Dataflow AnalysisLattices & Solvers

15-411/15-611 Compiler Design

Seth Copen Goldstein

February 25, 2025

Dataflow Analysis

- A framework for proving facts about program
 - Reasons about lots of little facts
 - Little or no interaction between facts
 - Based on all paths through program
- Solve with iterative solver:
 - How do we know it terminates?
 - How do we know whether solution is precise? (or even correct?)

Recall: Data Flow Equations

- Let s be a statement
 - Succ(s) = {immediate successors of s}
 - Pred(s) = {immediate predecessors of s}
 - In(s) program point just before executing s
 - Out(s) program point just after executing s
- Transfer functions (for forward, must):

- Gen(s)set of facts made true by s
- Kill(s) set of facts invalidated by s

Recall: Worklist algorithm (forward)

```
Initialize: in[B] = out[b] = Universe
Initialize: in[entry] = ?
Work queue, W = all Blocks in topological order
while (IWI != 0) {
   remove b from W
   temp = out[b]
   compute In[b]
   compute Out[b]
   if (temp != out[b]) W =
                           V ? succ(b)
```

Some Unidirectional Dataflow Analysis

Union intersection (may) (must)

Forward

Reaching definitions

Available expressions

Backward

Live variables

very busy expressions

- X+Y is "available" at statement S if
 - x+y is computed along every path from the start to S
 AND
 - neither x nor y is modified after the last evaluation of x+y

15-411/611 © 2019-20 Goldstein

For x= a?b:

Gen = {a?b}

Kill = {All expressions using x

Initialize all but entry to universe of expressions

For x= a?b:

Gen = {a?b}

Kill = {All expressions using x}

Initialize all but entry to universe of expressions

Liveness as a dataflow problem

- This is a backwards analysis
 - A variable is live out if used by a successor
 - Gen: For a use: indicate it is live coming into s
 - Kill: Defining a variable v in s makes it dead before s (unless s uses v to define v)
 - Lattice is just live (top) and dead (bottom)
- Values are variables
- ln[n] = variables live before n= $(out[n]-kill[n]) \underbrace{ \bigcirc gen[n] }$
- Out[n] = variables live after n $= U_{In[s]}$

15-411/611 S \(\infty \) \(\text{\$\infty} \) \(\text{\$\infty} \) \(\text{\$\infty} \) 2019-20 Goldstein

Why does this terminate?

– In(s) & Out(s) never shrink

 Eventually reach fixed point since number of variables is finite.

Data Flow Facts and lattices

- Typically, data flow facts form a lattice
- Example, Available expressions

Lattices

- All our dataflow analyses map program points to elements of a *lattice*.
- A complete lattice L = (S, ≤, ∨, ∧, ⊥, T) is formed by:
 - A set S
 - A partial order ≤ between elements of S.
 - A least element ⊥
 - A greatest element T
 - A join operator ∨
 - A meet operator ∧

Least Upper Bound & Join

• If L = $(S, \le, \lor, \land, \bot, T)$ is a complete lattice, and $e_1 \in S$ and $e_2 \in S$, then least upper bound of $\{e_1, e_2\}$? $e_{lub} = (e_2 \lor e_1) \in S$

Least Upper Bound & Join

- If L = (S, ≤, ∨, ∧, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 least upper bound of {e₁, e₂} ? e_{lub}= (e₂ ∨ e₁) ∈ S
- v is the "join" operator
- (elub), the least upper bound, has the properties:
 - $-e_1 \le e_{lub}$ and $e_2 \le e_{lub}$
 - For all $e' \notin S$, if $e_1 \le e'$ and $e_2 \le e'$, then $e_{lub} \le e'$

Least Upper Bound & Join

- If L = (S, ≤, ∨, ∧, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 least upper bound of {e₁, e₂} ? e_{lub}= (e₂ ∨ e₁) ∈ S
- v is the "join" operator
- e_{lub}, the least upper bound, has the properties:
 - $-e_1 \le e_{lub}$ and $e_2 \le e_{lub}$
 - For all $e' \in S$, if $e_1 \le e'$ and $e_2 \le e'$, then $e_{lub} \le e'$
- least upper bound of S' ? S, is pairwise lub of all elements of S'
- For L to be a lattice, for all S' ? S, lub(S') ∈ S

Greatest Lower Bound & Meet

- If L = (S, ≤, ∨, ∧, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 greatest lower bound of {e₁, e₂} ? e_{glb}= (e₂ ∧ e₁) ∈ S
- ∧ is the "meet" operator
- e_{glb}, the greatest lower bound, has the properties:
 - $-e_{glb} \le e_1$ and $e_{glb} \le e_2$
 - For all $e' \in S$, if $e_1 \le e'$ and $e_2 \le e'$, then $e' \le e_{glb}$

Greatest Lower Bound & Meet

- If L = (S, ≤, ∨, ∧, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 greatest lower bound of {e₁, e₂} ? e_{glb}= (e₂ ∧ e₁) ∈ S
- ∧ is the "meet" operator
- e_{glb}, the greatest lower bound, has the properties:
 - $-e_{glb} \le e_1$ and $e_{glb} \le e_2$
 - For all $e' \in S$, if $e_1 \le e'$ and $e_2 \le e'$, then $e' \le e_{glb}$
- greatest lower bound of S' ? S, is pairwise glb of all elements of S'
- For L to be a lattice, for all S' ? S, glb(S') ∈ S

Properties of join (and meet)

- Join is idempotent: $x \lor x = x$
- Join is commutative: $y \lor x = x \lor y$
- Join is associative: $x \lor (y \lor z) = (x \lor y) \lor z$
- Join has a multiplicative one:

for all x in S,
$$(\bot \lor x) = x$$

Join has a multiplicative zero:

for all x in S,
$$(T \lor x) = T$$

Properties of join (and meet)

- Join is idempotent: $x \lor x = x$
- Join is commutative: $y \lor x = x \lor y$
- Join is associative: $x \lor (y \lor z) = (x \lor y) \lor z$
- Join has a multiplicative one:

for all
$$x \in S$$
, $(\bot \lor x) = x$

for all
$$x \in S$$
, $(T \lor x) = T$

Properties of join (and meet)

- Join is idempotent: $x \lor x = x$
- Join is commutative: $y \lor x = x \lor y$
- Join is associative: $x \lor (y \lor z) = (x \lor y) \lor z$
- Join has a multiplicative one:

for all
$$x \in S$$
, $(\bot \lor x) = x$

Join has a multiplicative zero:

for all
$$x \in S$$
, $(T \lor x) = T$

- Similarly for meet, but:
 - multiplicative one is T, i.e., for all $x \in S$, $(T \land x) = x$
 - multiplicative zero is \bot , i.e., for all $x \in S$, $(\bot \land x) = \bot$

Semilattices

- Notice the dataflow analysis we looked at have either the join or meet operator, e.g.,
 - available expressions uses meet: ∧ is intersection
 - liveness uses join: v is union
- If only one of meet or join are defined, we call it a semilattice.

Partial Order

A partial order is a pair (S, ♠) such that:

$$- \le ? S?S$$

- ≤ is reflexive, i.e.,

$$X \leq X$$

 $- \le$ is anti-symmetric, i.e.,

$$x \le y$$
 and $y \le x$ implies $x=y$

 $- \le$ is transitive, i.e.,

 $x \le y$ and $x \le z$ implies $x \le z$

15-411/611

27

Partial Order, v, A, and Semi-Lattice

 Join, least upper bound, on a semi-lattice defines a partial order:

$$x \le y \text{ iff } x \lor y = y$$

 Meet, greatest lower bound, on a semilattice defines a partial order:

$$x \le y \text{ iff } x \land y = x$$

Useful Lattices

- ((2³), (?)) forms a lattice for any set S.
 - -2^{S} is the power set of S (set of all subsets)
- If (S, ≤) is a lattice, so is (S, ?)
 - i.e., lattices can be flipped
- A lattice for constant propagation

Semilattice of Liveness

- L= $(2^{a,b,x,y,z})$
 - Only define Join, ?
 - Least Element, 2 {}
 - Greatest Element, T, {a,b,x,y,z}
 - $-x \le y \text{ means } x ? y$

more generally,

$$L=(2^{S}, ?)$$

- Join operator must have the property:
 - $-x \le y \text{ iff } x \lor y=y$
 - Or, in our case, Is it true that: x ②y iff x ③ y=y?
- Is {} ?, or in our case: is {} ? x, for all x ?\$?
- is ST, or in our case is x ? T, for all x ?\$?

Semilattice of Available Expressions

- L=($\{a+b,a*b,a+1\}$, 2 22, $\{a+b,a*b,a+1\}$)
 - Only define Meet, ?
 - Least Element, 9 9 9
 - Greatest Element, T, {a+b,a*b,a+1}
 - $-x \le y$ means x is superset of y

In general:

$$L=(2^{S}, ? {})$$

Monotonicity & Termination

- A function f on a partial order is monotonic if
 x (?) implies f(x) (?)
- We call f a transfer function

Monotonicity for Available Expressions

A function f on a partial order is monotonic if
 x (?) implies f(x) (?)(y)

```
For x = a? b:

Gen = {a? b}

Kill = {All expressions using x}
```


Termination

- Algorithm terminates because:
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration either:
 - W gets smaller, or
 - out(s) decreases for some s, i.e., we move down lattice

```
Initialize: in[s] = out[s] = Universe
Initialize: in[entry] = ?
Work queue, W = all Blocks
while (IWI != 0) {
   remove s from W
   temp = out[s]
   compute In[s]
    compute Out[s]
   if (temp != out[s]) W = W ? succ(s)
```

Lattices (P, ≤)

- Available expressions
 - P = sets of expressions
 - $S1 \land S2 = S1 ? S2$
 - Top = set of all expressions
- Reaching Definitions

- $S1 \land S2 = S1 ? 2
- Top = empty set

Fixpoints

- We always start with Top
 - Every expression is available,
 no definitions reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 (i.e., true of fewest number of states)
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Very Busy Expressions

- A Backward, Must data flow analysis
- An expression e is very busy at point p if On every path from p, e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation

15-411/611 © 2019-20 Goldstein 3

Lattices (P, ≤), cont'd

- Live variables
 - P = sets of variables
 - $S1 \land S2 = S1 ? S2$
 - Top = empty set
- Very busy expressions
 - P = sets of expressions
 - S1 \wedge S2 = S1 ?S2
 - Top = set of all expressions

Lattices (P, ≤), cont'd

- Live variables
 - P = sets of variables
 - $S1 \land S2 = S1 ? S2$
 - Top = empty set
- Very busy expressions
 - P = sets of expressions
 - S1 \wedge S2 = S1 ?S2
 - Top = set of all expressions

Could have defined this as a semilattice using join, but dataflow tradition starts with top and uses meet to compute a greatest fixed point. (as compared to tradition for denotational semantics, uses meet and computes least fixed point)

Forward vs. Backward

```
Out(s) = Top for all s

W := { all statements } 
repeat

Take s from W

temp := f_s(\land s' \in pred(s)) = Out(s'))

if (temp != Out(s)) = Out(s) = Out(s) = Out(s)

Until W = \emptyset
```

```
In(s) = Top for all s

W := { all statements }

repeat

Take s from W

temp := f_s(\land s' \in succ(s)) In(s'))

If (temp != In(s)) {

In(s) := temp

W := W ? pred(s)

until W = \emptyset
```

Termination Revisited

How many times can we apply this step:

```
temp := f_s(\sqcap_{s' \in pred(s)} Out(s'))
if (temp != Out(s)) \{ ... \}
```

Claim: Out(s) only shrinks

- Proof: Out(s) starts out as top
 - So temp must be ≤ than Top after first step
- Assume Out(s') shrinks for all predecessors s' of s
- Then □ s' ∈ pred(s) Out(s') shrinks
- Since f_s monotonic, $f_s(\sqcap_{s' \in pred(s)} Out(s'))$ shrinks

Termination Revisited (cont'd)

- A descending chain in a lattice is a sequence
 - x0 ⊒ x1 ⊒ x2 ⊒ ...
- The height of a lattice is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in O(nk) time
 - n = # of statements in program

O((k)

- k = height of lattice
- assumes meet operation takes O(1) time

b=# of bosic blaks

Order Matters

- Assume forward data flow problem
 - Let G = (V, E) be the CFG
 - Let k be the height of the lattice
- If Gacyclic, visit in topological order
 - Visit head before tail of edge
- Running time O(IEI)
 - No matter what size the lattice

Order Matters — Cycles

- If Ghas cycles, visit in reverse postorder
 - Order from depth-first search
- Let Q = max # back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
- Then if x, f(x) (sufficient, but not necessary)
 - Running time is Q(Q + 19)EI)
 - Note direction of depends on top vs. bottom

Distributive Data Flow Problems

By monotonicity, we also have

$$f(x \sqcap y) \le f(x) \sqcap f(y)$$

A function f is distributive if

$$(f)x \sqcap y) = f(x)(f)f(y)$$

Does meet over all paths == greatest lower bound?

Benefit of Distributivity

Joins lose no information

Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f_s be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$
 - Let path(s) be the set of paths from the entry to s

$$MOP(s) = \sqcap_{p \in path(s)} f_p(\top)$$

 If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

All Gen/Kill problems are distributive

15-411/611 5⁻

A Non-Distributive Example

Constant propagation

 In general, analysis of what the program computes is not distributive

Constant Propagation

- L = $(S, \leq, \land, \bot, T)$ for constant propagation
 - Set S
 - Partial order ≤ between elements of S.
 - Meet operator ∧
 - Least element ±
 - Greatest element T

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - i.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block
- Why not generalize this idea beyond a basic block?
 - "Collapse" larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - "Expand out" back to original constructs, rebuilding information

Lattices of Functions

- Let (P, ≤) be a lattice
- Let M be the set of monotonic functions on P
- Define $f \le_f g$ if for all x, $f(x) \le g(x)$
- Define the function f □ g as
 - $(f \sqcap g)(x) = f(x) \sqcap g(x)$

• Claim: (M, \leq_f) forms a lattice

Elimination Methods: Conditionals

$$f_{\text{ite}} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}})$$

$$\begin{aligned} & \text{Out(if)} = f_{\text{if}}(\text{In(ite)})) \\ & \text{Out(then)} = (f_{\text{then}} \circ f_{\text{if}})(\text{In(ite)})) \\ & \text{Out(else)} = (f_{\text{else}} \circ f_{\text{if}})(\text{In(ite)})) \end{aligned}$$

Elimination Methods: Loops

Elimination Methods: Loops (cont)

- Let f i = f o f o ... o f (i times)
 f o = id
- Let

$$g(j) = \sqcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}}$$

- Need to compute limit as j goes to infinity
 - Does such a thing exist?
- Observe: $g(j+1) \le g(j)$

Height of Function Lattice

- Assume underlying lattice (P, ≤) has finite height
 - What is height of lattice of monotonic functions?
 - Claim: At most IPI×Height(P)

Therefore, g(j) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
- Unrestricted goto can yield non-reducible graphs

Comments

- Can also do backwards elimination
 - Not quite as nice (regions are usually single *entry* but often not single *exit*)
- For bit-vector problems, elimination efficient
 - Easy to compose functions, compute meet, etc.
- Elimination originally seemed like it might be faster than iteration
 - Not really the case

Dataflow Framework

- Universe of values forms a lattices
- Meet operator used at join points in CFG
- Basic attributes (e.g., gen, kill)
- Traversal order
- Transfer function

- Will it terminate?
- Is it efficient?
- Is it accurate?

Dataflow Summary

Union intersection (may) (must)

Forward	Reaching definitions	Available expressions
Backward	Live variables	very busy expressions

Later in course we look at bidirectional dataflow