
15-411/15-611 Compiler Design

Seth Copen Goldstein

Mutable Store

March 11, 2025

Today
• Pointers
• The Heap and pointers
• Arrays
• Length & bounds checking
• Elaboration of +=, etc.

15-411/611 2© 2019-21 Goldstein

Adding a pointer
• Extend types

• Extend expressions
– alloc(): allocate a heap cell to hold a value of 
– *e: dereference a pointer to get value at e
– null: special null pointer

15-411/611 3© 2019-21 Goldstein

Typing rules
• A freshly allocated cell has

type “pointer to ”

• if e has type “pointer to ,”
then *e has type “”

• What type should null have?

15-411/611 4

?

© 2019-21 Goldstein

not quite

The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference of null

15-411/611 5© 2019-21 Goldstein

Equality for pointers?
• Can we compare * and *:

– if =  :
– if   :
– What about int* p; … if (p==null) …

• null is given type of “any*”
• And, implicitly converted to * as needed

15-411/611 6© 2019-21 Goldstein

The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Have to make sure introducing any* is safe

15-411/611 7

Γ ⊢ null : 𝑎𝑛𝑦∗

© 2019-21 Goldstein

The type of null?

8

• Desired behavior
– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Have to make sure introducing any* is safe

15-411/611

Γ ⊢ null : 𝑎𝑛𝑦∗

© 2019-21 Goldstein

The type of null?
• Desired behavior

– allow any pointer to be compared to null
– disallow pointer dereference to null

• Using the type “any*” along with subsumption
• Subsumption used for implicit coercion

• Can’t allow *null

15-411/611 10

Γ ⊢ null : 𝑎𝑛𝑦∗

© 2019-21 Goldstein

Typing rules (revised)
• A freshly allocated cell has

type “pointer to ”

• if e has type “pointer to ,”
and e isn’t null,
then *e has type “”

• null has the indefinite type

• Implicit coercion
15-411/611 11

Γ ⊢ null : 𝑎𝑛𝑦∗

© 2019-21 Goldstein

Representing the Heap

15-411/611 12

Evaluation of expression e in the context of
• a Heap,
• Stack, and
• binding environment.

• alloc() returns an unused address in H
(the heap) which can store a value of 

𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ 𝐾

© 2019-21 Goldstein

What is an address?
• How do we represent addresses, i.e., the

result of the alloc operation?
• 64-bits? infinite?
• What happens when we run out of

memory? How do we model this in the
dynamic semantics?

15-411/611 13© 2019-21 Goldstein

What is an address?
• How do we represent addresses, i.e., the

result of the alloc operation?
• 64-bits? infinite?
• What happens when we run out of

memory? How do we model this in the
dynamic semantics?

• Assume infinite address space, i.e., an
address is in ℕ.

• Out of heap memory will generate an
exception: “exception(mem)”

15-411/611 14© 2019-21 Goldstein

Using H
• alloc() returns an address of proper size

(or raises an exception)
• H must keep track of next free address.

𝐻: ℕ⋃ next → Val
• Extend all old rules with H; which they

leave unchanged, e.g.,

15-411/611 15

𝐻; 𝑆; 𝜂 ⊢ 𝑒1⨁𝑒2 ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒1 ⊳ ∎⨁𝑒2, 𝐾

© 2019-21 Goldstein

Pointers
• null evaluates to 0

• alloc():
– returns a fresh address a,
– updates the next address in the heap
– initializes the location to default for 

15-411/611 16

𝐻; 𝑆; 𝜂 ⊢ null ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 0 ⊳ 𝐾

𝐻; 𝑆; 𝜂 ⊢ alloc 𝜏 ⊳ 𝐾 ⟶

𝐻 𝑎 ↦ default 𝜏 , next ↦ 𝑎 + 𝜏 ; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾
𝑎 = 𝐻 next

© 2019-21 Goldstein

• default 𝜏 : 0 for int, false for bool, null for ptr
• 𝜏 for x86-64:

– |int| = 4
– |bool|= 4
– |*| = 8

15-411/611 17

𝐻; 𝑆; 𝜂 ⊢ alloc 𝜏 ⊳ 𝐾 ⟶

𝐻 𝑎 ↦ default 𝜏 , next ↦ 𝑎 + 𝜏 ; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾
𝑎 = 𝐻 next

© 2019-21 Goldstein

Accessing Memory
• Dereferencing a pointer:

15-411/611 18

𝐻; 𝑆; 𝜂 ⊢∗ e ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ (∗ ∎, 𝐾)

© 2019-21 Goldstein

Accessing Memory
• Dereferencing a pointer:

• The interesting part:

15-411/611 19

𝐻; 𝑆; 𝜂 ⊢∗ e ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝑒 ⊳ (∗ ∎, 𝐾)

𝐻; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾 ⟶ 𝐻; 𝑆; 𝜂 ⊢ 𝐻 𝑎 ⊳ 𝐾 𝑎 ≠ 0

𝐻; 𝑆; 𝜂 ⊢ 𝑎 ⊳ 𝐾 ⟶ exception mem 𝑎 = 0

© 2019-21 Goldstein

Writing to the heap
• l-values and r-values
• l-values or destinations:

𝑑 ∷= 𝑥| ∗ 𝑑

• Typing is the same for all destinations:

15-411/611 20

recall, [’], is the
return type of the
function.

© 2019-21 Goldstein

Writing to the heap
• Distinguish between variables, x, which live

on the stack,

15-411/611 21© 2019-21 Goldstein

Writing to the heap
• Distinguish between variables, x, which live

on the stack,

• and other destinations which live in the
heap.

15-411/611 22© 2019-21 Goldstein

Writing to the heap
• left to right evaluation of address and r-value

• Then making assignment (if 𝑎 ≠ 0)

15-411/611 23© 2019-21 Goldstein

Writing to the heap
• left to right evaluation of address and rval

• Then making assignment (if 𝑎 ≠ 0)

15-411/611 24© 2019-21 Goldstein

Proper evaluation order
• int* p = NULL;
*p = 1/0;

• int**p = NULL;
**p = 1/0;

15-411/611 25© 2019-21 Goldstein

Today
• Pointers
• The Heap and pointers
• Arrays
• Length & bounds checking
• Elaboration of +=, etc.

15-411/611 26© 2019-21 Goldstein

Arrays: static semantics

15-411/611 27

• Extend types, expressions, and destinations

• Need typing rules for alloc_array and e1[e2]

© 2019-21 Goldstein

Allocating the array

15-411/611 © 2019-21 Goldstein 28

Allocating the array

15-411/611 29© 2019-21 Goldstein

Allocating the array

15-411/611 30© 2019-21 Goldstein

Accessing the Array
• left to right evaluation of base address of

array and index

• Then, if in bounds, get the value

• Or, generate an exception

15-411/611 31© 2019-21 Goldstein

Accessing the Array
• left to right evaluation of base address of

array and index

• Then, if in bounds, get the value

• Or, generate an exception

15-411/611 32© 2019-21 Goldstein

Accessing the Array
• left to right evaluation of base address of

array and index

• Then, if in bounds, get the value

• Or, generate an exception

15-411/611 33

recall: alloc_array(,e)

© 2019-21 Goldstein

Bounds checking
• Constraints in design of length(a)

15-411/611 34© 2019-21 Goldstein

Bounds checking
• Constraints in design of length(a)

o Be able to find length of array given a
o Minimize code size
o Alignment (padding, etc.)
o Inter-operability

15-411/611 35© 2019-21 Goldstein

Bounds checking
• Must store length in heap.

• Rationale for storing length at a-8?

15-411/611 36© 2019-21 Goldstein

Writing to the array

15-411/611 37© 2019-21 Goldstein

one caveat

15-411/611 38© 2019-21 Goldstein

Code Generation
• For access: e1[e2] where e1:[] and ||=k

15-411/611 39© 2019-21 Goldstein

Code Generation
• For access: e1[e2] where e1:[] and ||=k

15-411/611 40

not quite

© 2019-21 Goldstein

Elaboration
• x = x + e is no longer always valid for x += e

15-411/611 41© 2019-21 Goldstein

Elaboration
• x = x + e is no longer always valid for x += e
• next time introduce structure and &

15-411/611 42© 2019-21 Goldstein

