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Today
• Pointers
• The Heap and pointers
• Arrays
• Length & bounds checking
• Elaboration of +=, etc.

15-411/611 2© 2019-21 Goldstein



Adding a pointer
• Extend types

• Extend expressions
– alloc(): allocate a heap cell to hold a value of 
– *e: dereference a pointer to get value at e
– null: special null pointer
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Typing rules
• A freshly allocated cell has 

type “pointer to ”

• if e has type “pointer to ,” 
then *e has type “”

• What type should null have?
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?
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not quite



The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference of null
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Equality for pointers?
• Can we compare * and *:

– if =  :
– if   :
– What about int* p; … if (p==null) …

• null is given type of “any*”
• And, implicitly converted to * as needed

15-411/611 6© 2019-21 Goldstein



The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Have to make sure introducing any* is safe
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Γ ⊢ null  : 𝑎𝑛𝑦∗
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The type of null?
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• Desired behavior
– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Have to make sure introducing any* is safe
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The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Can’t allow *null
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Γ ⊢ null  : 𝑎𝑛𝑦∗
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Typing rules (revised)
• A freshly allocated cell has 

type “pointer to ”

• if e has type “pointer to ,” 
and e isn’t null,
then *e has type “”

• null has the indefinite type

• Implicit coercion
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Γ ⊢ null  : 𝑎𝑛𝑦∗
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Representing the Heap
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Evaluation of expression e in the context of
• a Heap, 
• Stack, and 
• binding environment.

• alloc() returns an unused address in H 
(the heap) which can store a value of 

𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ 𝐾
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What is an address?
• How do we represent addresses, i.e., the 

result of the alloc operation?
• 64-bits? infinite?
• What happens when we run out of 

memory?  How do we model this in the 
dynamic semantics?
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What is an address?
• How do we represent addresses, i.e., the 

result of the alloc operation?
• 64-bits? infinite?
• What happens when we run out of 

memory?  How do we model this in the 
dynamic semantics?

• Assume infinite address space, i.e., an 
address is in ℕ.

• Out of heap memory will generate an 
exception: “exception(mem)” 
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Using H
• alloc() returns an address of proper size 

(or raises an exception)
• H must keep track of next free address.

𝐻: ℕ⋃ next → Val
• Extend all old rules with H; which they 

leave unchanged, e.g.,
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𝐻; 𝑆; 𝜂 ⊢ 𝑒1⨁𝑒2 ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒1 ⊳ ∎⨁𝑒2, 𝐾
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Pointers
• null evaluates to 0

• alloc():
– returns a fresh address a, 
– updates the next address in the heap
– initializes the location to default for 
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𝐻; 𝑆; 𝜂 ⊢ null ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 0 ⊳ 𝐾

𝐻; 𝑆; 𝜂 ⊢ alloc 𝜏 ⊳ 𝐾 ⟶

𝐻 𝑎 ↦ default 𝜏 , next ↦ 𝑎 + 𝜏 ; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾
𝑎 = 𝐻 next
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• default 𝜏 : 0 for int, false for bool, null for ptr
• 𝜏  for x86-64:

– |int| = 4
– |bool|= 4
– |*| = 8
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𝐻; 𝑆; 𝜂 ⊢ alloc 𝜏 ⊳ 𝐾 ⟶

𝐻 𝑎 ↦ default 𝜏 , next ↦ 𝑎 + 𝜏 ; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾
𝑎 = 𝐻 next
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Accessing Memory
• Dereferencing a pointer:
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𝐻; 𝑆; 𝜂 ⊢∗ e ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ (∗ ∎, 𝐾)
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Accessing Memory
• Dereferencing a pointer:

• The interesting part:
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𝐻; 𝑆; 𝜂 ⊢∗ e ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ (∗ ∎, 𝐾)

𝐻; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝐻 𝑎 ⊳ 𝐾 𝑎 ≠ 0

𝐻; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾 ⟶ exception mem 𝑎 = 0
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Writing to the heap
• l-values and r-values
• l-values or destinations:

𝑑 ∷= 𝑥| ∗ 𝑑

• Typing is the same for all destinations:
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recall, [’], is the 
return type of the 
function.
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Writing to the heap
• Distinguish between variables, x, which live 

on the stack, 
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Writing to the heap
• Distinguish between variables, x, which live 

on the stack, 

• and other destinations which live in the 
heap.
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Writing to the heap
• left to right evaluation of address and r-value

• Then making assignment (if 𝑎 ≠ 0)
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Writing to the heap
• left to right evaluation of address and rval

• Then making assignment (if 𝑎 ≠ 0)

15-411/611 24© 2019-21 Goldstein



Proper evaluation order
• int* p = NULL;
*p = 1/0;

• int**p = NULL;
**p = 1/0;
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Today
• Pointers
• The Heap and pointers
• Arrays
• Length & bounds checking
• Elaboration of +=, etc.
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Arrays: static semantics
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• Extend types, expressions, and destinations

• Need typing rules for alloc_array and e1[e2]
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Allocating the array
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Allocating the array
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Allocating the array
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Accessing the Array
• left to right evaluation of base address of 

array and index

• Then, if in bounds, get the value

• Or, generate an exception
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Accessing the Array
• left to right evaluation of base address of 

array and index

• Then, if in bounds, get the value

• Or, generate an exception
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Accessing the Array
• left to right evaluation of base address of 

array and index

• Then, if in bounds, get the value

• Or, generate an exception
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recall: alloc_array(,e)
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Bounds checking 
• Constraints in design of length(a)
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Bounds checking 
• Constraints in design of length(a)

o Be able to find length of array given a
o Minimize code size
o Alignment (padding, etc.)
o Inter-operability
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Bounds checking
• Must store length in heap.

• Rationale for storing length at a-8?
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Writing to the array
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one caveat
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Code Generation
• For access: e1[e2] where e1:[] and ||=k
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Code Generation
• For access: e1[e2] where e1:[] and ||=k
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not quite
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Elaboration
• x = x + e is no longer always valid for x += e
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Elaboration
• x = x + e is no longer always valid for x += e
• next time introduce structure and &
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