example

1 <=0 1 <=0

H: H:

cmp 1, n cmp 1, N—1

Jg exit 79 exﬁ%igéy

sum <- sum + al[il] sum <- sum + al[il]
j?mp 1, n sum <—- sum + a[i1+1]
Jg ex1t ~i<—i+2

sum <- sum + al[l+l] Jmp H:

1 <= 1+ 2 exit:
=

Jmp H:

cmp 9!
Jg ex1tl
sum <—- sum + al[1i]
1 <- 1+ 1
Jmp HI:

x1t]le:

15-411/611 © 2019-21 Goldstein

52

Common loop optimizations

Hoisting of loop-invariant computations
— pre-compute before entering the loop
Elimination of induction variables

— change p=i*w+b to p=b,p+=w, when w,b invariant

Loop unrolling
— to to improve scheduling of the loop body

Software pipelining
— To improve scheduling of the loop body
Loop permutation

— to improve cache memory performance

Requires
understanding
data dependencies

15-411/611

© 2019-21 Goldstein

53

Dependencies in Loops

e Loop independent data dependence occurs between
accesses in the same loop iteration.

e Loop-carried data dependence occurs between

accesses across different loop iterations.

e There is data dependence between
access aat iteration i<kJand @WPQM@ C_Q@mh

access b at iteration i when:
a and bfccess the same memory location

il
— Thereisa path fromatob | {f (uT

— Either a or b is a write A LU

15-411/611 © 2019-21 Goldstein

Defining Dependencies

e Flow Dependence W DR & Fome
e Anti-Dependence R =W §°
e Qutput Dependence W=>W 3§ .

> false

Example Dependencies

These are scalar dependencies. The same

source type target due t(

idea holds for memory accesses.

S1l) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e; S1
S1
S2
S3
S4
S2

e What can we do with this information?

Sf

8f
5
88
6&
5

S2
S3
S4
S4
S5
S5

R

 What are anti- and flow- called “false” dependences?

15-411/611

© 2019-21 Goldstein

56

Data Dependence in Loops

e Dependence can flow across iterations of
the loop.

e Dependence information is annotated with
iteration information.

e |f dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+l] = A[i];

Data Dependence in Loops

e Dependence can flow across iterations of
the loop.

e Dependence information is annotated with
iteration information.

e |f dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0+ i<n; i++) {

o' loop carried = B[i] ;~

} /V- 5" loop independent

Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {
&' loop carried

Al =B

} 5" loop independent
-
> i=0
A[O]\E;B[O] ;
f B[1] = A[0]5—3 o Distance/Direction of the

‘;EJ_]._]@B [1]; _ dependence is also important.
Br21 2 af1y; [L
tf;;;;EQ;H#%TEEET?HHHEF___=;_J
B[3j\EbA[2] ;
> =2

15-411/611 © 2019-21 Goldstein

59

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

W)
for (1=0; i<n; i++) { ® ° ® ® ® ® >
o000 R - ——

} ——

¢ Y Y ol 3
~ 2
for (i=0; i<n; i++) Q ° ® ® °

for (j3=0; j<4; j++) {

;o |
(1) <

15-411/611 © 2019-21 Goldstein 60

Distance VVector

for (i=0; i<n; i++) {

A[i] = B[i];
B[i+l] = A[i];
}

A[0] = B[O];
B[1] = A[O0];
A[l] = B[1];
B[2] = A[1];
A[2] = B[2];
B[3] = A[2];

15-411/611

Distance vector is the difference between
the target and source iterations.

=0 Exactly the distance of the dependence, i.e.,

© 2019-21 Goldstein

61

Example of Distance Vectors

for (3594 i<n; i++)
£ P Apo=
or (j=0; j<m; J++) { B .=
_ T . 0,37
f/”l[l,j] = ; C,,=
\ = A[i,3]1; ’
BIL,3411 = ;|50
| = B[i,3]; C:’i:
| C[i+1,3] = : :
| = Cli,j+1] ; EAZZ
: 0,1~ ,
} Ci0™

15-411/611 © 2019-21 Goldstein

Example of Distance Vectors

for (i=0; i<n; i++)
. . : Aoo= Aoz | Ap= =Arn | Axp= =Ag)
forAEi—(.)i i<m, .J++) { Bos=4=Bo, | Bis= =Bi, | By3= =By,
J I C127|=Cos | Coo= =Cyi3| Cso= =Cy
= A[i,]]; 1 — —
B[i,j+1] = : J g\o,l: :’;‘O,l '31,1: :';\1,1 g\z,l: :@2,1
= B[i,3]; 02— ®—DBg1 1,2~ 1,1 22— —Dpq
(i Ci1= =Coo | Coim =Cra] Cs1= =C,
C[i+1l,3] = ; »
= C[i,J+1] ; Aoo= Aoo | Ae™ Ao | A2ds, Ao
} Bo1= =Boo | BLi= =Big | B21= =Byp
Ci0= =Co1| Coo= =Ci1| Cio= =C,;
F Y FY | F Y
Ayields: | o Byields: | Cyields: |
. o . . . o

15-411/611

© 2019-21 Goldstein

63

	Slide 1
	Slide 2: Common loop optimizations
	Slide 3: Loop Terminology
	Slide 4: Loop optimizations: Hoisting of loop-invariant computations
	Slide 5: Loop-invariant computations
	Slide 6: Loop-invariant computations
	Slide 7: Hoisting
	Slide 8: Hoisting Uses Pre-Headers
	Slide 9: Hoisting Uses Pre-Headers
	Slide 10: General Hoisting conditions
	Slide 11: We need to be careful...
	Slide 12: We need to be careful...
	Slide 13: SSA Hoisting conditions
	Slide 14: Enabling Transformations
	Slide 15: Enabling Transformations
	Slide 16: Should You?
	Slide 17: LICM subsumed by PRE
	Slide 18: Loop optimizations: Induction-variable Elimination Strength reduction
	Slide 19: The basic idea of IVE
	Slide 20: Induction Variable
	Slide 21: Simple Example of IVE
	Slide 22: Simple Example of IVE
	Slide 23: Simple Example of IVE
	Slide 24: Simple Example of IVE
	Slide 25: Simple Example of IVE
	Slide 26: Simple Example of IVE
	Slide 27: Simple Example of IVE
	Slide 28: What we did
	Slide 29: Is it faster?
	Slide 30: Loop preparation
	Slide 31: How to do it, step 1
	Slide 32: Representing IVs
	Slide 33: How to do it, step 2
	Slide 34: How to do it, step 3
	Slide 35: Simple Example of IVE
	Slide 36: Identifying Induction Variables
	Slide 37: Finding Basic IVs
	Slide 38: Finding Derived IVs
	Slide 39: Finding Derived IVs
	Slide 40: Tracking tuples
	Slide 42: IV Optimizations
	Slide 43: How to do it, step 4
	Slide 44: How to do it, step 5
	Slide 45: Notes
	Slide 46: Is it faster? (2)
	Slide 47: Loop Unrolling
	Slide 48: Unroll Mechanism
	Slide 49: IV changes for unrolling
	Slide 50: Simple Example
	Slide 51: Simple Example
	Slide 52: Simple Example
	Slide 53: Common loop optimizations
	Slide 54: Dependencies in Loops
	Slide 55: Defining Dependencies
	Slide 56: Example Dependencies
	Slide 57: Data Dependence in Loops
	Slide 58: Data Dependence in Loops
	Slide 59: Unroll Loop to Find Dependencies
	Slide 60: Iteration Space
	Slide 61: Distance Vector
	Slide 62: Example of Distance Vectors
	Slide 63: Example of Distance Vectors

