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Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

       

Scalar opts,
DF analysis,

Control flow analysis

Requires 
understanding 

data 
dependencies



Loop Terminology
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Loop: Strongly Connected Component of CFG

Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header,
source is in loop

Preheader: 
Source of the only entry edge

Natural Loop:
A Loop with only a single loop header 

preheader

header

back
edge

back
edge

entry edge

exit edge

Loop
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Loop optimizations:

Hoisting of loop-invariant

computations
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Loop-invariant computations

• A definition

        t = x op y

    in a loop is (conservatively) loop-invariant if

– x and y are constants, or

– all reaching definitions of x and y are 
outside the loop, or

– only one definition reaches x (and y), and
that definition is loop-invariant

• so keep marking iteratively
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Loop-invariant computations

• If not in SSA Be  careful:

   t = expr;

    for () {

        s = t * 2;

        t = loop_invariant_expr;

        x = t + 2;

        …

    }

• Even though t’s two reaching expressions are 
each invariant, s is not invariant…

Of course, not an issue in SSA

t1 = expr;
L1:

brc L2;
t2 = phi(t1, t3);
s = t2 * 2;
t3 = loop_invariant_expr;
x1 = t3 * 2;
...
jmp L1;

L2:
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• In order to “hoist” a loop-invariant 
computation out of a loop, we need a place 
to put it

• We could copy it to all immediate 
predecessors (except along the back-edge) of 
the loop header...

• ...But we can avoid code duplication by 
ensuring there is a pre-header

Hoisting



15-411/611 © 2019-21 Goldstein 8

Hoisting Uses Pre-Headers

A

B
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Hoisting Uses Pre-Headers

A

B

A

B

A’

B’

preheaders
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General Hoisting conditions

• For a loop-invariant definition

              d: t = x op y

• we can hoist d into the loop’s pre-header 
only if
1. d’s block dominates all loop exits at which t is live-out, 

and

2. d is the only definition of t in the loop, and

3. t is not live-out of the pre-header
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• All hoisting conditions must be satisfied!

We need to be careful...

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 if i<N goto L1

L2:

 x = t

L0:

 t = 0

L1:

 if i>=N goto L2

 i = i + 1

 t = a * b

 M[i] = t

 goto L1

L2:

 x = t

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 t = 0

 M[j] = t

 if i<N goto L1

L2:

OK violates 1,3 violates 2
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• All hoisting conditions must be satisfied!

We need to be careful...

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 if i<N goto L1

L2:

 x = t

L0:

 t = 0

L1:

 if i>=N goto L2

 i = i + 1

 t = a * b

 M[i] = t

 goto L1

L2:

 x = t

L0:

 t = 0

L1:

 i = i + 1

 t = a * b

 M[i] = t

 t = 0

 M[j] = t

 if i<N goto L1

L2:

OK violates 1,3 violates 2
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SSA Hoisting conditions

• For a loop-invariant definition

              d: t = x op y

• we can hoist d into the loop’s pre-header 
only if
1. d’s block dominates all loop exits at which t is live-out, 

and

2. d is the only definition of t in the loop, and

3. t is not live-out of the pre-header

trivial

easy

easy

Condition 1:
• Can be violated if?
• Why would you?



• Convert while into repeat-until

Enabling Transformations
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while (e) {

T

j = loopinv // does not dominate all loop exits

S 

}

If (e) {

repeat {

T

j = loopinv

S

} until (!e)

}



• More Generally, add landing pad

o For any speculative code:
add test before pre-header

Enabling Transformations
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Body

Post-test

Pre-test

Landing Pad



• Does Loop Body always execute?

• Do we speculate?

o Use profiling information?

• Register Pressure?

Should You?
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• Don’t  have to implement Loop invariant 
code motion if you implement PRE, since 
PRE subsumes it anyway!

• (But, PRE is difficult)

LICM subsumed by PRE
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Loop optimizations:

Induction-variable Elimination

 Strength reduction
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• Suppose we have a loop variable

– i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:

    x = i * c1 + c2

• In such cases, we can try to

– initialize x = io * c1 + c2   (execute once)

– increment x by c1 each iteration

The basic idea of IVE
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• Basic Induction Variable has the form: 
X = X ± C

where C is constant or loop-invariant

• Derived Induction Variable has form:
X = C1 * Y ± C2

where

– Y is a Basic induction variable

– C1 and C2 are constants

Induction Variable



Simple Example of IVE
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for i = 0 to n

a[i] = 0

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

Clearly, j & k do not need to be computed anew each 
time since they are related to i and i changes linearly.



Simple Example of IVE
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i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

i <- 0

 j' <- 0

 k' <- a

H:

 if i >= n goto exit

 j <- j'

 k <- k'

 M[k] <- 0

 i <- i + 1

 j' <- j' + 4

 k' <- k' + 4

 goto H

But, then we don't even need j (or j')



Simple Example of IVE
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i <- 0

 j' <- 0

 k' <- a

H:

 if i >= n goto exit

 j <- j'

 k <- k'

 M[k] <- 0

 i <- i + 1

 j' <- j' + 4

 k' <- k' + 4

 goto H

Do we need i?

i <- 0

k' <- a

H:

if i >= n goto exit

k <- k'

M[k] <- 0

i <- i + 1

k' <- k' + 4

goto H



Simple Example of IVE
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But, a+(n*4) is loop invariant

i <- 0

k' <- a

H:

if k' >= a+(n*4) goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

i <- 0

k' <- a

H:

if i >= n goto exit

k <- k'

M[k] <- 0

i <- i + 1

k' <- k' + 4

goto H

Rewrite comparison



i <- 0

k' <- a

H:

if k' >= a+(n*4)goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

Simple Example of IVE
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now, we do copy propagation and eliminate k

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H

Invariant code motion on a+(n*4)



Simple Example of IVE
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Voila!

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

M[k'] <- 0

k' <- k' + 4

goto H

Copy propagation

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

k <- k'

M[k] <- 0

k' <- k' + 4

goto H



Simple Example of IVE
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Voila!

k' <- a

n' <- a + (n * 4)

H:

if k' >= n' goto exit

M[k'] <- 0

k' <- k' + 4

goto H

Compare original and result of IVE

i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H



What we did

• identified induction variables (i,j,k)

• strength reduction (changed * into +)

• dead-code elimination (j <- j')

• useless-variable elimination (j' <- j' + 4)
(This can also be done with ADCE)

• loop invariant identification & code-motion

• almost useless-variable elimination (i)

• copy propagation
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Is it faster?

• On some hardware, adds are much faster 
than multiplies

• Fewer instructions (better $ behavior)

• Furthermore, one fewer value is computed,

– thus potentially saving a register

– and decreasing the possibility of spilling

• Can be used to eliminate bounds checking 
in loop
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• Before attempting IVE, it is best to first 
perform :

– constant propagation & constant folding

– copy propagation

– loop-invariant hoisting

Loop preparation
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How to do it, step 1

• First, find the basic IVs

– scan loop body for defs of the form

       x = x + c or x = x – c
  where c is loop-invariant

– record these basic IVs as

       x = (x, 0, c)

– this represents the IV: x = x * c
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Representing IVs

• Characterize all induction variables by:

 (base-variable, offset, multiple)

– where the offset and multiple are loop-invariant 

• IOW, after an induction variable is defined it 
equals:

  offset + multiple * base-variable 
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• Scan for derived IVs of the form

            k = i * c1 + c2

– where i is a basic IV,
  this is the only def of k in the loop, and
  c1 and c2 are loop invariant

• We say k is in the family of i

• Record as k = (i, c2, c1)

How to do it, step 2
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How to do it, step 3

• Iterate, looking for derived IVs of the form

            k = j * c1 + c2

– where IV j =(i, a, b), and

– this is the only def of k in the loop, and

– there is no def of i between the def of j and the 
def of k

– c1 and c2 are loop invariant

• Record as k = (i, a*c1, b*c1+c2)



Simple Example of IVE
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i <- 0

H:

if i >= n goto exit

j <- i * 4

k <- j + a

M[k] <- 0

i <- i + 1

goto H

i: (i, 0, 1) i.e., i = 0 + 1 * i
j: (i, 0, 4) i.e., j = 0 + 4 * i
k: (i, a, 4) i.e., k = a + 4 * i

So, j & k are in family of i



• Two steps:

– Find Basic IVs of form i   i   c

– Find Derived IVs of form k  j * c or k  j   c

Identifying Induction Variables
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• Maintain two tables:

– basic: Holds all vars that can be basic IV

– other: Holds all vars that cannot be basic IV

• Scan stmts in loop:

– if i   i   c and I  other, then put in basic

– if i   anything else, then remove from basic
    and put in other

Finding Basic IVs
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• Scan statements to create worklist W

– if var defined more than once and var  basic,
then, put into other

– if stmt uses any var  basic, insert into W

• Repeat until W is empty:

– if s has form “k  j * x” or “k  j   x” AND
   k  other AND
   x is loop invariant, then

• if j  basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W

Finding Derived IVs
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• Repeat until W is empty:

– if s has form “k  j * x” or “k  j   x” AND
   k  other AND
   x is loop invariant, then

• if j  basic, then k is derived IV
 enter k into derivedTable
 put all stmts using k into W

• else if j  derivedTable, then

– if only def of j reaching k is in loop AND
   only 1 def reaches k AND
   no assignment to i between j & k, then
           put k in derivedTable
         put all stmts using k into W

Finding Derived IVs
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• As we gather IVs we record: 
 (base, offset, multiple) for each one

• For IV k:

– if it is basic, the record: (k, 0, c)

– else if defined as “k  j * x” AND j has (i, a, b)
 record: (i, a*x, b*x)

– else if defined as “k  j   x” AND j has (i,a,b)
 record: (i, ax, b)

Tracking tuples

15-411/611 © 2019-21 Goldstein 40



• Once we have identified all IVs and 
recorded their tuples, we perform 3 
optimizations:

– strength reduction

– useless-variable elimination

– Comparison rewriting

IV Optimizations
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• This is the strength reduction step

• For an induction variable k = (i, c1, c2)

– initialize k = i * c2 + c1 in the preheader

– replace k’s def in the loop by

         k = k + c2

– make sure to do this after i’s def

How to do it, step 4
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• This is the comparison rewriting step

• For an induction variable k = (i, ak, bk)

– If k used only in definition and comparison

– There exists another variable, j, in the same 
class and is not “useless” and j=(i, aj, bj)

• Rewrite k < n as
 j < (bj/bk)(n-ak)+aj

• Note: since they are in same class:

  (j-aj)/bj = (k-ak)/bk

How to do it, step 5
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• Are the c1, c2 constant, or just invariant?

– if constant, then you can keep folding them: they’re 
always a constant even for derived IVs

– otherwise, they can be expressions of loop-invariant 
variables

• But if constant, can find IVs of the type

                           x = i/b

     and know that it’s legal, if b evenly divides the 
stride…

Notes
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Is it faster? (2)

• On some hardware, adds are much faster 
than multiplies

• But…not always a win!

– Constant multiplies might otherwise be 
reduced to shifts/adds that result in even 
better code than IVE

– Scaling of addresses (i*4) might come for free 
on your processor’s address modes

• So maybe: only convert i*c1+c2 when c1 
is loop invariant but not a constant

• Or, can be used to eliminate bound check!



• For loops with a small body:

– significant portion of time spent incrementing 
and testing induction variables

– May be stalled due to dependencies
(more on this later)

• Loop unrolling reduces overhead (and 
increases opportunity for superscalar to 
tolerate latencies) by copying body of loop

Loop Unrolling
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• A loop L with header h and backedges si→h

– copy L to a new loop L’ with header h’ and 
backedges s’i→h’

– changes edges si→h in L to si→h’

– change backedges in L’ from s’i→h

• Change IVs

• Must deal with potential left over iterations 
in an epilogue

Unroll Mechanism
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• Eliminate IV in L

• create new IV, i’ i+c that dominates all 
back edges of new loop

• Change uses of IV, i, to be proper offset

• change final test of IV to account for  
unrolls.

• Finally, insert epilogue to deal with left 
overs.

IV changes for unrolling
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Simple Example
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i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H

exit:

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H1:

H1:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H:



Simple Example
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i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

cmp i, n

jg exit

sum <- sum + a[i+1]

i <- i + 2

jmp H:

i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H1:

H1:

cmp i, n

jg exit

sum <- sum + a[i]

i <- i + 1

jmp H:



Simple Example
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i <- 0

H:

cmp i, n

jg exit

sum <- sum + a[i]

cmp i, n

jg exit

sum <- sum + a[i+1]

i <- i + 2

jmp H:

i <- 0

H:

cmp i, n-1

jg exit

sum <- sum + a[i]

sum <- sum + a[i+1]

i <- i + 2

jmp H:

exit:

H1:

cmp i, n

jg exit1

sum <- sum + a[i]

i <- i + 1

jmp H1:

exit1:
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Common loop optimizations

• Hoisting of loop-invariant computations

– pre-compute before entering the loop

• Elimination of induction variables

– change p=i*w+b to p=b,p+=w, when w,b invariant

• Loop unrolling

– to to improve scheduling of the loop body

• Software pipelining

– To improve scheduling of the loop body

• Loop permutation

– to improve cache memory performance

       

Requires 
understanding 

data dependencies



Dependencies in Loops
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• Loop independent data dependence occurs between 
accesses in the same loop iteration.

• Loop-carried data dependence occurs between 
accesses across different loop iterations.

• There is data dependence between 
 access a at iteration i-k and 
 access b at iteration i when: 

– a and b access the same memory location

– There is a path from a to b

– Either a or b is a write
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Defining Dependencies

• Flow Dependence W ➔ R f

• Anti-Dependence R ➔ W a

• Output Dependence W ➔ W o

true

false

S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;

15-411/611
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Example Dependencies
S1) a=0;

S2) b=a;

S3) c=a+d+e;

S4) d=b;

S5) b=5+e;
source type target due to

 S1 f S2 a

 S1 f S3 a

 S2 f S4 b

 S3 a S4 d

 S4 a S5 b

 S2 o S5 b

1

2

3

4

5

• What can we do with this information?
• What are anti- and flow- called “false” dependences?

15-411/611

These are scalar dependencies.  The same 
idea holds for memory accesses.
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Data Dependence in Loops

• Dependence can flow across iterations of 
the loop.

• Dependence information is annotated with 
iteration information.

• If dependence is across iterations it is loop 
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}
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Data Dependence in Loops

• Dependence can flow across iterations of 
the loop.

• Dependence information is annotated with 
iteration information.

• If dependence is across iterations it is loop 
carried otherwise loop independent.

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

} f loop independent

f loop carried
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Unroll Loop to Find Dependencies

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

} f loop independent

f loop carried

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance/Direction of the 

dependence is also important.
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Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of 
the loop nest.

for (i=0; i<n; i++) {

 

}

for (i=0; i<n; i++) 

 for (j=0; j<4; j++) {

 

}

3

2

4
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Distance Vector

for (i=0; i<n; i++) {

 A[i] = B[i];

 B[i+1] = A[i];

}

A[0] = B[0];

B[1] = A[0];

A[1] = B[1];

B[2] = A[1];

A[2] = B[2];

B[3] = A[2];

i=0

i=1

i=2

Distance vector is the difference between 

the target and source iterations.

d = It-Is

Exactly the distance of the dependence, i.e.,

Is + d = It
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Example of Distance Vectors

for (i=0; i<n; i++) 

 for (j=0; j<m; j++){

  A[i,j] =   ;

      = A[i,j];

  B[i,j+1] =   ;

      = B[i,j];

  C[i+1,j] =   ;

      = C[i,j+1] ;

 }

A0,0=   =A0,0

B0,1=   =B0,0

C1,0=   =C0,1

A0,1=   =A0,1

B0,2=   =B0,1

C1,1=   =C0,2

A0,2=   =A0,2

B0,3=   =B0,2

C1,2=   =C0,3

A1,0=   =A1,0

B1,1=   =B1,0

C2,0=   =C1,1

A1,1=   =A1,1

B1,2=   =B1,1

C2,1=   =C1,2

A1,2=   =A1,2

B1,3=   =B1,2

C2,2=   =C1,3

A2,0=   =A2,0

B2,1=   =B2,0

C3,0=   =C2,1

A2,1=   =A2,1

B2,2=   =B2,1

C3,1=   =C2,2

A2,2=   =A2,2

B2,3=   =B2,2

C3,2=   =C2,3

i

j
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Example of Distance Vectors

for (i=0; i<n; i++) 

 for (j=0; j<m; j++){

  A[i,j] =   ;

      = A[i,j];

  B[i,j+1] =   ;

      = B[i,j];

  C[i+1,j] =   ;

      = C[i,j+1] ;

 }

j

A0,0=   =A0,0

B0,1=   =B0,0

C1,0=   =C0,1

A0,1=   =A0,1

B0,2=   =B0,1

C1,1=   =C0,2

A0,2=   =A0,2

B0,3=   =B0,2

C1,2=   =C0,3

A1,0=   =A1,0

B1,1=   =B1,0

C2,0=   =C1,1

A1,1=   =A1,1

B1,2=   =B1,1

C2,1=   =C1,2

A1,2=   =A1,2

B1,3=   =B1,2

C2,2=   =C1,3

A2,0=   =A2,0

B2,1=   =B2,0

C3,0=   =C2,1

A2,1=   =A2,1

B2,2=   =B2,1

C3,1=   =C2,2

A2,2=   =A2,2

B2,3=   =B2,2

C3,2=   =C2,3

A yields:
0

0
B yields:

0

1
C yields:

1

-1

i
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