Dataflow Analysis
Lattices & Solvers

15-411/15-611 Compiler Design
Seth Copen Goldstein

February 25, 2025



Dataflow Analysis

* A framework for proving facts about program
— Reasons about lots of little facts

— Little or no interaction between facts L
— Based on all paths through program

* Solve with iterative solver:
— How do we know it terminates?

— How do we know whether solution is precise?
(or even correct?)




Recall: Data Flow Equations

Let s be a statement

— Succ(s) = {immediate successors of s}

— Pred(s) = {immediate predecessors of s}

— In(s) program point just before executing s
— QOut(s) program point just after executing s

* Transfer functions (for forward, must):

* Gen{s)set of facts made true by s
« Killis)}~set of facts invalidated by s



Recall: Worklist algorithm (forward)
Initialize: in out[b] = Universe

Initialize: in[entry] = [

Work queue, W = all Blocks in topological order
while (IWI 1=0) {

remove b from W—_

temp = out[b]

compute In[b]

compute Out[b]

if (temp !=out[b]) W Y] succ(b)

/\M




Some Unidirectional Dataflow Analysis

Union intersection
(may) (must)

Forward Reaching Available
definitions expressions

Live variables very busy
Backward expressions

15-411/611



Available Expressions

« X+Y is “available” at statement S if
— X+Y is computed along every path from the startto S

AND
— neither x nor y is modified after the last evaluation
of X+y
a<-b+c
b <-a-d

c <- b+c¢ *— b+c Not available, since b redefinec

d <-a-d «<— a-dis available



Available Expressions

z=a+b , -
y=a*b
l Forx=a[lb:
Gen ={a[) b}
y>(a+b) Kill = {All expressions using x
/\ Initialize all but entry to
a=a+1 universe of expressions




Available Expressions

[ @
z=a+b
y=a*b [(8+D}

l {a+b,a*b} Forx= a( b:
Gen ={a[) b}
y>(a+b) Kill = {All expressions using x

ra+b,a*b}
Initialize all but entry to

a=a+1 universe of expressions

1}

-

X=a+b

{a+b}



Available Expressions

| * Why Does this terminate?
[ @
z=a+b

{a+b}

y=a’b
1 {a+b,a*b}

y>(a+b)

N*b}

a=a+1
{}

-

X=a+b

{a+b}



Available Expressions

| * Why Does this terminate?

| " {) — In(s) never grows
z=a+b — Out(s) never grows
y=a*b [(8+D}

1 {a+b,a*b}
y>(a+b)

N*b}

a=a+1
{}

X=a+b

{a+b}



Liveness as a dataflow problem

This is a backwards analysis
— A variable is live out if used by a successor
— Gen: For a use: indicate itis live coming into s

— Kill: Defining a variable v in s makes it dead before s
(unless s uses v to define v)

— Lattice is just live (top) and dead (bottom)
Values are variables
In[n] =variables live before n

= (out[n]~ kill[n]) T genln]>
Out[n] =variables live after n

S




Liveness

* Backward, May

* Gen: For x=a[?) b:

Gen ={a,b}
/\ Kill = {x}

a=a+1 return y Initialize all to empty se




Liveness

* Backward, May

{a,b}

{a,b}

{a,b,y:
e (Gen:

Forx=al(lb:

{y} Gen ={a,b}
)/\ Kill = {x}

return y

Initialize all to empty set




Liveness

* Why does this terminate?

{a,b}

{a,b}
{a,b,y;

return y




Liveness

* Why does this terminate?
(a,by —In(s) & Out(s) never shrink

— Eventually reach fixed point
since number of variables is

(a,b,y: finite.

{a,b}

return y




Data Flow Facts and lattices

* Typically, data flow facts form a lattice
* Example, Available expressions

mone) | “bottom”



Lattices

* All our dataflow analyses map program points
to elements of a /attice.

* A complete lattice L= (S, <, v, A, 1L, T) is formed
by:
— AsetS
— A partial order < between elements of S.
— A least elemen't?
— A greatestelement T
— A join operator v
— A meet operator A



Least Upper Bound & Join

 IfL=(S, <, v, A, L, T)is acomplete lattice,
andeieSandese S, then

least upper bound of {e1, e2} M ep=(e2veq)eS

’v



Least Upper Bound & Join

 IfL=(S, <, v, A, L, T)is acomplete lattice,
andeieSandese S, then
least upper bound of {e1, e2} M ep=(e2veq)eS

* v isthe “join” operator

. @the least upper bound, has the properties:
— €1 < epand e2<€lub
—ForaIIQS ifei<e'andes<e’, thene b<e

=S LA ’a.



Least Upper Bound & Join

IfL=(S, <, v, A, L, T)isacomplete lattice,
andeieSandese S, then
least upper bound of {e1, e2} M ep=(e2veq)eS

v is the “join” operator

€ub, the least upper bound, has the properties:

—e1< ewandes<ew

—Foralle' eS,ife1<e'andex<e’,thenep<ée
least upper bound of S’ (1S, is pairwise lub of all
elements of S’

For L to be a lattice, forall S’ IS, lub(S’) € S



Greatest Lower Bound & Meet

 IfL=(S, <, v, A, L, T)is acomplete lattice,
andeieSandese S, then
greatest lower bound of {e1, e2} () egp= (€2 €1) € S

* Alsthe “meet” operator

* €qIb, the greatest lower bound, has the properties:
—€gb< er1and egp< e
—Foralle' eS,ife1<e'andex<e’,thene' <egp



Greatest Lower Bound & Meet

IfL=(S, <, v, A, L, T)isacomplete lattice,
andeieSandese S, then
greatest lower bound of {e1, e2} () egp= (€2 €1) € S

A 1S the “meet” operator

€gb, the greatest lower bound, has the properties:
—€gb< er1and egp< e

—Foralle' e S,ife1<e'andes<e’,thene' <egp
greatest lower bound of S’[ S, is pairwise glb of
all elements of S’

For L to be a lattice, forall S’ (IS, gIb(S’) e S



Properties of join (and meet)

Join is idempotent: x v x =x
Join is commutative: yvx=Xxvy
Join is associative: xv(yvz)=(Xvy)vz

Join has a multiplicative one:
forallxinS, (Lv X) =X

Join has a multiplicative zero:
forallxinS,(Tvx)=T



U

\V

U

U

Properties of join (and meet)

oin is idempotent: x v x=x

oin is commutative: yvx=xvy

oinis associative: xv(yvz)=(Xvy)vz
oin has a multiplicative one:

forallxe S, (LvX)=x g? )

Join has a multiplicative zgrg:

forallxe S, (Tvx)=T &(@



15-411/611

Properties of join (and meet)

Join is idempotent: x v x =x
Join is commutative: yvx=Xxvy
Join is associative: xv(yvz)=(Xvy)vz

Join has a multiplicative one:
forallxe S, (Lv X) =X

Join has a multiplicative zero:
forallxe S, (Tvx)=T

Similarly for meet, but:
— multiplicative one is T, i.e., for all xeS, (T A x) =x
— multiplicative zerois 1, i.e., forall xeS, (L AX) = L

25



15-411/611

Semilattices

* Notice the dataflow analysis we looked at have
either the join or meet operator, e.g.,

— avalilable expressions uses meet: A Is intersection
— liveness uses join: v is union

* |If only one of meet or join are defined, we call
It a semilattice.

26



15-411/611

Partial Order

* A partial orderis a pair (S, @such that:
-<0sls

— < Is reflexive, i.e.,

X<X
(e

— < Is anti-symmetric, i.e.,
X <yandy < ximplies x=
yandy <ximplies 7 )
— < Is transitive, i.e.,
X<yandx < zimplies x <z




Partial Order, v, A, and Semi- Lattice

 Join, least upper bound, on a semi-lattice
defines a partial order:
X<yiff x vy=y

* Meet, greatest lower bound, on a semi-
lattice defines a partial order:
X <y Iff X A y=X

N/




Useful Lattices

. @ ?]) forms a lattice for any set S.

— 25is the power set of S (set of all subsets)
. 1f(S, <) is alattice, sois (S, [)

— 1.e., lattices can be flipped
A lattice for constant propagation

.+ Q_ 3 * -

BN Z e




Semilattice of Liveness

° L= N\ | /'\l ,\V
(2" {a.b.x.y,2)f ¥ A){a,b.x,y,2})
— Only define Join,

— Least Element, 0 {}

— Greatest Element, T, {a,b,x,y,z}

—x<ymeansx (Jy

z=a+b
y=a*b

* more generally,

L=(2% S)

y>( a+b)

A

return
a=a+1 y

X=a+b




L=(2% {},S)

* Join operator must have the property:
—X<yiff x vy=y

— Or, in our case, Is it true that: x [y iff x [ y=y?

* Is{} [, orinourcase:is {} 1 x, for all x

Y,

* isST,orinourcaseisx [J T,forallx [2$?



Semilattice of Available Expressions

* L= ({a+ba b,a+1},0 @ u,{a+ba b,a+1})

_"

— Only define Meet, 2

— Least Element,

— Greatest Element, T, {a+b,a*b,a+1}

— X <y means X is superset of y

* Ingeneral:

L=(28 {,S)

z=a+b

y=a*b

y>( a+b)
////*\\\\\\;;hn1y

a=a+1
X=a+b




Available Expressions

L—

Z=a+b

{atb} from program points to lattice points

15-411/611 33



« We call f atransfer function

Monotonicity & Termination

A function f on a partial order is monotonic if
x 2y implies f(x) (2I(y)

.____‘:- -




Monotonicity for Available Expressions

A function f on a partial order is monotonic if

x 2y implies f(x) ((y)

For x=a() b:
Gen ={all b}
Kill = {All expressions using x}

~




Termination

* Algorithm terminates because:
— The lattice has finite height

— The operations to compute In an
monotonic

d Out are

— On every iteration either:
* W gets smaller, or

* out(s) decreases for some s, i.e.,
we move down lattice

15-411/611

Initialize: in[s] = out[s] = Universe
Initialize: in[entry] =
Work queue, W = all Blocks
while (IWl !=0) {

remove s from W

temp = out[s]

compute In[s]

compute Out[s]

if (temp !=out[s]) W=W [} succ(s)

34



Lattices (P, <)

o A@)le expressic?)ns L LoanC
— P =sets of expressions o & L +d
— S1AS2=81 [2Js2 —
— Top = set of all expressions O & b
* Reaching Definitions ‘L% & A\ p-

— P = sets of definitions (assignment statements)
— s1as2=51({ ¥2 qb

— Top = ergp;y set -



Fixpoints

We always start with Top

— Every expression is available,
no definitions reach this point

— Most optimistic assumption

— Strongest possible hypothesis
(i.e., true of fewest number of states)

Revise as we encounter contradictions
— Always move down in the lattice (with meet)
Result: A greatest fixpoint

38



Very Busy Expressions

* A Backward, Must data-flaw analysis

* An expression e is very busy at point p if On every

path from p, e is evaluated before the value of e
IS changed

* Optimization
* Can hoist very busy expression computation

p




Lattices (P, <), cont’d

* |livevariables
— P =sets of variables
— S1AS2=S1 I S2
— Top = empty set

* \ery husy expressions

— P =seis-okepressions
— S1A82=81 [2J82

— Top = set of all expressions




15-411/611

Lattices (P, <), cont’d

* Live variables
— P =sets of variables
— S1.82=51 1) S2
— Top =empty set
* Very busy expressions
— P =sets of expressions
— S1A82=51 [?Js2
— Top = set of all expressions

Could have defined this as a semilattice using join, but dataflow
tradition starts with top and uses meet to compute a greatest
fixed point. (as compared to tradition for denotational semantics,
uses meet and computes least fixed point)

41



Forward vs. Backward

Out(s) = Top forall s
W = { all statements }
repeat

Take s from W

temp = fs(/\ s'e pred(s OUt(S’))
(f(temp 1= Out(s)) {

Out(s) :=temp

x W =W [J succ(s
—

until W= &

15-411/611

In(s) =

Top forall s

W ;= { all statements }

repeat
Take s from W
temp - fs /\ s'e SUCC(S) In(S ))

(tem p'—ln(S))
(s) :=temp
W W [ pred(

until W =

42



Termination Revisited

* How many times can we apply this step:
temp :=fs(Ms < preas) Out(s’))
if (temp !=0Out(s)){...}
Claim: Out(s) only shrinks

-~ apg—

*  Proof: Out(s) starts out as top
——

— Sotemp must be <than Top after first step
S

«  Assume Out(s’) shrinks for all predecessors s’ of s
a——-

* Then Ms e preds) Out(s’) shrinks
-— Wp—___

* SIHE@OHO'[OHIC, fs(|_| s’ € pred(s) OU’[(S’)) ShrinkS

15-411/611

43



Termination Revisited (cont’d)

* Adescending chainin a lattice is a sequence
— x03 x13 x23 ...

* The heightof a lattice is the length of the longest
descending chain in the lattice

* Then, dataflow must terminate i

— n=# of statements in program 0 (g K)
— k=height of lattice

— assumes meet operation takes O(1) time

b = Je ﬂ 6@{'?0&’(“%

15-411/611 44



Order Matters 0 (n)

* Acyclic \
* Cycles, nesting depth




15-411/611

Order Matters

Assume forward data flow problem
— LetG=(V, E) bethe CFG
— Let kbe the height of the lattice

If Gacyclic, visit in topological order
— Visit head before tail of edge
Running time O(IEI)

— No matter what size the lattice

46



Order Matters — Cycles

- If Ghas cycles, visit in reverse postorder
— Order from depth-first search

« Let Q=max # back edges on cycle-free path
— Nesting depth
— Back edge is from node to ancestor on DFS tree

* Thenif x,f(x)L(3 etant--ut not necessary)

— Running time is

- Note direction 6 pds on top vs. bottom

15-411/611



Distributive Data Flow Problems

By monotonicity, we also have

flxny) < f(z) M f(y)

A function f is distributive if

D=y = 10y

Does meet over all paths == greatest lower bound?



Benefit of Distributivity

 Joins lose no information




15-411/611

Accuracy of Data Flow Analysis

|deally, we would like to compute the meet over all paths (MOP) solution:
— Let fsbe the transfer function for statement s

— Ifpisapath {si, ..., sn}, let f, =tn;...;f1

— Let path(s) be the set of paths from the entry to s

BIOP(S) — I_lpepa.th(s)fp(—r)

If a data flow problem is distributive, then solving the data flow equations
in the standard way yields the MOP solution

50



What Problems are Distributive?

Analyses of howthe program computes
— Live variables

— Available expressions

— Reaching definitions

— Very busy expressions

All Gen/Kill problems are distributive



A Non-Distributive Example

* Constant propagation

£y i
-—1_"
¥ L

* In general, analysis of whatthe program
computes is not distributive



Constant Propagation

* L=(S, <, A, L, T) for constant propagation
— Set S
— Partial order < between elements of S.
— Meet operator A
— Least element L
— Greatestelement T



15-411/611

Flow- Sensitivity

« Dataflow analysis is flow-sensitive
— The order of statements is taken into account
— i.e., we keep track of facts per program point

« Alternative: Flow-insensitive analysis

- Analysisr:[he same regardless of statement order
— Standard example' types

e ﬂmﬁ% / M@?ﬂ(

3 ib\

«w /Céfw

54



15-411/611

[ ]
—

Terminology Review

Must vs.l\@y

— (Not always followed in literature)

Forwards vs Rnd{.\t\@rds

Flow-sensitive vs. Flow-insensitive
—__

Distributive vs. Non-distributive

-7

55



15-411/611

Another Approach: Elimination

Recall in practice, one transfer function per basic block
Why not generalize this idea beyond a basic block?

— “Collapse” larger constructs into smaller ones, combining data
flow equations

— Eventually program collapsed into a single node!

— “Expand out” back to original constructs, rebuilding
information

56



15-411/611

Lattices of Functions

Let (P, <) be a lattice

Let M be the set of monotonic functions on P
Define f <; g if for all X, f(x) < g(x)

Define the function f n gas

- (fng) (x)=1(x) M g(x)

Claim: (M, <¢) forms a lattice

57



Elimination Methods: Conditionals

l

. l

Then

IfThenElse
Else | _

fite = (fthen © fir) M (felse © fif)

Out(if) = fig(In(ite)))
Out(then) = (fipen © fir)(In(ite)))
Out(else) = (fa140 © fif)(In(ite)))



Elimination Methods: Loops

l

'

Head

Body

fwhile = Jhead
f head

|_> While
[]

© fhody © fhead

f head

' © Jbody © /head © fbody © Jhead M



15-411/611

Elimination Methods: Loops (cont)

Letf'=fofo..of (itimes)
- f0=id
Let

9(7) = Micfo..5)(fhead © fbody)z © fhead

Need to compute limit as j goes to infinity
— Does such a thing exist?
Observe: g(j+1) < g(j)

60



Height of Function Lattice

* Assume underlying lattice (P, <) has finite
height

— What is height of lattice of monotonic functions?
— Claim: At most IPIxHeight(P)

* Therefore, g(j) converges



15-411/611

Non-Reducible Flow Graphs

Elimination methods usually only applied to reducible flow graphs
— Ones that can be collapsed

— Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs

—

62



15-411/611

Comments

Can also do backwards elimination

— Not quite as nice (regions are usually single entry but often not
single exit)

For bit-vector problems, elimination efficient

— Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than iteration
— Notreally the case

63



Dataflow Framework

Universe of values forms a lattices

Meet operator used at join points in CFG
Basic attributes (e.g., gen, Kill)

Traversal order

Transfer function

Will it terminate?
Is it efficient?
Is it accurate?



Dataflow Summary

Union intersection
(may) (must)

Forward Reaching Available
definitions expressions

Live variables very busy
Backward expressions

Later in course we look at bidirectional dataflow

15-411/611



