
15-411/15-611 Compiler Design

Ben L. Titzer and Seth Copen Goldstein

Structs

March 13, 2025

Today
• Structures and their machine requirements

• Small and big types

• Language issues

– restrictions

– parsing

– static semantics

• Dynamic Semantics

– &: pointers, arrays, and structures

– assignment

• Registers and small type sizes
15-411/611 2

Structure Representation

• Structure represented as block of memory

– Big enough to hold all of the fields

• Fields ordered according to declaration

– Even if another ordering could yield a more compact representation

• Compiler determines overall size + positions of fields

– Machine-level program has no understanding of the structures in

the source code

a

r

i next

0 16 24 32

struct rec {

 int a[4];

 size_t i;

 struct rec *next;

};

Not important if
you stay in C0

 # r in %rdi, idx in %rsi

 leaq (%rdi,%rsi,4), %rax

 ret

int *

get_ap(struct rec *r, size_t idx)

{

 return &r->a[idx];

}

Generating Pointer to Structure Member

• Generating Pointer to
Array Element

– Offset of each structure

member determined at
compile time

– Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {

 int a[4];

 size_t i;

 struct rec *next;

};

.L11: # loop:

 movslq 16(%rdi), %rax # i = M[r+16]	

 movl %esi, (%rdi,%rax,4) # M[r+4*i] = val

 movq 24(%rdi), %rdi # r = M[r+24]

 testq %rdi, %rdi # Test r

 jne .L11 # if !=0 goto loop

void

set_val(struct rec *r, int val)

{

 while (r) {

 int i = r->i;

 r->a[i] = val;

 r = r->next;

 }

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

 int a[4];

 int i;

 struct rec *next;

};

Element i

r

i next

0 16 24 32

a

.L11: # loop:

 movslq 16(%rdi), %rax # i = M[r+16]	

 movl %esi, (%rdi,%rax,4) # M[r+4*i] = val

 movq 24(%rdi), %rdi # r = M[r+24]

 testq %rdi, %rdi # Test r

 jne .L11 # if !=0 goto loop

void

set_val(struct rec *r, int val)

{

 while (r) {

 int i = r->i;

 r->a[i] = val;

 r = r->next;

 }

}

Which Registers to Use?

Register Value

%rdi r

%esi val

struct rec {

 int a[4];

 int i;

 struct rec *next;

};

Element i

r

i next

0 16 24 32

a

Structures & Alignment
• Unaligned Data

c i[0] i[1] v
p p+1 p+5 p+9 p+17

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

Structures & Alignment
• Unaligned Data

• Aligned Data

– Primitive data type requires K bytes

– Address must be multiple of K

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v
p p+1 p+5 p+9 p+17

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

Satisfying Alignment within Structures
• Within structure:

– Satisfy each element’s alignment requirement

• Overall structure placement

– Each structure has alignment requirement K

• K = Largest alignment of any element

– Initial address & structure length must be multiples of K

• Example: K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8
Internal padding

Meeting Overall Alignment Requirement

• For largest alignment requirement K

• Overall structure must be multiple of K

struct S2 {

 double v;

 int i[2];

 char c;

} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8

External padding

Alignment Principles
• Aligned Data

– Primitive data type requires K bytes

– Address must be multiple of K

– Required on some machines; advised on x86-64

• Motivation for Aligning Data

– Memory accessed by (aligned) chunks of 

4 or 8 bytes (system dependent)

• Inefficient to load or store datum that spans cache lines (64 bytes). Intel

states should avoid crossing 16 byte boundaries.

• Virtual memory trickier when datum spans 2 pages (4 KB pages)

• Compiler

– Inserts gaps in structure to ensure correct alignment of fields

Size & Alignment of C types (x86-64)

• 1 byte: char, …

– no restrictions on address

• 2 bytes: short, …

– lowest 1 bit of address must be 02

• 4 bytes: int, float, …

– lowest 2 bits of address must be 002

• 8 bytes: double, long, char *, …

– lowest 3 bits of address must be 0002

Size & Alignment of C0 types (x86-64)

• 4 bytes: int, bool

– lowest 2 bits of address must be 002

• 8 bytes: τ*, τ[]

– lowest 3 bits of address must be 0002

Arrays of Structures
• Overall structure length multiple of K

• Satisfy alignment requirement  

for every element struct S2 {

 double v;

 int i[2];

 char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48
a+7
2

Accessing Array Elements
• Compute array offset 12*idx

– sizeof(S3), including alignment spacers

• Element j is at offset 8 within structure

• Assembler gives offset a+8

– Resolved during linking

struct S3 {

 short i;

 float v;

 short j;

} a[10];

short get_j(int idx)

{

 return a[idx].j;

}

	# %rdi = idx

	leaq (%rdi,%rdi,2),%rax # 3*idx

	movzwl a+8(,%rax,4),%eax

 a[0] • • • a[idx] • • •
a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes
a+12*idx a+12*idx+8

L4 structs
• Must be allocated on the heap.

• Field names are in their own namespace

• In each struct, field names must be unique

• Can only be defined once.

• Can be used (in special cases) before declared!

15-411/611 16

Big and Small Types
• Small types fit in registers

– int, bool, τ*, τ[]

– 4 or 8 bytes in L4

• Large types are allocated on the heap

– struct s

15-411/611 17

Restrictions vis a vis Small Types
All of the following must be small types:

• Local variables

• function parameters

• return values

• lval and rval in assignments

• Expressions

– conditional expressions

– == and !=

– simple expressions (i.e., expressions as statements)

15-411/611 18

Namespaces
• Each struct definition creates its own

namespace, so

– fieldnames never conflict with other variables,

function names, type names, field names in
other structs

• Field names in a structure must be unique

15-411/611 19

Declare v. Define
• Declaration:	struct s;

• Definition:	 struct s { τ1 f1; … τn fn; };

• Only 1 definition allowed

• If size is irrelevant:

– Can be used before defined

– Can be used without prior declaration!

• Size is relevant in

– alloc(struct s) and  
alloc_array(struct s, e)

15-411/611 20

Static Semantics
• Extend types

• Extend expressions

• Elaboration

• Typing	 	 	 	

15-411/611 21

* | [] | struct s𝜏 ∷ = int bool 𝜏 𝜏

𝑑 ∷ = … | 𝑑 . 𝑓
𝑒 ∷ = … 𝑒 . 𝑓 𝑒 → 𝑓

 𝑒 → 𝑓 ≡ (∗ 𝑒) . 𝑓

Γ ⊢ 𝑒: struct𝑠 𝑠 . 𝑓:𝜏
Γ ⊢ 𝑒 . 𝑓:𝜏

Note: struct s
must be defined

𝑑 ∷ = … | 𝑑 . 𝑓
𝑒 ∷ = … 𝑒 . 𝑓 𝑒 → 𝑓

Static Semantics
• Extend types

• Extend expressions

• Elaboration

• Typing	 	 	 	

15-411/611 22

* | [] | struct s𝜏 ∷ = int bool 𝜏 𝜏

 𝑒 → 𝑓 ≡ (∗ 𝑒) . 𝑓
𝑑 → 𝑓 ≡ (∗ 𝑑) . 𝑓

Γ ⊢ 𝑒: struct𝑠 𝑠 . 𝑓:𝜏
Γ ⊢ 𝑒 . 𝑓:𝜏

Because we defined d to be an expression no other
typing rules are needed!

(Note: restrictions to small types on all previous rules.)

Parsing L4
• What is meaning of “x * y;”

15-411/611 23

Parsing L4
• What is meaning of “x * y;”

– Is it variable x times variable y?

– Is it variable y is a pointer to type x?

• How to resolve this context sensitive Issue?

– top-down parser will require backtracking

– bottom-parser:

• Solve after parse. How?

• Get lexer involved.  

(beware lexer lookahead - but suggested)

15-411/611 24

Dynamic Semantics - Approach

• What is value of p->x?

15-411/611 25

struct Point {

	 int x;

	 int y;

};

…

struct Point* p = alloc_struct(point);

Dynamic Semantics - Approach

• What is value of (*p).x?

• What is value of *p?

15-411/611 26

struct Point {

	 int x;

	 int y;

};

…

struct Point* p = alloc_struct(point);

Dynamic Semantics - Approach

• What is value of (*p).x?

• What is value of *p?

• Two approaches

15-411/611 27

struct Point {

	 int x;

	 int y;

};

…

struct Point* p = alloc_struct(point);

Dynamic Semantics - Approach

• What is value of (*p).x?

• What is value of *p?

• Approach one: *p is entire structure

– read in entire structure

– select field

15-411/611 28

struct Point {

	 int x;

	 int y;

};

…

struct Point* p = alloc_struct(point);

Dynamic Semantics - Approach

• What is value of (*p).x?

• What is value of *p?

• Approach one: *p is entire structure

• Approach two: *p has no meaning in and of
itself, rather p is an address and (*p).x is an
address calculation followed by a load

15-411/611 29

struct Point {

	 int x;

	 int y;

};

…

struct Point* p = alloc_struct(point);

Address of operator: &
• Introduce, into the dynamic semantics, the

address-of operation, &

• So, (*p).f becomes:

– get address a of p

– determine offset from start of p to f

– calculate pointer = a + offset of above

– load proper number of bytes from pointer

• I.e., (*p).f ⇒ *(&((*p).f))

• Notice similarity to *d used as an lval 
(from last lecture)

15-411/611 30

Writing to the heap
• left to right evaluation of address and rval

• Then making assignment (if)𝑎 ≠ 0

15-411/611 31

From last lecture

Address of operator: &
• Introduce, into the dynamic semantics, the

address-of operation, &

• So, (*p).f becomes:

– get address a of p

– determine offset from start of p to f

– calculate pointer = a + offset of above

– load proper number of bytes from pointer

• I.e., (*p).f ⇒ *(&((*p).f))

• Notice similarity to *d used as an lval 
(from last lecture)

15-411/611 32

Field access
• We evaluate e.f as *(&(e.f))

15-411/611 33

Addresses and Large Types

15-411/611 34

Addresses and Large Types

15-411/611 35

Addresses and Large Types

15-411/611 36

Addresses and Large Types

15-411/611 37

Example

15-411/611 38

struct Point {

	 int x;

	 int y;

};

struct Line {

	 struct Point A;

	 struct Point B;

};

…

struct Line* L = alloc(struct Line);

…

int x = L->B.y;

After elaboration =>

Example

15-411/611 39

struct Point {

	 int x;

	 int y;

};

struct Line {

	 struct Point A;

	 struct Point B;

};

…

struct Line* L = alloc(struct Line);

…

int x = (*L).B.y;

x = (*L).B.y;

15-411/611 40

x = (*L).B.y;

15-411/611 41

x = (*L).B.y;

15-411/611 42

x = (*L).B.y;

15-411/611 43

x = (*L).B.y;

15-411/611 44

x = (*L).B.y;

15-411/611 45

x = (*L).B.y;

15-411/611 46

x = (*L).B.y;

15-411/611 47

x = (*L).B.y;

15-411/611 48

x = (*L).B.y;

15-411/611 49

x = (*L).B.y;

15-411/611 50

x = (*L).B.y;

15-411/611 51

Allocation
• Similar to regular alloc, but size is defined by

the struct, as per alignment rules.

• Initialization (for L4) is to set all to 0.

15-411/611 52

Assignment
• Can simplify all rules for assignment to large

types, i.e., heap allocated locations

• Likewise, can simplify assignment ops

15-411/611 53

• When d is a small type, e.g., a variable x,
elaborate to assign(x,x e)

• When d is an address on the heap elaborate
to asnop(d, ,e) and we have:

– evaluation of address

– evaluation of value on right-hand side

– assignment (which continues as before)

⨀

⨀

15-411/611 54

d += e;

Registers and small types
• two type sizes held in registers

– 32-bit: int & bool

– 64-bit: pointer

• Be careful moving these around

– movl, cmpl, addl vs. movq, cmpq, addq

• Track stack space, heap space, etc. required

• Suggestions:

– track sizes for your temps, vars, etc.

– use explicit extend ops in your IR

15-411/611 55

32/64-bit implementation
• Use explicit extend ops in IR, e.g., 

	 dest64 <- zeroextend src32 
	 dest64 <- signextend src32

• Remember, zeroextend comes for free:

– movl %eax, %eax 

sets high order 32 bits of %rax to 0!

– similarly for other instructions

15-411/611 56

Starting next week analysis and optimization

15-411/611 57

