Parsing

15-411/15-611 Compiler Design

Ben L. Titzer and Seth Copen Goldstein

Feb 11, 2025

Today – Parsing

Parsing

- Top-down parsers
 - FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers
 - handle pruning
 - parsing method
 - constructing state machine
 - LR0
 - SLR
 - LR(k) & LALR
 - Handling Ambiguity

Languages

- Regular languages
 - Equivalent in power to NFAs and DFAs
 - Can be described by regular expressions
 - Do not handle recursion
- Context-free languages
 - Equivalent in power to PDAs
 - Can be described by context-free grammars
 - Handle recursion, necessary for real PLs!

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals (NT).
 - -S, $S \subseteq A$, the start symbol
 - P, set of productions (aka rules)
 - a production, p, has the form: $A \rightarrow \alpha$

```
- E.g. S := E
S := \mathbf{print} E
E := E + T
terminals
hon-terminals
hon-terminals
hon-terminals
hon-terminals
hon-terminals
```

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals (NT).
 - -S, $S \subseteq A$, the start symbol
 - P, set of productions (aka rules)
 - a production, p, has the form: $A \rightarrow \alpha$

```
- E.g. S:= E
S:= print E
E:= E+T multiple alternatives
E:= T
T:= F
```

What makes a grammar CF?

- Only one NT on left-hand side => context-free
- What makes a grammar context-sensitive?
- $\alpha A\beta \rightarrow \alpha \gamma \beta$ where
 - $-\alpha$ or β may be empty,
 - but γ is not-empty
- Are context-sensitive grammars useful for compiler writers?

Simple Grammar of Expressions

```
S := Exp
```

$$Exp := Exp + Exp$$

$$Exp := Exp - Exp$$

$$Exp := Exp * Exp$$

$$Exp := Exp / Exp$$

$$Exp := id$$

Describes a language of expressions. e.g.: 2+3*x

Derivation

- A derivation is a chosen sequence of productions (expansions)
 - $S \rightarrow Exp \rightarrow Exp + Exp \rightarrow id + Exp \rightarrow id + int$
- A successful sequence of expansions that match the input constitute a parse
 - Connecting the expansions in each successive step produces a parse tree
 - Parse tree is a form of abstract syntax tree
 - Building a correct AST is the whole point

Leftmost Derivations

Leftmost derivation: leftmost NT always chosen

input: 2+3*x

Rightmost Derivations

Rightmost derivation: rightmost NT always chosen

input: 2+3*x

1 S := Exp
2 Exp:= Exp + Exp
3 Exp:= Exp - Exp
4 Exp:= Exp * Exp
5 Exp:= Exp / Exp
6 Exp:= id
7 Exp:= int
by 1
$$\Rightarrow$$
 Exp
by 4 \Rightarrow Exp * Exp
by 6 \Rightarrow Exp * id_x
by 2 \Rightarrow Exp + Exp * id_x
by 7 \Rightarrow Exp + int₃ * id_x

Parse Trees

symbols in RHS are children of NT being rewritten

input:
$$2+3*x$$

S

by $1 \Rightarrow Exp$

by $4 \Rightarrow Exp * Exp$

by $2 \Rightarrow Exp + Exp * Exp$

by $7 \Rightarrow int_2 + Exp * Exp$

by $7 \Rightarrow int_2 + int_3 * Exp$

by $6 \Rightarrow int_2 + int_3 * id_x$

Ambiguity in Grammars

 Some grammars have more than one way to parse a given input, i.e. are ambiguous

Resolving Ambiguity

- Ambiguity is a problem with the grammar
- One possible fix: Add precedence with more nonterminals
- In this example, one for each level of precedence:
 - -(+, -) exp
 - (*, /) term
 - (id, int) factor
 - Make sure parse derives sentences that respect the precedence
 - Make sure that extra levels of precedence can be bypassed, i.e., "x" is still legal

A Better Exp Grammar

```
1 S := Exp
```

$$2 Exp := Exp + Term$$

$$3 Exp := Exp - Term$$

by
$$1 \Rightarrow Exp$$

by
$$2 \Rightarrow Exp + Term$$

by
$$4 \Rightarrow Term + Term$$

by
$$7 \Rightarrow Factor + Term$$

by
$$9 \Rightarrow int_2 + Term$$

by
$$5 \Rightarrow int_2 + Term * Factor$$

by
$$7 \Rightarrow int_2 + Factor * Factor$$

by
$$9 \Rightarrow int_2 + int_3 * Factor$$

by
$$8 \Rightarrow int_2 + int_2 * id$$

What is the parse tree?

Parsing a Grammar

Top-Down

- start at root of parse-tree
- pick a production and expand to match input
- may require backtracking
- if no backtracking required, predictive

Bottom-up

- start at leaves of tree
- recognize valid prefixes of productions
- consume input and change state to match
- use stack to track state

Top-down Parsers

- Starts at root of parse tree and recursively expands children that match the input
- In general case, may require backtracking
- Such a parser uses recursive descent
- Easy: one function per nonterminal
- When a grammar does not require backtracking a predictive parser can be built.

Top-Down parsing

- Start with root of tree, i.e., S
- Repeat until entire input matched:
 - pick a non-terminal, A, and pick a production $A \rightarrow \gamma$ that can match input, and expand tree
 - if no such rule applies, backtrack
- Key is obviously selecting the right production

9
$$F := int$$

5

by
$$1 \Rightarrow E$$

int₂ - int₃ * id_x

int₂ - int₃ * id_x

input: 2+3*x

by
$$9 \Rightarrow int_2 - T$$

by
$$5 \Rightarrow int_2 - T * F$$

8 F := id

9 F := int

Must backtrack here!

by
$$9 \Rightarrow int_2 - T$$

by $5 \Rightarrow int_2 - T * F$

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

input: 2+3*x

1	S := E	S	$int_2 - int_3 * id_x$
	E := E + T	by 1 ⇒ <u>E</u>	int ₂ - int ₃ * id _x
3	E := E - T	by $2 \Rightarrow E + T$	$int_2 - int_3 * id_x$
4		by $4 \Rightarrow T + T$	$int_2 - int_3 * id_x$
5	T := T * F	by $7 \Rightarrow F + T$	int ₂ -int ₃ * id _x
7		by $9 \Rightarrow int_2 + T$	•
8	F := id		
9	F := int	•	
ı		·	<u>-</u>
	F := int	by $9 \Rightarrow int_2 + T$ by $3 \Rightarrow E - T$ by $4 \Rightarrow T - T$ of derivation is this parsing	<pre>int₂ - int₃ * id_x int₂ - int₃ * id_x int₂ - int₃ * id_x</pre>

15-411/611 © 2019-25 Goldstein / Titzer

 $int_2 - int_3 * id_x$

int₂ - int₃ * id_x

by $9 \Rightarrow int_2 - T$

by $5 \Rightarrow int_2 - T * F$

5

by
$$1 \Rightarrow E$$

by
$$2 \Rightarrow E + T$$

by
$$2 \Rightarrow E + E + T$$

by
$$2 \Rightarrow E + E + E + T$$

int₂ - int₃ * id_x

int₂ - int₃ * id_x

Will not terminate! Why?
grammar is left-recursive

What should we do about it?

Eliminate left-recursion

input: 2+3*x

Eliminating Left-Recursion

Given 2 productions:

$$A := A \alpha$$
$$A := \beta$$

Where neither α nor β start with A

(e.g., For example,
$$E := E + T \mid T$$
)

Make it right-recursive:

$$A := \beta R$$

$$R := \alpha R$$

$$I$$

$$R := \alpha R$$

Extends to general case.

Rewriting Exp Grammar

```
1 S := E
```

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T/F

7 T := F

8 F := id

9 F := int

2' E' := + T E'

3' E' := - T E'

4' E' :=

5' T':= * F T'

6' T':=/FT'

7' T':=

8 F := id

9 F := int

Try again

input: 2+3*x

$$2 E := TE'$$

by
$$1 \Rightarrow E$$

by
$$2 \Rightarrow TE'$$

by
$$5 \Rightarrow F T' E'$$

by
$$9 \Rightarrow 2 T' E'$$

by
$$7' \Rightarrow 2 E'$$

by
$$3' \Rightarrow 2 - TE'$$

by
$$5 \Rightarrow 2 - F T' E'$$

by
$$9 \Rightarrow 2 - 3 T' E'$$

by
$$5' \Rightarrow 2 - 3 * F T' E'$$

Unlike previous time we tried this, it appears that only one production applies at a time. I.e., no backtracking needed. Why?

Lookahead

- How to pick right production?
- Lookahead in input stream for guidance
- General case: arbitrary lookahead required
- Luckily, many context-free grammars can be parsed with limited lookahead
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e.,
 - $a \in FIRST(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ

Lookahead

- How to pick right production?
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e., $a \in FIRST(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ
- If $A \rightarrow \alpha \mid \beta$ we want: FIRST(α) \cap FIRST(β) = \emptyset
- If that is always true, we can build a predictive parser.

Computing FIRST(a)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

```
A := a
|
B := b
| A
C := c
```

Computing FIRST(a)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

```
A := a
```

$$A :=$$

$$B := b$$

$$B := A$$

C := c

- FIRST(X) must also include FIRST(C)
- IOW:
 - Must keep track of NTs that are nullable
 - For nullable NTs, determine FOLLOWS(NT)

nullable(A)

- nullable(A) is
 - true if A can derive the empty string
 - false otherwise
- For example:

In this case, nullable(X) = nullable(Y) = true nullable(B) = false

FOLLOW(A)

- FOLLOW(A) is the set of terminals that can immediately follow A in a sentential form.
- I.e., $a \in FOLLOW(A)$ iff $S \Rightarrow^* \alpha Aa\beta$ for some α and β

Building a Predictive Parser

- We want to know for each non-terminal which production to choose based on the next input character.
- Build a table with rows labeled by non-terminals, A, and columns labeled by terminals, a. We will put the production, $A := \alpha$, in (A, a) iff
 - FIRST(α) contains a
 - $nullable(\alpha)$ and FOLLOW(A) contains a

The table for the robot

$$S := BSF$$

$$B := b$$

F := f

	FIRST	FOLLOW	nullable
S	b	\$	yes
В	b	b,f	no
F	f	f,\$	no

	Ь	f	\$
5			
В			
F			

The table for the robot

S := B S F				F]	[RS]	Γ	FOI	LOW	nullable
			S	b			\$		yes
B := b			В	b			b,f		no
F FIRST(BSF) = b			F	f			f,\$		no
1 1K3 1(B31) - D									
			_			\leftarrow	¬ `	nullabi	$ e(\epsilon)$ =true
		b /	f		\$				and
	S	S:=BSF			S:=			FOLLC)W(S) = \$
	В	B:=b							
	F		F:=	:f					

Table for exp grammar

4	_		
1	C	• —	ᆫ
T	<u> </u>	. —	

2 E := TE'

2' E' := + T E'

3' E' := - T E'

4' E' :=

5 T := F T'

5' T':= * F T'

6' T':=/FT'

7' T':=

8 F := id

9 F := int

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
È	+, -	\$	yes
Τ	id, int	+,-,\$	
Ť	/,*	+,-,\$	yes
۱L	id, int	/,*,\$	

	+	-	*	/	id	int	\$
S							
E							
E							
T							
T							
F							

Table for exp grammar

4	_		
1	C	• —	ᆫ
T	<u> </u>	. —	

$$2 E := TE'$$

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
È	+, -	\$	yes
Т	id, int	+,-,\$	
T	/,*	+,-,\$	yes
F	id, int	/,*,\$	

	+	-	*	/	id	int	\$
5					:=E	:=E	
Е					:=TE'	:=TE'	
E'	:=+TE'	:=-TE'					:=
Т					:=FT'	:=FT'	
Τ'	:=	:=	:=*FT'	:=/FT'			:=
۴					:=id	:=int	

Using the Table

- Each row in the table becomes a function
- For each input token with an entry:
 Create a series of invocations that implement the production, where
 - a non-terminal is eaten
 - a terminal becomes a recursive call
- For the blank cells implement errors

Example function

```
*
                         id
                                   $
                              int
S
                         :=E
                             l:=E
E
                         :=TE' |:=TE'
E'
   :=+TE' |:=-TE'
                         :=TE' |:=TE' |:=
              :=*FT How to handle errors?
      Eprime() {
F
         switch (token) {
         case PLUS: eat(PLUS); T(); Eprime(); break;
         case MINUS: eat(MINUS); T(); Eprime(); break;
                  T(); Eprime();
         case ID:
         case INT: T(); Eprime();
         default: error();
```

Left-Factoring

- Predictive parsers need to make a choice based on the next terminal.
- Consider:

```
S:=if E then S else S
| if E then S
```

- When looking at if, can't decide
- so left-factor the grammar

```
S := if E then S X X := else S
```

Top-Down Parsing

- Can be constructed by hand
- LL(k) grammars can be parsed
 - Left-to-right
 - Leftmost-derivation
 - with k symbols lookahead
- Often requires
 - left-factoring
 - Elimination of left-recursion

Bottom-up parsers

 What is the inherent restriction of top-down parsing, e.g., with LL(k) grammars?

Bottom-up parsers

- What is the inherent restriction of top-down parsing, e.g., with LL(k) grammars?
- Bottom-up parsers use the entire right-hand side of the production
- LR(k):
 - Left-to-right parse,
 - Rightmost derivation (in reverse),
 - k look ahead tokens

Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce

Top-down

Bottom-up

Example - Top-down

Is this grammar LL(k)?

How can we make it LL(k)?

What about a bottom up parse?

Example - Bottom-up

right-most derivation:

$$5 \Rightarrow X \Rightarrow Xa \Rightarrow Xaa \Rightarrow baa$$

Left-to-Right, Rightmost in reverse

baa

Xaa

Xa

X

S

LR parser gets to look at an entire right hand side.

Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce

Top-down

Bottom-up

A Shift-Reduce Parser

- Implement as a FSM with a stack
- Stack holds sequences of symbols
- Input stream holds remaining source
- Four actions:
 - shift: push token from input stream onto stack
 - reduce: right-end of a handle (β of A $\rightarrow \beta$) is at top of stack, pop handle (β), push A
 - accept: success
 - error: syntax error discovered

Key is recognizing handles efficiently

Table-driven LR(k) parsers

Push down automata: FSM with stack

Table-driven LR(k) parsers

Parser Loop

Driver

- Same code regardless of grammar
 - only tables change
- (Very) General Algorithm:
 - Based on table contents, top of stack, and current input token either
 - shift: push token onto stack and read next token
 - reduce: replace part of stack with the correct rule (NT) that derived it
 - accept: successfully parsed entire input
 - error: input not in language

Stack

- Represents the input parsed so far
- Contents?
- Symbols: terminals (and non-terminals)
- Must also store previously seen states
 - the context of the current position
- In fact, nonterminals unnecessary
 - include for readability

Stack

Parser Tables

Action table & GOTO table

Action table

 given state s and terminal a tells parser loop what action (shift, reduce, accept, reject) to perform

Goto table

 used when performing reduction; given a state s and nonterminal X says what state to transition to

Parser Tables

Action table & GOTO table

sN push state N onto stack

rR reduce by rule R

gN goto state N

a accept

error

<mark>0 S →</mark>	E\$
1 E →	T + E
2 E →	Т
$3 \text{ T} \rightarrow$	identifier

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Parser Loop Revisited

Driver

```
while (true)
   s = state on top of stack
  a = current input token
   if(action[s][a] == sN)
                                         shift
     push N
      read next input token
  else if(action[s][a] == rR)
                                         reduce
     pop rhs of rule R from stack
     X = lhs of rule R
     N = state on top of stack
     push goto[N][X]
  else if(action[s][a] == a)
                                         accept
      return success
  else
                                   error
      return failure
```

	action			gc	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = X State on top of the stack = 0

$$x + y$$
\$

(0,S)

Stack

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +
State on top of the stack = 3

$$x + y$$
\$

(3,x) (0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +

State on top of the stack = **3**

$$x + y$$
\$

(3,x) (0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +
State on top of the stack = 3

$$x + y$$
\$

(3,x)

(0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +
State on top of the stack = 0

$$x + y$$
\$

(3,x)

(0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +
State on top of the stack = 2

$$x + y$$
\$

(2,T) (0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = +
State on top of the stack = 2

$$x + y$$
\$

(2,T) (0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$_{-}$$
 $^{2}E \rightarrow T$

$$-$$
 3 T \rightarrow identifier

$$x + y$$
\$

$$(4,+)$$

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = **Y**

State on top of the stack = 4

$$x + y$$
\$

	action			gc	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ$$
 S \rightarrow E\$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

$$x + y$$
\$

$$(4,+)$$

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = \$
State on top of the stack = 3

$$x + y$$
\$

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

(?,T)

$$(4,+)$$

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = \$
State on top of the stack = 2

$$x + y$$
\$

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

(2,T)

(4,+)

(2,T)

(0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

 $2 E \rightarrow T$

 \circ S \rightarrow E\$

 $^{1}E \rightarrow T + E$

 $T \rightarrow identifier$

Current input token = \$
State on top of the stack = 2

$$x + y$$
\$

(2,T) (4,+) (2,T) (0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ$$
 S \rightarrow E\$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = \$

State on top of the stack = 2

$$x + y$$
\$

(?,E)

$$(4,+)$$

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$^{1}E \rightarrow T + E$$

$$_{-}$$
 $^{2}E \rightarrow T$

$$T \rightarrow identifier$$

Current input token = \$
State on top of the stack = 5

$$x + y$$
\$

(5,E)

(4,+)

(2,T)

(0,S)

	action			go	oto
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = \$ State on top of the stack = 5

$$x + y$$
\$

$$0 S \rightarrow E$$

$$\begin{array}{c} 0 \text{ S} \rightarrow \text{E} \\ \hline 1 \text{ E} \rightarrow \text{T} + \text{E} \end{array}$$

$$2 E \rightarrow T$$

$$T \rightarrow identifier$$

$$(4,+)$$

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ$$
 S \rightarrow E\$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = \$
State on top of the stack = 5

$$x + y$$
\$

(5,E)

(4,+)

(2,T)

(0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ$$
 S \rightarrow E\$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = \$

State on top of the stack = 1

$$x + y$$
\$

(1,E)

(0,S)

Example

	action		gc	oto	
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			а	Λ_{C}	ent
2		s4	r2		S P C
3		r3	r3		
4	s3			g5	g2
5			r1		

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

Current input token = \$
State on top of the stack = 1

$$x + v$$
\$

(1,E)

(0,S)

A Rightmost Derivation

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

input: 2+3*x

S

by $1 \Rightarrow Exp$

by $2 \Rightarrow Exp + Term$

by $5 \Rightarrow Exp + Term * Factor$

by 8 \Rightarrow Exp + Term * id_x

by $7 \Rightarrow \text{Exp} + \text{Factor} * id_x$

by $9 \Rightarrow \operatorname{Exp} + \operatorname{int}_3 * \operatorname{id}_x$

by $4 \Rightarrow \text{Term} + \text{int}_3 * \text{id}_x$

by $7 \Rightarrow Factor + int_3 * id_x$

by $9 \Rightarrow int_2 + int_3 * id_x$

```
int_2 + int_3 * id_x
Factor + int<sub>3</sub> * id<sub>x</sub>
       Lets keep track of where we are in the input.
Exp + int_3 * id_x
Exp + Factor * id,
Exp + Term * id,
Exp + Term * Factor
Exp + Term
Exp
```

S

Exp

S

$$int_2 \cdot + int_3 \cdot id_x$$

$$Exp + int_3 \cdot *id_x$$

Exp + Term *
$$id_x \bullet$$

int,

+ $int_3 * id_x $$

Factor

+ int₃ * id_x \$

Term

+ int₃ * id_x \$

Exp

+ $int_3 * id_x $$

Exp +

 int_3*id_x \$

Exp + int,

 $*id_x$ \$

Exp + Factor

 $*id_x$ \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

•		
•	7	+
_	.11	L -

$$+int_3*id_x$$
\$

Factor

Term

+
$$int_3 * id_x $$$

Exp

+
$$int_3 * id_x $$$

Exp +

$$int_3*id_x$$
\$

Exp + int,

$$*id_x$$
\$

Exp + Factor

* id, \$

Exp + Term

 $*id_x$ \$

Exp + Term *

 $id_x $$

Exp + Term * id,

\$

LR-Parser either:

- 1. shifts a terminal or
- 2. reduces by a production.

$$int_2 + int_3 * id_x$$
\$

shift 2

int,

+ $int_3 * id_x $$

Factor

+ $int_3 * id_x $$

Term

+ $int_3 * id_x $$

Exp

+ $int_3 * id_x $$

Exp +

 int_3*id_x \$

Exp + int,

* $id_x $$

Exp + Factor

 $*id_x$ \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

$$int_2 + int_3 * id_x $$$

shift 2

+int
$$_3$$
 * id $_x$ \$

reduce by $F \rightarrow int$

Factor

int,

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

When we reduce by a production: $A \rightarrow \beta$, β is "popped" off the end of the parsed input.

E.g., here β is 'int' and production is $F \rightarrow int$

 $*id_x$ \$

 $*id_x$ \$

* id_{x} \$

 $id_x $$

\$

\$

\$

\$

shift 2

$$+int_3*id_x$$
\$

reduce by
$$F \rightarrow int$$

Factor

reduce by
$$T \rightarrow F$$

Term

$$+int_3*id_x$$
\$

Exp

+
$$int_3 * id_x $$$

Exp +

$$int_3*id_x$$
\$

 $Exp + int_3$

$$*id_x$$
\$

Exp + Factor

Exp + Term

Exp + Term *

$$\mathtt{id}_{_{_{\!X}}}\, \$$$

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

$$int_2 + int_3 * id_x $$$

shift 2

+
$$int_3 * id_x $$$

reduce by $F \rightarrow int$

reduce by $T \rightarrow F$

$$+int_3*id_x$$
\$

+int, *id, \$

reduce by $E \rightarrow T$

Exp +

$$*id_x$$
\$

*
$$id_x $$$

$$id_x $$$

shift 2

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int, * id, \$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+ int, * id, \$

shift +

Exp+

int₃ * id_x \$

Exp + int₃

 $*id_x$ \$

Exp + Factor

* id, \$

Exp + Term

 $*id_x$ \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

shift 2

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+int₃ * id_x\$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+int₃ * id_x \$

shift +

Exp +

 int_3*id_x \$

shift 3

Exp + int,

 $*id_x$ \$

Exp + Factor

 $*id_x$ \$

Exp + Term

* id_{x} \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

$$int_2 + int_3 * id_x $$$

shift 2

+int, *id, \$

reduce by $F \rightarrow int$

Factor

+int, *id, \$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+ int, * id, \$

shift +

Exp +

 int_3*id_x \$

shift 3

Exp + int,

* id, \$

reduce by $F \rightarrow int$

Exp + Factor

Exp + Term

* id, \$

* id, \$

Exp + Term *

 $id_x $$

Exp + Term * id,

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

shift 2

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+ int, * id, \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int,

* $id_x $$

reduce by $F \rightarrow int$

Exp + Factor

 $*id_x$ \$

* id, \$

reduce by $T \rightarrow F$

Exp + Term

Exp + Term *

 $id_x $$

Exp + Term * id,

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

$$int_2 + int_3 * id_x $$$

shift 2

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+ int, * id, \$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+ int, * id, \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int,

 $*id_{x}$ \$

reduce by $F \rightarrow int$

Exp + Factor

* id_x \$

reduce by $T \rightarrow F$

Exp + Term

 $*id_x$ \$

shift *

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

shift 2

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+ int, * id, \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int,

 $*id_x$ \$

reduce by $F \rightarrow int$

Exp + Factor

 $*id_x$ \$

reduce by $T \rightarrow F$

Exp + Term

* id_{x} \$

shift *

Exp + Term *

 $id_x $$

shift x

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

$int_2 +$	int ₃	* id _x \$
-----------	------------------	----------------------

shift 2

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+ $int_3 * id_x $$

reduce by $T \rightarrow F$

Term

+ int, * id, \$

reduce by $E \rightarrow T$

Exp

+int₃ * id_x \$

shift +

Exp +

int, * id, \$

shift 3

Exp + int,

 $*id_x$ \$

reduce by $F \rightarrow int$

Exp + Factor

 $*id_x$ \$

reduce by $T \rightarrow F$

Exp + Term

 $*id_x$ \$

shift *

Exp + Term *

 $id_x $$

shift x

Exp + Term * id_x

\$

reduce by $F \rightarrow id$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

int_2	+	int ₃	*	id _x \$	•
				^	

shift 2

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $E \rightarrow T$

Exp

+ $int_3 * id_x $$

shift +

Exp +

int, * id, \$

shift 3

Exp + int,

 $*id_x$ \$

reduce by $F \rightarrow int$

Exp + Factor

 $*id_x$ \$

reduce by $T \rightarrow F$

Exp + Term

 $*id_x$ \$

shift *

Exp + Term *

 $id_x $$

shift x

Exp + Term * id_x

\$

reduce by $F \rightarrow id$

Exp + Term * Factor

\$

reduce by $T \rightarrow T * F$

Exp + Term

\$

Exp

\$

S

\mathtt{int}_2	+int ₃	* id _x \$	5
------------------	-------------------	----------------------	---

shift 2

$$int_2$$

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+ $int_3 * id_x $$

reduce by $T \rightarrow F$

Term

+int₃ * id_x \$

reduce by $E \rightarrow T$

Exp

+int₃ * id_x \$

shift +

Exp+

 int_3*id_x \$

shift 3

Exp + int,

* id_x \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

reduce by $T \rightarrow F$

Exp + Term

 $*id_x$ \$

shift *

Exp + Term *

 $id_x $$

shift x

Exp + Term * id_x

\$

reduce by $F \rightarrow id$

Exp + Term * Factor

\$

reduce by $T \rightarrow T * F$

Exp + Term

\$

reduce by $E \rightarrow E + T$

Exp

\$

S

int_2^+	int_3^*	$id_x $$
-----------	-----------	----------

shift 2

+
$$int_3 * id_x $$$

reduce by
$$F \rightarrow int$$

Factor

reduce by
$$T \rightarrow F$$

Term

+
$$int_3 * id_x $$$

reduce by
$$E \rightarrow T$$

Exp

Exp +

$$int_3*id_x$$
\$

Exp + int₂

$$*id_x$$
\$

reduce by
$$F \rightarrow int$$

Exp + Factor

reduce by
$$T \rightarrow F$$

Exp + Term

*
$$id_x $$$

Exp + Term *

Exp + Term * id,

reduce by $F \rightarrow id$

Exp + Term * Factor

reduce by $T \rightarrow T * F$

Exp + Term

reduce by $E \rightarrow E + T$

Exp

\$

reduce by $S \rightarrow E$

S

$int_2 + int_3$	*	$\mathtt{id}_{_{\chi}}$	\$
-----------------	---	-------------------------	----

shift 2

$$+ int_3 * id_x $$$

reduce by
$$F \rightarrow int$$

Factor

reduce by
$$T \rightarrow F$$

Term

+
$$int_3 * id_x $$$

reduce by
$$E \rightarrow T$$

Exp

+
$$int_3 * id_x $$$

Exp +

$$int_3*id_x$$
\$

Exp + int₃

$$*id_x$$
\$

reduce by
$$F \rightarrow int$$

Exp + Factor

reduce by
$$T \rightarrow F$$

Exp + Term

*
$$id_x $$$

Exp + Term *

$$id_x $$$

Exp + Term * id_x

reduce by $F \rightarrow id$

Exp + Term * Factor

reduce by $T \rightarrow T * F$

Exp + Term

reduce by $E \rightarrow E + T$

Exp

reduce by $S \rightarrow E$

S

accept!

shift 2

int,

+ $int_3 * id_x $$

Factor

+int₃ * id_x \$

Term

+ $int_3 * id_x $$

Exp

+ $int_3 * id_x $$

Exp +

 int_3*id_x \$

Exp + int,

 $*id_x$ \$

Exp + Factor

 $*id_x$ \$

Exp + Term

 $*id_x$ \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

\$

2

$$int_2 + int_3 * id_x$$
\$

shift 2

$$+int_3*id_x$$
\$

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

Term

Exp

+
$$int_3 * id_x $$$

Exp +

$$int_3*id_x$$
\$

Exp + int,

$$*id_x$$
\$

Exp + Factor

Exp + Term

$$*id_x$$
\$

Exp + Term *

$$\mathtt{id}_{_{_{\!X}}}\, \$$$

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Lxp + lelli

Exp

S

shift 2

int,

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ $int_3 * id_x $$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $E \rightarrow T$

Exp

 $+ int_3 * id_x $$

Exp +

 int_3*id_x \$

Exp + int,

 $*id_x$ \$

Exp + Factor

* id, \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

Exp + Term * id,

\$

Exp + Term * Factor

\$

Exp + Term

•

\$

Exp

\$

S

$$int_2 + int_3 * id_x$$
\$

shift 2

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ $int_3 * id_x $$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $E \rightarrow T$

Exp

+ $int_3 * id_x $$

shift +

Exp+

 $int_3 * id_x $$

Exp + int,

 $*id_x$ \$

Exp + Factor

 $*id_x$ \$

Exp + Term

 $*id_x$ \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

Ç

ZXP : ICIIII Tucto

\$

Exp + Term

\$

Exp

\$

S

Ą

$$int_2 + int_3 * id_x $$$

shift 2

+int, *id, \$

reduce by $F \rightarrow int$

Factor

+int, *id, \$

reduce by $T \rightarrow F$

Term

+int₃ * id_x\$

reduce by $E \rightarrow T$

Exp

+ int₃ * id_x \$

shift +

Exp +

int, * id, \$

shift 3

Exp + int,

 $*id_x$ \$

Exp + Factor

* id, \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

Exp + Term * id,

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

$$int_2 + int_3 * id_x$$
\$

shift 2

+int, *id, \$

reduce by $F \rightarrow int$

Factor

+int, *id, \$

reduce by $T \rightarrow F$

Term

+int₃ * id_x\$

reduce by $E \rightarrow T$

Exp

+ int₃ * id_x \$

shift +

Exp +

int, * id, \$

shift 3

Exp + int,

* id, \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

\$

Exp + Term * id,

Exp + Term * Factor

\$

Exp + Term

\$

Exp

S

\$

Handles

- LR parsing is handle pruning
- LR parsing finds a rightmost derivation (in reverse)
- A handle in γ , a right-hand sentential form, is
 - a position in γ matching β
 - − a production A \rightarrow β

$$S \rightarrow^* \alpha Aw \rightarrow \alpha \beta w$$

• if a grammar is unambiguous, then every γ has exactly 1 handle

$$int_2 + int_3 * id_x $$$

shift 2

+int, *id, \$

reduce by $F \rightarrow int$

Factor

+int, *id, \$

reduce by $T \rightarrow F$

Term

+int₃ * id_x\$

reduce by $E \rightarrow T$

Exp

+ int₃ * id_x \$

shift +

Exp +

int, * id, \$

shift 3

Exp + int,

* id, \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

Exp + Term

* id, \$

Exp + Term *

 $id_x $$

\$

Exp + Term * id,

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

S

\$

Where is next handle?

shift 2

+ int, * id, \$

reduce by $F \rightarrow int$

Factor

+ int, * id, \$

reduce by $T \rightarrow F$

Term

+int₃ * id_x\$

reduce by $E \rightarrow T$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int₂

* id, \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

Exp + Term

* id, \$

 $id_x $$

Exp + Term *

\$

Exp + Term * id,

Exp + Term * Factor

\$

Exp + Term

\$

Exp

S

\$

\$

A Rightmos 1 5

Where is next handle?

 int_2

Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

. S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

everse

 $F \rightarrow int$

 $T \rightarrow F$

 $' E \rightarrow T$

 $F \rightarrow int$

* id_x \$

 $*id_x$ \$

 $\mathtt{id}_{_{_{\!X}}}\, \$$

\$

\$

\$

\$

\$

E

F

(3)

Where is next handle? $E+F^*x$ and $T\rightarrow F$

	1
int ₂	+Int ₃ * id _x \$
Factor	+int ₃ *id _x \$
Term	+int ₃ *id _x \$
Ехр	+int ₃ * id _x \$
Exp +	int ₃ * id _x \$
Exp + int ₃	* id _x \$
Exp + Factor	* id _x \$
Exp + Term	* id _x \$
Exp + Term *	id _x \$
Exp + Term * id _x	\$
Exp + Term * Factor	\$
Exp + Term	\$
Ехр	\$
S	\$

Handle Pruning

- LR parsing consists of
 - shifting until there is a handle on the top of the stack
 - reducing handle
- Key is handle is always on top of stack, i.e., if β is a handle with $A \rightarrow \beta$, then β can be found on top of stack.

int ₂ +	int_3	$*id_x$	\$
--------------------	---------	---------	----

int ₂	+int ₃	*	id_{x}	(
------------------	-------------------	---	----------	---

Factor
$$+ int_3 * id_x $$$

Term
$$+ int_3 * id_x $$$

$$+ int_3 * id_x $$$

Exp +
$$int_3 * id_x $$$

$$Exp + int_3$$
 * id_x \$

Exp + Factor *
$$id_x$$
\$

Exp + Term *
$$id_x$$
\$

Exp + Term *
$$id_x$$
\$

S

top of stack does not have a handle, so must shift.

$$int_2 + int_3 * id_x $$$

+int, *id, \$ int,

+ $int_3 * id_x $$ **Factor**

+ $int_3 * id_x $$ Term

+ $int_3 * id_x $$ Exp

 int_3*id_x \$ Exp +

* id_x \$ Exp + int,

* id, \$ Exp + Factor

* id, \$ Exp + Term

Exp + Term * $id_x $$

\$ Exp + Term * id,

\$ Exp + Term * Factor

Exp + Term

\$ Exp

S

Now, x is a handle.

\$

Table-driven LR(k) parsers

The parser generator

Parser Generator

- Finds handles
- Creates the action and GOTO tables.
- Creates the states
 - Each state indicates how much of a handle we have seen
 - each state is a set of items

Items

- Items are used to identify handles.
- LR(k) items have the form:
 [production-with-dot, lookahead]
- For example, $A \rightarrow a \times b$ has 4 LR(0) items

$$-[A \rightarrow \bullet a \times b]$$

$$- [A \rightarrow a \bullet X b]$$

$$- [A \rightarrow a X \bullet b]$$

$$-[A \rightarrow a X b \bullet]$$

The • indicates how much of the handle we have recognized.

What LR(0) Items Mean

- $[X \rightarrow \bullet \alpha \beta \gamma]$ input is consistent with $X \rightarrow \alpha \beta \gamma$
- $[X \rightarrow \alpha \bullet \beta \gamma]$ input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized α
- $[X \rightarrow \alpha \ \beta \ \bullet \ \gamma]$ input is consistent with $X \rightarrow \alpha \ \beta \ \gamma$ and we have already recognized $\alpha \ \beta$
- $[X \rightarrow \alpha \beta \gamma \bullet]$ input is consistent with $X \rightarrow \alpha \beta \gamma$ and we can reduce to X

Generating the States

- Start with start production.
- In this case, "S → E\$"

 Each state is consistent with what we have already shifted from the input and what is possible to reduce. So, what other items should be in this state?

Completing a state

 For each item in a state, add in all other consistent items.

$$S \rightarrow \bullet E$$
\$
 $E \rightarrow \bullet T + E$
 $E \rightarrow \bullet T$
 $T \rightarrow \bullet identifier$

 This is called, taking the closure of the state.

Closure*

```
closure(state)
  repeat
    foreach item A → a•Xb in state
       foreach production X → w
            state.add(X → •w)
    until state does not change
  return state
```

Intuitively:

Given a set of items, add all production rules that could produce the nonterminal(s) at the current position in each item

*: for LR(0) items

What about the other states?

- How do we decide what the other states are?
- How do we decide what the transitions between states are?

$$\circ$$
 S \rightarrow E\$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

 $3 T \rightarrow identifier$

Next(state, sym)

- Next function determines what state to goto based on current state and symbol being recognized.
- For Non-terminal, this is used to determine the GOTO table.
- For terminal, this is used to determine the shift action.

Constructing states

```
initial state = closure({start production})
state set.add(initial state)
state queue.push(initial state)
                                      A state is a set of
while(!state queue.empty())
                                        LR(0) items
  s = state queue.pop()
  foreach item A \rightarrow a \cdot Xb in s
     n = closure(next(s, X))
     if(!state set.contains(n))
         state set.add(n)
                                       get "next" state
         state queue.push(n)
```

Closure*

$$closure(\{S \rightarrow \bullet E\$\}) =$$

$$S \rightarrow \bullet E$$
\$

$$0 S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

$$3 T \rightarrow identifier$$

*: for LR(0) items

Closure*

$$closure(\{S \rightarrow \bullet E\$\}) =$$

$$S \rightarrow \bullet E $$$

$$E \rightarrow \bullet T + E$$

$$\mathsf{F} \to \mathsf{e}\mathsf{T}$$

 $T \rightarrow \bullet identifier$

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 F \rightarrow T$$

$$3 T \rightarrow identifier$$

*: for LR(0) items

Next

```
next(state, X)
          ret = empty
                                                                                \circ S \rightarrow E$
          foreach item A \rightarrow a \cdot Xb in state
                ret.add (A \rightarrow aX•b)
                                                                                1 E \rightarrow T + E
          return ret
                                                                                2 F \rightarrow T
                                                                                3 T \rightarrow identifier
initial:
                                               next(initial, E)

\begin{array}{c}
\mathsf{E} \to \bullet \mathsf{T} \\
\mathsf{T} \to \bullet identifier
\end{array}

                                               next(initial, T)
                                             next(initial, identifier)
```

Example

$$\circ S \rightarrow E$$

$$1 E \rightarrow T + E$$

$$2 E \rightarrow T$$

 $3 T \rightarrow identifier$