
15-411/15-611 Compiler Design

Seth Copen Goldstein

Optimization 2

March 25, 2025

15-411/611 © 2019-21 Goldstein 2

Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

Scalar opts,
DF analysis,

Control flow analysis

Requires
understanding

data
dependencies

Loop Terminology

15-411/611 © 2019-21 Goldstein 3

Loop: Strongly Connected Component of CFG

Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header,
source is in loop

Preheader:
Source of the only entry edge

Natural Loop:
A Loop with only a single loop header

preheader

header

back
edge

back
edge

entry edge

exit edge

Loop

15-411/611 © 2019-21 Goldstein 4

Loop optimizations:

Hoisting of loop-invariant

computations

15-411/611 © 2019-21 Goldstein 5

Loop-invariant computations

• A definition

 t = x op y

 in a loop is (conservatively) loop-invariant if

– x and y are constants, or

– all reaching definitions of x and y are
outside the loop, or

– only one definition reaches x (and y), and
that definition is loop-invariant

• so keep marking iteratively

15-411/611 © 2019-21 Goldstein 6

Loop-invariant computations

• If not in SSA Be careful:

 t = expr;

 for () {

 s = t * 2;

 t = loop_invariant_expr;

 x = t + 2;

 …

 }

• Even though t’s two reaching expressions are
each invariant, s is not invariant…

Of course, not an issue in SSA

t1 = expr;
L1:

brc L2;
t2 = phi(t1, t3);
s = t2 * 2;
t3 = loop_invariant_expr;
x1 = t3 * 2;
...
jmp L1;

L2:

15-411/611 © 2019-21 Goldstein 7

• In order to “hoist” a loop-invariant
computation out of a loop, we need a place
to put it

• We could copy it to all immediate
predecessors (except along the back-edge) of
the loop header...

• ...But we can avoid code duplication by
ensuring there is a pre-header

Hoisting

15-411/611 © 2019-21 Goldstein 8

Hoisting Uses Pre-Headers

A

B

15-411/611 © 2019-21 Goldstein 9

Hoisting Uses Pre-Headers

A

B

A

B

A’

B’

preheaders

15-411/611 © 2019-21 Goldstein 10

General Hoisting conditions

• For a loop-invariant definition

 d: t = x op y

• we can hoist d into the loop’s pre-header
only if
1. d’s block dominates all loop exits at which t is live-out,

and

2. d is the only definition of t in the loop, and

3. t is not live-out of the pre-header

15-411/611 © 2019-21 Goldstein 11

• All hoisting conditions must be satisfied!

We need to be careful...

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 if i<N goto L1

L2:

 x = t

L0:

 t = 0

L1:

 if i>=N goto L2

 i = i + 1

 t = a * b

 M[i] = t

 goto L1

L2:

 x = t

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 t = 0

 M[j] = t

 if i<N goto L1

L2:

OK violates 1,3 violates 2

15-411/611 © 2019-21 Goldstein 12

• All hoisting conditions must be satisfied!

We need to be careful...

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 if i<N goto L1

L2:

 x = t

L0:

 t = 0

L1:

 if i>=N goto L2

 i = i + 1

 t = a * b

 M[i] = t

 goto L1

L2:

 x = t

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 t = 0

 M[j] = t

 if i<N goto L1

L2:

OK violates 1,3 violates 2

15-411/611 © 2019-21 Goldstein 13

SSA Hoisting conditions

• For a loop-invariant definition

 d: t = x op y

• we can hoist d into the loop’s pre-header
only if
1. d’s block dominates all loop exits at which t is live-out,

and

2. d is the only definition of t in the loop, and

3. t is not live-out of the pre-header

trivial

easy

easy

Condition 1:
• Can be violated if?
• Why would you?

• Convert while into repeat-until

Enabling Transformations

15-411/611 © 2019-21 Goldstein 14

while (e) {

T

j = loopinv // does not dominate all loop exits

S

}

If (e) {

repeat {

T

j = loopinv

S

} until (!e)

}

• More Generally, add landing pad

o For any speculative code:
add test before pre-header

Enabling Transformations

15-411/611 © 2019-21 Goldstein 15

Body

Post-test

Pre-test

Landing Pad

• Does Loop Body always execute?

• Do we speculate?

o Use profiling information?

• Register Pressure?

Should You?

15-411/611 © 2019-21 Goldstein 16

• Don’t have to implement Loop invariant
code motion if you implement PRE, since
PRE subsumes it anyway!

• (But, PRE is difficult)

LICM subsumed by PRE

15-411/611 © 2019-21 Goldstein 17

15-411/611 © 2019-21 Goldstein 18

Loop optimizations:

Induction-variable Elimination

 Strength reduction

15-411/611 © 2019-21 Goldstein 19

• Suppose we have a loop variable

– i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:

 x = i * c1 + c2

• In such cases, we can try to

– initialize x = io * c1 + c2 (execute once)

– increment x by c1 each iteration

The basic idea of IVE

15-411/611 © 2019-21 Goldstein 20

• Basic Induction Variable has the form:
X = X ± C

where C is constant or loop-invariant

• Derived Induction Variable has form:
X = C1 * Y ± C2

where

– Y is a Basic induction variable

– C1 and C2 are constants

Induction Variable

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 21

for i = 0 to n

a[i] = 0

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

Clearly, j & k do not need to be computed anew each
time since they are related to i and i changes linearly.

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 22

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

i <- 0

 j' <- 0

 k' <- a

H:

 if i >= n goto exit

 j <- j'

 k <- k'

 M[k] <- 0

 i <- i + 1

 j' <- j' + 4

 k' <- k' + 4

 goto H

But, then we don't even need j (or j')

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 23

i <- 0

 j' <- 0

 k' <- a

H:

 if i >= n goto exit

 j <- j'

 k <- k'

 M[k] <- 0

 i <- i + 1

 j' <- j' + 4

 k' <- k' + 4

 goto H

Do we need i?

i <- 0

k' <- a

H:

if i >= n goto exit

k <- k'

M[k] <- 0

i <- i + 1

k' <- k' + 4

goto H

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 24

But, a+(n*4) is loop invariant

i <- 0

k' <- a

H:

if k' >= a+(n*4) goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

i <- 0

k' <- a

H:

if i >= n goto exit

k <- k'

M[k] <- 0

i <- i + 1

k' <- k' + 4

goto H

Rewrite comparison

i <- 0

k' <- a

H:

if k' >= a+(n*4)goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 25

now, we do copy propagation and eliminate k

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

Invariant code motion on a+(n*4)

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 26

Voila!

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

M[k'] <- 0

k' <- k' + 4

goto H

Copy propagation

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 27

Voila!

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

M[k'] <- 0

k' <- k' + 4

goto H

Compare original and result of IVE

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

What we did

• identified induction variables (i,j,k)

• strength reduction (changed * into +)

• dead-code elimination (j <- j')

• useless-variable elimination (j' <- j' + 4)
(This can also be done with ADCE)

• loop invariant identification & code-motion

• almost useless-variable elimination (i)

• copy propagation

15-411/611 © 2019-21 Goldstein 28

15-411/611 © 2019-21 Goldstein 29

Is it faster?

• On some hardware, adds are much faster
than multiplies

• Fewer instructions (better $ behavior)

• Furthermore, one fewer value is computed,

– thus potentially saving a register

– and decreasing the possibility of spilling

• Can be used to eliminate bounds checking
in loop

15-411/611 © 2019-21 Goldstein 30

• Before attempting IVE, it is best to first
perform :

– constant propagation & constant folding

– copy propagation

– loop-invariant hoisting

Loop preparation

15-411/611 © 2019-21 Goldstein 31

How to do it, step 1

• First, find the basic IVs

– scan loop body for defs of the form

 x = x + c or x = x – c
 where c is loop-invariant

– record these basic IVs as

 x = (x, 0, c)

– this represents the IV: x = x * c

15-411/611 © 2019-21 Goldstein 32

Representing IVs

• Characterize all induction variables by:

 (base-variable, offset, multiple)

– where the offset and multiple are loop-invariant

• IOW, after an induction variable is defined it
equals:

 offset + multiple * base-variable

15-411/611 © 2019-21 Goldstein 33

• Scan for derived IVs of the form

 k = i * c1 + c2

– where i is a basic IV,
 this is the only def of k in the loop, and
 c1 and c2 are loop invariant

• We say k is in the family of i

• Record as k = (i, c2, c1)

How to do it, step 2

15-411/611 © 2019-21 Goldstein 34

How to do it, step 3

• Iterate, looking for derived IVs of the form

 k = j * c1 + c2

– where IV j =(i, a, b), and

– this is the only def of k in the loop, and

– there is no def of i between the def of j and the
def of k

– c1 and c2 are loop invariant

• Record as k = (i, a*c1, b*c1+c2)

Simple Example of IVE

15-411/611 © 2019-21 Goldstein 35

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

i: (i, 0, 1) i.e., i = 0 + 1 * i
j: (i, 0, 4) i.e., j = 0 + 4 * i
k: (i, a, 4) i.e., k = a + 4 * i

So, j & k are in family of i

• Two steps:

– Find Basic IVs of form i  i  c

– Find Derived IVs of form k  j * c or k  j  c

Identifying Induction Variables

15-411/611 © 2019-21 Goldstein 36

• Maintain two tables:

– basic: Holds all vars that can be basic IV

– other: Holds all vars that cannot be basic IV

• Scan stmts in loop:

– if i  i  c and I  other, then put in basic

– if i  anything else, then remove from basic
 and put in other

Finding Basic IVs

15-411/611 © 2019-21 Goldstein 37

• Scan statements to create worklist W

– if var defined more than once and var  basic,
then, put into other

– if stmt uses any var  basic, insert into W

• Repeat until W is empty:

– if s has form “k  j * x” or “k  j  x” AND
 k  other AND
 x is loop invariant, then

• if j  basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W

Finding Derived IVs

15-411/611 © 2019-21 Goldstein 38

• Repeat until W is empty:

– if s has form “k  j * x” or “k  j  x” AND
 k  other AND
 x is loop invariant, then

• if j  basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W

• else if j  derivedTable, then

– if only def of j reaching k is in loop AND
 only 1 def reaches k AND
 no assignment to i between j & k, then
 put k in derivedTable
 put all stmts using k into W

Finding Derived IVs

15-411/611 © 2019-21 Goldstein 39

• As we gather IVs we record:
 (base, offset, multiple) for each one

• For IV k:

– if it is basic, the record: (k, 0, c)

– else if defined as “k  j * x” AND j has (i, a, b)
 record: (i, a*x, b*x)

– else if defined as “k  j  x” AND j has (i,a,b)
 record: (i, ax, b)

Tracking tuples

15-411/611 © 2019-21 Goldstein 40

• Once we have identified all IVs and
recorded their tuples, we perform 3
optimizations:

– strength reduction

– useless-variable elimination

– Comparison rewriting

IV Optimizations

15-411/611 © 2019-21 Goldstein 42

15-411/611 © 2019-21 Goldstein 43

• This is the strength reduction step

• For an induction variable k = (i, c1, c2)

– initialize k = i * c2 + c1 in the preheader

– replace k’s def in the loop by

 k = k + c2

– make sure to do this after i’s def

How to do it, step 4

15-411/611 © 2019-21 Goldstein 44

• This is the comparison rewriting step

• For an induction variable k = (i, ak, bk)

– If k used only in definition and comparison

– There exists another variable, j, in the same
class and is not “useless” and j=(i, aj, bj)

• Rewrite k < n as
 j < (bj/bk)(n-ak)+aj

• Note: since they are in same class:

 (j-aj)/bj = (k-ak)/bk

How to do it, step 5

15-411/611 © 2019-21 Goldstein 45

• Are the c1, c2 constant, or just invariant?

– if constant, then you can keep folding them: they’re
always a constant even for derived IVs

– otherwise, they can be expressions of loop-invariant
variables

• But if constant, can find IVs of the type

 x = i/b

 and know that it’s legal, if b evenly divides the
stride…

Notes

15-411/611 © 2019-21 Goldstein 46

Is it faster? (2)

• On some hardware, adds are much faster
than multiplies

• But…not always a win!

– Constant multiplies might otherwise be
reduced to shifts/adds that result in even
better code than IVE

– Scaling of addresses (i*4) might come for free
on your processor’s address modes

• So maybe: only convert i*c1+c2 when c1
is loop invariant but not a constant

• Or, can be used to eliminate bound check!

• For loops with a small body:

– significant portion of time spent incrementing
and testing induction variables

– May be stalled due to dependencies
(more on this later)

• Loop unrolling reduces overhead (and
increases opportunity for superscalar to
tolerate latencies) by copying body of loop

Loop Unrolling

15-411/611 © 2019-21 Goldstein 47

• A loop L with header h and backedges si→h

– copy L to a new loop L’ with header h’ and
backedges s’i→h’

– changes edges si→h in L to si→h’

– change backedges in L’ from s’i→h

• Change IVs

• Must deal with potential left over iterations
in an epilogue

Unroll Mechanism

15-411/611 © 2019-21 Goldstein 48

• Eliminate IV in L

• create new IV, i’ i+c that dominates all
back edges of new loop

• Change uses of IV, i, to be proper offset

• change final test of IV to account for 
unrolls.

• Finally, insert epilogue to deal with left
overs.

IV changes for unrolling

15-411/611 © 2019-21 Goldstein 49

Simple Example

15-411/611 © 2019-21 Goldstein 50

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H

exit:

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H1:

H1:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H:

Simple Example

15-411/611 © 2019-21 Goldstein 51

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

cmp i, n

jg exit

sum <- sum + a[i+1]

i <- i + 2

jmp H:

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H1:

H1:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H:

Simple Example

15-411/611 © 2019-21 Goldstein 52

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

cmp i, n

jg exit

sum <- sum + a[i+1]

i <- i + 2

jmp H:

i <- 0

H:

cmp i, n-1

jg exit

sum <- sum + a[i]

sum <- sum + a[i+1]

i <- i + 2

jmp H:

exit:

H1:

cmp i, n

jg exit1

sum <- sum + a[i]

i <- i + 1

jmp H1:

exit1:

15-411/611 © 2019-21 Goldstein 53

Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

Requires
understanding

data dependencies

Dependencies in Loops

15-411/611 © 2019-21 Goldstein 54

• Loop independent data dependence occurs between
accesses in the same loop iteration.

• Loop-carried data dependence occurs between
accesses across different loop iterations.

• There is data dependence between
 access a at iteration i-k and
 access b at iteration i when:

– a and b access the same memory location

– There is a path from a to b

– Either a or b is a write

© 2019-21 Goldstein 55

Defining Dependencies

• Flow Dependence W ➔ R f

• Anti-Dependence R ➔ W a

• Output Dependence W ➔ W o

true

false

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;

15-411/611

© 2019-21 Goldstein 56

Example Dependencies
S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;
source type target due to

 S1 f S2 a

 S1 f S3 a

 S2 f S4 b

 S3 a S4 d

 S4 a S5 b

 S2 o S5 b

1

2

3

4

5

• What can we do with this information?
• What are anti- and flow- called “false” dependences?

15-411/611

These are scalar dependencies. The same
idea holds for memory accesses.

15-411/611 © 2019-21 Goldstein 57

Data Dependence in Loops

• Dependence can flow across iterations of
the loop.

• Dependence information is annotated with
iteration information.

• If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

15-411/611 © 2019-21 Goldstein 58

Data Dependence in Loops

• Dependence can flow across iterations of
the loop.

• Dependence information is annotated with
iteration information.

• If dependence is across iterations it is loop
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

} f loop independent

f loop carried

15-411/611 © 2019-21 Goldstein 59

Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

} f loop independent

f loop carried

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance/Direction of the

dependence is also important.

15-411/611 © 2019-21 Goldstein 60

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) {

}

for (i=0; i<n; i++)

 for (j=0; j<4; j++) {

}

3

2

4

15-411/611 © 2019-21 Goldstein 61

Distance Vector

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance vector is the difference between

the target and source iterations.

d = It-Is

Exactly the distance of the dependence, i.e.,

Is + d = It

15-411/611 © 2019-21 Goldstein 62

Example of Distance Vectors

for (i=0; i<n; i++)

 for (j=0; j<m; j++){

 A[i,j] = ;

 = A[i,j];

 B[i,j+1] = ;

 = B[i,j];

 C[i+1,j] = ;

 = C[i,j+1] ;

 }

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

i

j

15-411/611 © 2019-21 Goldstein 63

Example of Distance Vectors

for (i=0; i<n; i++)

 for (j=0; j<m; j++){

 A[i,j] = ;

 = A[i,j];

 B[i,j+1] = ;

 = B[i,j];

 C[i+1,j] = ;

 = C[i,j+1] ;

 }

j

A0,0= =A0,0

B0,1= =B0,0

C1,0= =C0,1

A0,1= =A0,1

B0,2= =B0,1

C1,1= =C0,2

A0,2= =A0,2

B0,3= =B0,2

C1,2= =C0,3

A1,0= =A1,0

B1,1= =B1,0

C2,0= =C1,1

A1,1= =A1,1

B1,2= =B1,1

C2,1= =C1,2

A1,2= =A1,2

B1,3= =B1,2

C2,2= =C1,3

A2,0= =A2,0

B2,1= =B2,0

C3,0= =C2,1

A2,1= =A2,1

B2,2= =B2,1

C3,1= =C2,2

A2,2= =A2,2

B2,3= =B2,2

C3,2= =C2,3

A yields:
0

0
B yields:

0

1
C yields:

1

-1

i

	Slide 1
	Slide 2: Common loop optimizations
	Slide 3: Loop Terminology
	Slide 4: Loop optimizations: Hoisting of loop-invariant computations
	Slide 5: Loop-invariant computations
	Slide 6: Loop-invariant computations
	Slide 7: Hoisting
	Slide 8: Hoisting Uses Pre-Headers
	Slide 9: Hoisting Uses Pre-Headers
	Slide 10: General Hoisting conditions
	Slide 11: We need to be careful...
	Slide 12: We need to be careful...
	Slide 13: SSA Hoisting conditions
	Slide 14: Enabling Transformations
	Slide 15: Enabling Transformations
	Slide 16: Should You?
	Slide 17: LICM subsumed by PRE
	Slide 18: Loop optimizations: Induction-variable Elimination Strength reduction
	Slide 19: The basic idea of IVE
	Slide 20: Induction Variable
	Slide 21: Simple Example of IVE
	Slide 22: Simple Example of IVE
	Slide 23: Simple Example of IVE
	Slide 24: Simple Example of IVE
	Slide 25: Simple Example of IVE
	Slide 26: Simple Example of IVE
	Slide 27: Simple Example of IVE
	Slide 28: What we did
	Slide 29: Is it faster?
	Slide 30: Loop preparation
	Slide 31: How to do it, step 1
	Slide 32: Representing IVs
	Slide 33: How to do it, step 2
	Slide 34: How to do it, step 3
	Slide 35: Simple Example of IVE
	Slide 36: Identifying Induction Variables
	Slide 37: Finding Basic IVs
	Slide 38: Finding Derived IVs
	Slide 39: Finding Derived IVs
	Slide 40: Tracking tuples
	Slide 42: IV Optimizations
	Slide 43: How to do it, step 4
	Slide 44: How to do it, step 5
	Slide 45: Notes
	Slide 46: Is it faster? (2)
	Slide 47: Loop Unrolling
	Slide 48: Unroll Mechanism
	Slide 49: IV changes for unrolling
	Slide 50: Simple Example
	Slide 51: Simple Example
	Slide 52: Simple Example
	Slide 53: Common loop optimizations
	Slide 54: Dependencies in Loops
	Slide 55: Defining Dependencies
	Slide 56: Example Dependencies
	Slide 57: Data Dependence in Loops
	Slide 58: Data Dependence in Loops
	Slide 59: Unroll Loop to Find Dependencies
	Slide 60: Iteration Space
	Slide 61: Distance Vector
	Slide 62: Example of Distance Vectors
	Slide 63: Example of Distance Vectors

