Parsing

15-411/15-611 Compiler Design

Ben L. Titzer and Seth Copen Goldstein

Feb 11, 2025

Today — Parsing

Parsing

e Top-down parsers
— FIRST, FOLLOW, and NULLABLE

e Bottom-up parsers
— handle pruning
— parsing method
— constructing state machine
— LRO
— SLR
— LR(k) & LALR
— Handling Ambiguity

© 2019-25 Goldstein / Titzer

Languages

e Regular languages
— Equivalent in power to NFAs and DFAs
— Can be described by regular expressions
— Do not handle recursion

e Context-free languages

— Equivalent in power to PDAs
— Can be described by context-free grammars
— Handle recursion, necessary for real PLs!

Context-Free Grammar

e A context-free grammar, G, is described by:
— >, a set of terminals ...
— A, a set of non-terminals (NT).
—S,SE A, the start symbol
— P, set of productions (aka rules)
— a production, p, has the form: A—«.
— E.8. S:=E
S:=printt

4 E : _IIE_ +’T\K//Ter'minals

non—‘rerm% =F

15-411/611 © 2019-25 Goldstein / Titzer

Context-Free Grammar

e A context-free grammar, G, is described by:
— >, a set of terminals ...
— A, a set of non-terminals (NT).
—S,SE A, the start symbol
— P, set of productions (aka rules)
— a production, p, has the form: A—«.
— E.8. S:=E

— m m

=F

What makes a grammar CK?

e Only one NT on left-hand side => context-free

e What makes a grammar context-sensitive?

e 0AP—ayp where
— oL or B may be empty,
— but y is not-empty

e Are context-sensitive grammars useful for
compiler writers?

Simple Grammar of Expressions

S = Exp

EXp = Exp + Exp
EXp = Exp - Exp
Exp .= Exp * Exp
Exp .= Exp / Exp
EXp = 1d

EXp = 1int

Describes a language of expressions. e.g.: 2+3*x

Derivation

e A derivation is a chosen sequence of
productions (expansions)
e S—Exp —=Exp+Exp —=id+Exp — id +int
e A successful sequence of expansions that
match the input constitute a parse

— Connecting the expansions in each successive
step produces a parse tree

— Parse tree is a form of abstract syntax tree
— Building a correct AST is the whole point

Leftmost Derivations

e |eftmost derivation: leftmost NT always chosen

N O O WD =

S
> =Exp by 1 = E
Exp:= Exp + Exp Vi
4 *x
Exp:= Exp - Exp by 4 = Exp * Exp

Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:: int

by 2 = Exp + Exp * Exp
by 7 = int, + Exp * Exp
by 7 = int, + int; * Exp

by 6 = int, + int; * id,

© 2019-25 Goldstein / Titzer

Rightmost Derivations

e Rightmost derivation: rightmost NT always

H\IO\U'IAUUI\)H

chosen

S
S = Exp L

X

Exp:= Exp + Exp Y= C&Xp
Exp:= Exp - Exp by 4 = Exp * Exp
Exp:= Exp * Exp by 6 = Exp ™ id,
Exp:= Exp / Exp by 2 = Exp + Exp * id,
Exp:= id by 7= Exp + int; * id,

EXPIZ int by 7 = int, + int; * id

© 2019-25 Goldstein / Titzer

X

Parse Trees

e symbols in RHS are children of NT being rewritten

®

S
by 1 = Exp

by 4 = Exp * Exp
by 2 = Exp + Exp * Exp
by 7= int, + Exp * Exp

by 7 = int, + int; * Exp @ @

by 6 = int, + int; * id,

15-411/611 © 2019-25 Goldstein / Titzer

Ambiguity in Grammars

e Some grammars have more than one way to parse a
given input, i.e. are ambiguous

Resolving Ambiguity

e Ambiguity is a problem with the grammar

e One possible fix: Add precedence with more non-
terminals

e |In this example, one for each level of precedence:
- (+-) exp
- (*, /) term
— (1d, int) factor

— Make sure parse derives sentences that respect the
precedence

— Make sure that extra levels of precedence can be
bypassed, i.e., “x” is still legal

© 2019-25 Goldstein / Titzer

A Better Exp Grammar

1S = Exp S

2 Exp := Exp + Term by 1 = Exp

3 Exp := Exp - Term by 2= Exp + Term

4 Exp = Term by 4 = Term + Term

5 Term :=Term * Factor

6 Term :=Term / Factor by 7= Factor + Term

7 Term :=Factor by 9= int, + Term

8 Factor :=1id by 5= int,+ Term * Factor
9 Factor :=int

by 7 = int, + Factor * Factor

by 9 = int, + int, * Factor

- L] * -
15-411/611 © 2019-25 Goldstein / Titzer 14

Parsing a Grammar

e Top-Down
— start at root of parse-tree
— pick a production and expand to match input
— may require backtracking

— if no backtracking required, predictive

e Bottom-up
— start at leaves of tree
— recognize valid prefixes of productions
— consume input and change state to match
— use stack to track state

© 2019-25 Goldstein / Titzer

Top-down Parsers

e Starts at root of parse tree and recursively
expands children that match the input

* |n general case, may require backtracking
e Such a parser uses recursive descent
e Easy: one function per nonterminal

e When a grammar does not require
backtracking a predictive parser can be
built.

Top-Down parsing
e Start with root of tree, i.e., S
e Repeat until entire input matched:

— pick a non-terminal, A, and pick a production
A—y that can match input, and expand tree

— if no such rule applies, backtrack

e Key is obviously selecting the right
production

Top-down for Exp Grammar

{ <. S lint, - int, * id,
2 E=E+T by 1— F Iintz-ints*idx
3 E=E-T

4 E =T

5 T:=T*F

6 T:=T/F

7 T

8 F :=id

9 F :zint

; . *

by 5= int,-T*F int, - int; * id

15-411/611 © 2019-25 Goldstein / Titzer 18

Top-down for Exp Grammar

S
by1=> E

int, - intg *id

X

by2= E+T
by4= T+T
by 7= F+T

1 S:=E

2 E==E+T
3 E==E-T
4 E =T
5 T:=T*F
6 T:=T/F
/7 T:=F
8 F :i=id
9 F :zint

15-411/611

by 9= int,-T
by 5= int,-T*F

© 2019-25 Goldstein / Titzer

int, - int; * id
int, - int; * id

A

X

X

X

Top-down for Exp Grammar

S
byl: E

int, - int *id

X

by2= E+T
by4d= T+T
by 7= F+T

A

. . *x =
int, - int, :de

!
!

1 S =

2 E=E+T
3 E=E-T
4 E =T
5 T:=T*F
6 T:=T/F
7 T=

8 F:=id4
9 F i=int

15-411/611

by 9= int,+ T
by3=E-T
by4= T-T

l.] *
int, - int, :de

. - * -
int, - int, J.d><

. . *x =
:Lnt2|- int, J.d><

by7= F-T
by 9= int,-T
by 5= int,-T*F

© 2019-25 Goldstein / Titzer

int, -dnt; * id

X

. . * =
int, - int; 1d)<

. . * =

20

Top-down for Exp Grammar

X

int. -int. *id
[9 A

|
Iint2 - int; * id,
Iint2 - inty * id,

. . *x =
int,[- int; ™ id,

1 S:-E >

2 E:=E+T by 1= F

3 E=E-T by2= E+T
4 B=T by4= T+T
5 T:=T*F] T
6 Ti=T/F|__N/="*

7 T:=F by 9= int,+ T
8 F :=id by3=>E-T
9 Fi=int by4= T-T

. . * .

. . * =
int, - intg J.d><

. . *x =
:|.nt2|- int, :de

nt, -jint, *id,
2 = nt2 - int3 x idx

by 5= int,-T*F

15-411/611 © 2019-25 Goldstein / Titzer

. . * .

21

Top-down for Exp Grammar

1 S =

2 E=E+T
3 E=E-T
4 E =T
5 T:=T*F
6 T:=T/F
7 T=

8 F:=id4
9 F i=int

15-411/611

S lint, - int, * id,
byl= E Iint2 - int; * id,
by2=E+T :intz-int\,,"‘id><
by2= E+E+T Iintz-int\,,"‘id)<
by2= E+E+E+T int, - int; * id,

Will not terminatel Why?
grammar is left-recursive

What should we do about it?
Eliminate left-recursion

© 2019-25 Goldstein / Titzer

22

Eliminating Left-Recursion

e Given 2 productions:
A:=Aa
A=
Where neither a nor {3 start with A

(e.g., For example, E:=E+T | T)
* Make it right-recursive: N

A=pR
R:=qg R |Risright recursive

e Extends to general case.

© 2019-25 Goldstein / Titzer

Rewriting Exp Grammar

=E :E
B =+TE | |2 E=TE
ot =-TE
=T
5 T:=FT

O 00 N O U A W NN -
M mMm -4 4 4 m m m W
I
_|
*
|

=1nt

mm 4 4 4 mMmmmMmb
R
Q.)
__1

]
_|
S~
T
VW O O hwnN -

"
l_l-
o)
ct

15-411/611 © 2019-25 Goldstein / Titzer

Try again

1 S:=E byl E eint, - int, * id_
2, E’ =TFE | by2— TE eint, - int, * id
2, E' =+ T E' by5= FTE eint, - int, * id
3‘ E' =-TE by9— 2TFE int, - int, * id,
; E i by7 = 2F int, - int, * id,
. _‘T_' ; E :T by3= 2-TFE int, - eint, * id
6 T/ FT by5= 2-FTFE int, - eint; * id
_— by9= 2-3TF int, - int, e* id
8 Fi=ig by5'= 2-3*FTFE int, - int, * eid,

15-411/611

L.ookahead

How to pick right production?
Lookahead in input stream for guidance
General case: arbitrary lookahead required

Luckily, many context-free grammars can be
parsed with limited lookahead

If we have A — a | [3, then we want to correctly
choose either A—= o orA —f3

define FIRST(a) as the set of tokens that can be
first symbol of o, i.e.,
a € FIRST(«) iff oo —* ay for some vy

L.ookahead

e How to pick right production?

e |f we have A — a | 3, then we want to correctly
choose eitherA—= o orA—

e define FIRST(o) as the set of tokens that can be
first symbol of ¢, i.e.,
a € FIRST(a) iff a —=* ay for some y

e fA— o | p we want:
FIRST(ct) N FIRST(B) = &

e If that is always true, we can build a predictive
parser.

Computing FIRST (o)
e Given X :=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=2a

Computing FIRST(a)
e Given X :=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=a
A =
B:=b
B:=A
C:=c

e FIRST(X) must also include FIRST(C)

e [OW:
— Must keep track of NTs that are nullable
— For nullable NTs, determine FOLLOWS(NT)

© 2019-25 Goldstein / Titzer

e nullable(A) is

nullable(A)

— true if A can derive the empty string

— false otherwise

e For example:

B:=XYb
X=X

| YY
Y=

In this case, nul

nu

able(X) = nu

lable(B) = fa

© 2019-25 Goldstein / Titzer

lable(Y) = true
se

FOLLOW(A)

e FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

¢ |.e,
a € FOLLOW(A) iff S=* aAal} for some o and

Building a Predictive Parser

e \We want to know for each non-terminal which
production to choose based on the next input
character.

e Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A := o, in (A, a) iff
— FIRST(o) contains a or
— nullable(o) and FOLLOW(A) contains a

The table for the robot

S :=BSF FIRST |FOLLOW |nullable
| S |b $ yes
B :=b B |b b,f no
= f F |f f.$ ho
b f |$

The table for the robot

S =BSF FIRST |FOLLOW |nullable
| S |b $ yes
B :=b B |b b,f no
F FIRéT(BSF)zb il f.$ =
ﬁ /" | nullable(¢)=true
p] |
p—p— -~ FOLLOW(S) = $

Table for exp grammar

O ® N OO0 A WRN N =

m M 4 4 4 4 mMmmmm W0

m

I B B I B B I B
__I
m

P+
—H 4
m m

D)
_1

*FT
/FT

id

int

FIRST |FOLLOW |nullable
S |id, int $
E |id, int $
E' |+, - $ yes
T |id, int +-,%
T |/, * +-.% yes
F |id, int /,*.$
- * / id | int | $

I
S
E
E
T
T
F

15-411/611

© 2019-25 Goldstein / Titzer

35

Table for exp grammar FIRST |FOLLOW nullable
S |id,int $
1 S:=F E |id, int $
2 E:=TF E |+ - 3 yes
2" E:=+TF T |id, int +-,%
3 E=-TFE T |/.* +-.9 yes
4 FE':= F |id, int /,*$
5 T:=FT _I + i, * / id int $
5 T:=*FT S =E |:=E
6 T:=/FT E =TE |:=TE
7' T = y =+TE' [:=-TE' =
8 F :zid
9 F :=int T L
T = = =*FT |:=/FT =
F =id - |:=int

15-411/611 © 2019-25 Goldstein / Titzer

Using the Table

e Each row in the table becomes a function

e For each input token with an entry:
Create a series of invocations that
implement the production, where

— a hon-terminal is eaten

— a terminal becomes a recursive call

e For the blank cells implement errors

Example function

+ - * / id |int |$

S =& |:=E

E =TE'|:=TFE'

E' [:=+TE [:=-TE' =TE |:=TE' |:=

T

T |- _ |._=p1 How to handle errors?

| | | | | |

F Eprime () {
switch (token) {
case PLUS: eat (PLUS); T(); Eprime(); break;
case MINUS: eat (MINUS); T(); Eprime(); break;
case ID: T(); Eprime() ;
case INT: T(), Eprime () ;
default: error () ;

15-411/611 © 2019-25 Goldstein / Titzer

Left-Factoring

Predictive parsers need to make a choice based
on the next terminal.

Consider:
S:=1f E then S else S

| if E then S

When looking at 1 £, can’t decide
so left-factor the grammar

S :=1f E then S X
X :=else S

Top-Down Parsing

e Can be constructed by hand

e LL(k) grammars can be parsed
— Left-to-right
— Leftmost-derivation
— with k symbols lookahead

e Often requires

— |eft-factoring
— Elimination of left-recursion

Bottom-up parsers

e What is the inherent restriction of top-down
parsing, e.g., with LL(k) grammars?

Bottom-up parsers

e What is the inherent restriction of top-down
parsing, e.g., with LL(k) grammars?

e Bottom-up parsers use the entire right-hand
side of the production

e LR(k):
— Left-to-right parse,
— Rightmost derivation (in reverse),

— k look ahead tokens

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up

X O0n

o X X

Example - Top-down

Is this grammar LL(k)?

How can we make it LL(k)?

Example - Bottom-up

S:i= X
X:=Xa
| b

right-most derivation: @
S = X = Xa = Xaa = baa '
X0

Left-to-Right, Rightmost in reverse
baa X @

Xaa

&
®

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up

A Shift-Reduce Parser

Implement as a FSM with a stack
Stack holds sequences of symbols

nput stream holds remaining source

-our actions:

— shift: push token from input stream onto stack

— reduce: right-end of a handle (p of A — f3) is at top of
stack, pop handle (), push A

— accept: success
— error: syntax error discovered

Key is recognizing handles efficiently

© 2019-25 Goldstein / Titzer

a

C

source

code

Table-driven LR(K) parsers

15-411/611

Lexer

tokens

Driver

&

Action table

GOTO table

Stack

AST

© 2019-25 Goldstein / Titzer

Push down automata:
FSM with stack

48

a

C

source

code

Table-driven LR(K) parsers

Lexer

)
lJ’Grammar

15-411/611

Driver
tokens AST
Action table Stack
&
GOTO table
Parser Push down automata:

Generator

© 2019-25 Goldstein / Titzer

FSM with stack

49

Parser Loop

Driver

e Same code regardless of grammar
— only tables change

e (Very) General Algorithm:

— Based on table contents, top of stack, and current
input token either
e shift: push token onto stack and read next token

¢ reduce: replace part of stack with the correct rule (NT)
that derived it

e accept: successfully parsed entire input
e error: input not in language

15-411/611 © 2019-25 Goldstein / Titzer

50

15-411/611

Stack

e Represents the input parsed so far
e Contents?

— Symbols: terminals (and non-terminals)

— Must also store previously seen states

e the context of the current position

— In fact, nonterminals unnecessary

e include for readability

XTyet+7z

© 2019-25 Goldstein / Titzer

Stack

+ =

—

51

Parser Tables Actiogtable

Action table GOTO table

e given state s and terminal a tells parser
loop what action (shift, reduce, accept,
reject) to perform

Goto table

e used when performing reduction; given a
state s and nonterminal X says what state
to transition to

Parser Tables

Action table

&
GOTO table
push state N onto stack
reduce by rule R
gN goto state N
a accept _
action goto
error :
state | ident + E T
0 gl g2
1
S — ES 2
E—>T+E i .
E—T - g g
T — identifier

15-41

1/611

© 2019-25 Goldstein / Titzer

53

Parser Loop Revisited

Driver

while (true)
s = state on top of stack
a = current input token
if (action[s] [a] == sN)
push N
read next input token
else i1f (action[s] [a] == rR)

pop rhs of rule R from stack
X = lhs of rule R
N = state on top of stack
push goto[N] [X]
else if (action[s] [a] == a) accept
return success
else error

return failure

15-411/611 © 2019-25 Goldstein / Titzer

Example

action goto
state ident + S E T
s3 gl g2
d
g5 g2

Current input token = X
State on top of the stack= Q

X+y$

15-411/611 © 2019-25 Goldstein / Titzer

S— ES
E—T+E
E—T

T — identifier

(0,5)

55

Example

action goto

state ident + E T
gl g2
g5 g2

Current input token = +
State on top of the stack = 3

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

T — identifier

(3,x)
(0,S)

56

Example

action goto
state ident + E T
gl g2
r3
g5 g2

Current input token = +
State on top of the stack = 3

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

3T — identifier

(3,x)
(0,S)

57

Example

action goto
state ident + E T
gl g2
r3
g5 g2

Current input token = +
State on top of the stack = 3

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

3T — identifier

(3,x)

(0,5)

58

Example

action goto

state ident + E T
gl g2
g5 g2

Current input token = +
State on top of the stack =

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

3T — identifier

(3,x)

(0,5)

59

Example

action goto

state ident + E T
gl g2
g5 g2

Current input token = +
State on top of the stack = 2

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

3T — identifier

(2,T)
(0,5)

60

Example

action goto
state ident + E T
gl g2
s4
g5 g2

Current input token = +
State on top of the stack = 2

X+y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—-T+E
E—T

T — identifier

(2,T)
(0,5)

61

Example

action goto
state ident + E T
gl g2
s4
g5 g2

Current input token=Y
State on top of the stack= 4

x +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
E—T+E
E—T

T — identifier

(4,+)
(2,T)
(0,5)

62

Example

action goto
state ident + S E T
gl g2
d
s3 g5 g2

Current input token=Y
State on top of the stack= 4

x +y$

15-411/611 © 2019-25 Goldstein / Titzer

S— ES
E—T+E
E—T

T — identifier

(4,+)
(2,T)
(0,5)

63

Example

action goto
state ident + S E T
| gl | g2
d
r3
g> | 82

Current input token = S
State on top of the stack = 3

X +y$

15-411/611

© 2019-25 Goldstei

n / Titzer

S — ES
E—T+E
E—T

3T — identifier

(3,y)
(4,+)
(2,1)
(0,5)

64

Example

action goto
state ident + E T
gl g2
g5 g2

Current input token = S
State on top of the stack = 3

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—T+E
E—T

T — identifier

(4,+)
(2,T)
(0,5)

(2,T)

65

Example

action goto
state ident + E T
gl g2
g5 g2

Current input token = S
State on top of the stack = 2

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
E—T+E
E—T

T — identifier

(2,T)
(4,+)
(2,T)
(0,5)

66

Example

action goto
state ident + S E T
| gl | g2
d
r2
g> | 82

Current input token = S
State on top of the stack = 2

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
E—T+E
2E—=T

T — identifier

(2,T)
(4,+)
(2,T)
(0,5)

67

Example

action goto
state ident + S E T
| gl | g2
d
r2
g> | 82

Current input token = S
State on top of the stack = 2

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
E—T+E
2E—=T

T — identifier

(4,+)
(2,T)
(0,5)

(?,E)

68

Example

action goto
state ident + E T
gl g2
g5 g2

Current input token = S
State on top of the stack= §

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
E—T+E
E—T

T — identifier

(5,E)
(4,+)
(2,T)
(0,5)

69

Example

action goto
state ident + S E T
| gl | g2
d
g> | 82
rl

Current input token = S
State on top of the stack= §

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
lE—=T+E
E—T

T — identifier

(5,E)
(4,+)
(2,T)
(0,5)

70

Example

action goto
state ident + S E T
| gl | g2
d
g> | 82
rl

Current input token = S
State on top of the stack= §

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S — ES
LE—>T+E
E—T

T — identifier

(0,5)

(5,E)
(4,+)
(2,T)

71

Example

action goto
state ident + E T
gl g2
g5 g2

Current input token = S
State on top of the stack = 1

X +y$

15-411/611

© 2019-25 Goldst

ein / Titzer

S— ES
E—T+E
E—T

T — identifier

(1,E)
(0,5)

72

Example

action goto S — ES
state . ident + E T E>T+E
E—T
Aeeept! T > identifier
g5 g2

Current input token = S
State on top of the stack = 1

(1,E)

15-411/611

© 2019-25 Goldstein / Titzer

73

A Rightmost Derivation

1S = Exp

2 Exp = Exp + Term

3 Exp = Exp - Term

4 Exp = Term

5 Term :=Term * Factor
6 Term :=Term / Factor
/ Term := Factor

8 Factor :=1id

9 Factor :=1int

15-411/611

byl=
by 2 =
by 5=
by 8 =
by 7=
by 9 =
by 4 =
by 7=

by 9 =

© 2019-25 Goldstein / Titzer

S
Exp
Exp + Term

Exp + Term * Factor
Exp + Term * id,
Exp + Factor * id,
Exp+int, * id,
Term+int, * id,
Factor + int; * id,

L L * L]
int,+1nt; " 1d,

74

A Rightmost Derivation In Reverse

m n *]
int, + int, 1d><

Factor + int; * id,

Exp +int, * id,
Exp + Factor * id,
Exp + Term * id_
Exp + Term * Factor
Exp + Term

Exp
S

15-411/611 © 2019-25 Goldstein / Titzer

75

A Rightmost Derivation In Reverse

: : : int,e+int, *id
int, +int, * id, 2 3 x

: ¥
Factor + int, * id, Factor e + int, * 1d,

. : Term e+ int, * id
Term+int; * id, 3 X

. .
Exp +int, * id, Exp +intye © 1d,

* :
Exp + Factor * id, Exp + Factor e * 1d,

. -
Exp + Term * id, Exp + Term * 1d, e

k
Exp + Term * Factor Exp + Term * Factor e

Exp + Term Exp + Term e

Exp EXp ®
S Se

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse
int,+int, * id int,e+int, " id,

: : + 3 * 3
Factor + int; * id, Factore +int, © 1d,

. . Terme+ int, * i
Term + int, *id, 3 d,

: . -
Exp + int, * id Exp+int,e * 1id,

* -
Exp + Factor * id, Exp + Factor e * id,

Exp + Term id,e
Exp + Term Factor e
Exp + Term Exp + Term e

EXp Exp e

S Se

15-411/611 © 2019-25 Goldstein / Titzer

77

A Rightmost Derivation In Reverse

int,+int, *id S

int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S

Exp + Factor *id S

Exp + Term *id S

Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int, *id S

int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id $
Exp + int,*id S
Exp +int, *id S

Exp + Factor *id S

Exp + Term *id S

Exp + Term * id S

Exp + Term * id, S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S
Exp + Factor *id S
Exp + Term *id S
Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor
Term
Exp
Exp +
Exp +int, *id S
Exp + Factor *id S
Exp + Term *id S
Exp + Term * id S
Exp + Term * id S
Exp + Term * Factor S
Exp + Term S
Exp S
S S

15-411/611 © 2019-25 Goldstein / Titzer

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2
reduce by F — int

reduce by T— F

82

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S
Exp + Factor *id S
Exp + Term *id S
Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T

shift +

84

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

85

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S shift +
Exp + int,*id S shift 3
Exp + int, *id S reduce by F — int
Exp + Factor *id S
Exp + Term *id S
Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S shift +
Exp + int,*id S shift 3
Exp + int, *id S reduce by F — int
Exp + Factor *id S reduce by T — F
Exp + Term *id S
Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S shift +
Exp + int,*id S shift 3
Exp + int, *id S reduce by F — int
Exp + Factor *id S reduce by T — F
Exp + Term *id S shift *
Exp + Term * id S

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S shift +
Exp + int,*id S shift 3
Exp + int, *id S reduce by F — int
Exp + Factor *id S reduce by T — F
Exp + Term *id S shift *
Exp + Term * id S shift x

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S shift +
Exp + int,*id S shift 3
Exp + int, *id S reduce by F — int
Exp + Factor *id S reduce by T — F
Exp + Term *id S shift *
Exp + Term * id S shift x

Exp + Term * id reduce by F — id
Exp + Term * Factor
Exp + Term

Exp

v n n n Wn

S

15-411/611 © 2019-25 Goldstein / Titzer

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int
reduce by T — F
shift *

shift x

reduce by F — id

reduceby T—=T*F

91

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int
reduce by T — F
shift *

shift x

reduce by F — id

reduceby T—=T*F

reduce byE = E+T

92

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int
reduce by T — F
shift *

shift x

reduce by F — id

reduceby T—=T*F
reduce byE = E+T

reduce by S — E

93

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int
reduce by T — F
shift *

shift x

reduce by F — id

reduceby T—=T*F
reduce byE = E+T
reduce by S — E

accept!

94

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S
Exp + Factor *id S
Exp + Term *id S
Exp + Term * id S
Exp + Term * id, S
Exp + Term * Factor S
Exp + Term S
Exp S
S S @

15-411/611 © 2019-25 Goldstein / Titzer

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int

@

696

A Rightmost Derivation In Reverse

int,+int,*id S shift 2
int, +int, *id $ reduce by F — int
Factor +int, *id S reduceby T—F
Term +int, *id $ reducebyE — T
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S
Exp + Factor *id S
Exp + Term *id S @
Exp + Term * id S
Exp + Term * id, S @
Exp + Term * Factor S
Exp + Term S @
Exp S
s s ®

15-411/611 © 2019-25 Goldstein / Titzer

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T

shift +

®

O--O-O

698

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

®

O--O-O

99

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int

®

O--O-O

()

100

Handles

e |R parsing is handle pruning

e LR parsing finds a rightmost derivation (in
reverse)

e A handleinvy, aright-hand sentential form, is
— a position iny matching

— a production A —=

S —=* aAw — offw

e if a grammar is unambiguous, then every y has
exactly 1 handle

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int

®

O--O-O

()

102

Where is next handle?

15-411/611

A Rightmost Derivation In Reverse

int,
Factor

Term

Exp

Exp +

Exp + int,

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

int,+int, *id S
+int, *id $
+int, *id $
+int, *id $
+int, *id S
int,*id S

*id S

*id S

*id S

id $

v n n n Wn

© 2019-25 Goldstein / Titzer

shift 2

reduce by F — int
reduce by T— F
reduce by E —= T
shift +

shift 3

reduce by F — int

®

O--O-O
®

103

A Rightmos 15 = Exp
Where is next handle? . 2 Exp = Exp + Term
int, -3 Exp := Exp - Term
4 Exp = Term
e 5 Term .= Term * Factor
ferm - 6 Term := Term / Factor
Exp - 7 Term := Factor
Exp + : 8 Factor :=id
Exp + int, 9 Factor :=1int
Exp + Factor * idXS
Exp + Term * idx$
Exp + Term * id $

15-411/611

Exp + Term * id
Exp + Term * Factor
Exp + Term

Exp

S

v n n n Wn

O-0-O-@

© 2019-25 Goldstein / Titzer

EVEerse

'F — int

rT—F

rE—=T

'F—int

OaC

104

A Rightmost Derivation In Reverse
Where is next handle? E+F*xand T— F

15-411/611

int, +1nt, * idXS
Factor +int, * idXS
Term +int, * idXS
Exp +int, *id S
Exp + int,*id S
Exp +int, *id $

Exp + Factor *id S

Exp + Term *id S

Exp + Term * id $

Exp + Term * id S

Exp + Term * Factor S

Exp + Term S

Exp S

> S

© 2019-25 Goldstein / Titzer

O-0-C-@

()

105

Handle Pruning

e LR parsing consists of

— shifting until there is a handle on the top of the
stack

— reducing handle

e Key is handle is always on top of stack, i.e., if
B is a handle with A — 3, then [can be
found on top of stack.

A Rightmost Derivation In Reverse

int,+int, *id S

15-411/611

int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S

Exp + Factor *id S

Exp + Term *id S

Exp + Term * id S

Exp + Term * id, S

Exp + Term * Factor S

Exp + Term S

Exp S

S S

© 2019-25 Goldstein / Titzer

top of stack does
not have a handle,

so must shift.

O--O-O

ORCat

107

A Rightmost Derivation In Reverse

int,+int, *id S

15-411/611

int, +int, *id $
Factor +int, *id $
Term +int, *id $
Exp +int, *id S
Exp + int,*id S
Exp + int, *id S

Exp + Factor *id S

Exp + Term *id S

Exp + Term * id S

Exp + Term * id, S

Exp + Term * Factor S

Exp + Term S

Exp S

S S

© 2019-25 Goldstein / Titzer

Now, x is a handle.

O--O-O

()

108

a

C

source

code

Table-driven LR(K) parsers

Lexer

)
lJ’Grammar

15-411/611

Driver
tokens AST
Action table Stack
&
GOTO table
Parser Push down automata:

Generator

© 2019-25 Goldstein / Titzer

FSM with stack

109

The parser generator | Parser

Generator

e Finds handles
e Creates the action and GOTO tables.
e Creates the states

— Each state indicates how much of a handle we
have seen

— each state is a set of items

Items

e |[tems are used to identify handles.

e |R(k) items have the form:
production-with-dot, lookahead]

e For example, A — a X b has 4 LR(0) items
—[A—eaXDb

—[A—aeXb

—[A—aXeb

—[A—aXbe]

What LR(0) Items Mean

*[X—eoafy]
input is consistent with X = a P v

*[X—=oefy]
input is consistent with X — o [v and we have
already recognized o

*[X—afpey]
input is consistent with X — o [v and we have
already recognized o 3

*[X—=afye]
input is consistent with X — o [v and we can
reduce to X

Generating the States

e Start with start production.

e In this case, “S — ES” S — ES
E—-T+E
E—T
SeoES

T — identifier

e Each state is consistent with
what we have already shifted
from the input and what is
possible to reduce. So, what
other items should be in this
state?

Completing a state
e For each item in a state, add in

all other consistent items.

S — ES
S — oFS E—T+E
E— oT+E E—=T
E— oT T — identifier
T — eidentifier

e This is called, taking the
closure of the state.

15-411/611

Closure”

closure ()
repeat
foreach item A — a<Xb 1in
foreach production X —w
.add (X — ew)
until does not change
return

Intuitively:

Given a set of items, add all production rules that
could produce the nonterminal(s) at the current
position in each item

*: for LR(O) items

© 2019-25 Goldstein / Titzer

115

What about the other states?

e How do we decide what the

other states are?

e How do we decide what the
transitions between states are?

SeoES

E— o

E— T +E

T — eidentifier

S — ES
E—T+E
E—T

T — identifier

%ﬂtiﬁer
A

|S — EeS

T — identifiere

FE—Te+E
F—Te

© 2019-25 Goldstein / Titzer

Next(state, sym)

e Next function determines what state to goto
based on current state and symbol being
recognized.

e For Non-terminal, this is used to determine
the GOTO table.

e For terminal, this is used to determine the
shift action.

Constructing states

= closure({start production})
state set.add(initial state)
state queue.push(initial state)
while (!state queue.empty()) A state is a set of
= state_—queue .pop () LR(0) items
foreach item A — a*Xb in
= closure (next (s, X))
if (!state set.contains(n))
state set.add(n)

et “next” state
state queue.push (n) J

15-411/611 © 2019-25 Goldstein / Titzer 118

Closure”

S— ES
closure({S — *ES}) = E—>T+E

E—T

5= B> T — identifier

*: for LR(O) items

Closure”

S — ES
closure({S — *ES}) = E—->T+E
E—T
S <5 T — identifier
F— T+ F
F—> oT

T — eidentifier

*: for LR(O) items

Next

next (, X)
= empty
foreach item A — a*Xb in S— ES
.add (A — aXeb) F—T+E
return ET
T — identifier
next(, E)
S — ‘ES >
E—eT+E
E— T next(,T)
T — eidentifier >

Nt(, identifier)

15-411/611 © 2019-25 Goldstein / Titzer 121

Example

0 1

S—E
S —_— .ES E v S —> E.s S
E—> oT+E E—>T+E
EF— o7 2 E—T
E—Te+E : :
T — oidentl]?er A E—> Te T— ldentlﬁer
3 identifier 3
Y T +
4
T]] ! w .
— identifier F > T1eE
identifie E— eT+E
F— oT
T — eidentifier

—
E—>T+Ee

15-411/611 © 2019-25 Goldstein / Titzer 122

