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Today

Thinking in SSA: Local reasoning

Maintaining SSA properties during optimization
Deconstructing SSA

O  Two issues: critical edges and ordering moves

Syntax-directed SSA generation

Bonus: Virgil compiler’s SSA CFG
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Recap From Last Time

SSAis an IR for analysis and optimization

Every modern optimizing compiler uses it!

Invariant: every variable defined statically once

®-functions are a notational fiction for merging dataflow at joins
Can build SSA using the dominator tree

lterated dominance frontier guides ® placement

Renaming step walks down dominator tree

General algorithm handles all possible CFGs
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What is a ¢ anyway?

WHAT?

v,) < ¢(y) v (¥)

Yy

© 2019-2025 Titzer/Goldstein

A ® merges multiple
versions of a variable at
a wHaT? linthe CFG.

Inputs positionally
correspond with
predecessor edges.



15-411/611

What is a ¢ anyway?
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A ® merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.
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What is a ® (for a loop) anyway?

© 2019-2025 Titzer/GOTOSEIN

®s at loop
headers relate
the dataflow on a

lo WHAT?

with the control
flow.

Allows finding
induction
variables really
easily.

WHAT?




What is a ® (for a loop) anyway?

®s at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Allows finding
induction
variables really
easily.

backedge
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Dominance Frontier .
CEG idom

entry entry

| |
The dominance 0
frontier can be
determined by
looking at CFG
edges that
leave a
dominator
subtree to
non-dominated
nodes.
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Dominance Frontier

CEG idom
| |
The dominance 0
frontier can be
determined by
looking at CFG
edges that
2
WHAT?
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Thinking in SSA: Local Reasoning

e Local ® simplifications
o y=®(X, X)~ J WHAT?
o y= CD(X, y) ~ Yy WHAT?
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Thinking in SSA: Local Reasoning

e Local ® simplifications

0O y=CD(x,x)w>l
o y=0xy)~ K

© 2019-2025 Titzer/Goldstein

A @ can be
simplified if all inputs
are the same, or all
inputs are the same
or the @ itself.



Thinking in SSA: Local Reasoning

e Constant propagation
O x=13;
y=x+2;

z = func(x); - WHAT?
W =X - X;
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Thinking in SSA: Local Reasoning

e Constant propagation

O x=13;
y=x+2;
z = func(x);
W =X - X;

~>

© 2019-2025 Titzer/Goldstein

After SSA
construction, any
variable which is
assigned a constant
can be substituted
everywhere it
occurs.



Thinking in SSA: Local Reasoning
e Copy propagation

O Xx=a;

y=X+2;

z = func(x); - WHAT?
W =X - X;
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Thinking in SSA: Local Reasoning

e Copy propagation

O Xx=a;
y=x+2;
z = func(x);
W =X - X;

~>

© 2019-2025 Titzer/Goldstein

After SSA
construction, any
variable which is
assigned a simple
copy can be
substituted
everywhere it
occurs.
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Thinking in SSA: Local Reasoning

e Copy propagation

O Xx=a;
y=x+2;
z = func(x);
W =X - X;

~>

Copies are vestigial.
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After SSA
construction, any
variable which is
assigned a simple
copy can be
substituted
everywhere it
occurs.



Thinking in SSA: Local Reasoning

e Reasoning about value ranges of ®s
o x=0@,7)
y=x>0;

z=x==12; - WHAT?
w =33/Xx;
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Thinking in SSA: Local Reasoning

e Reasoning about value ranges of ®s

O x=@(3,7);
y=x>0;
z=x==12;
w =33/Xx;

~>

Z
\W

© 2019-2025 Titzer/Goldstein

@ inputs represent
all the possible
values the phi could
take on across all
control flow.
Therefore some
conditions are
statically decidable.



Thinking in SSA: Local Reasoning

e Dominating conditions

O if (x ==0) return x; ~ if (x == 0) return | WHAT?
O if (x = null) return x.f; ~ if (x 1= null) return | WHAT?
O if (x !=0) return 1000 / x; ~ if (x 1= 0) return | WHAT?
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Thinking in SSA: Local Reasoning

e Dominating conditions

O if (x ==0) return x; ~ if (x == 0) return I;

O if (x = null) return x.f ~ if (x 1= null) return KiGEIS);
O if(x!=0)return 1000 /x; - if (x != 0) return HOOONR:

© 2019-2025 Titzer/Goldstein

Any branch can
assume the condition
is true or false on
the respective output
control flow edges.
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Thinking in SSA: Local Reasoning

e Dominating conditions

O if (x ==0) return x; ~ if (x == 0) return I;

O if (x = null) return x.f ~ if (x 1= null) return KiGEIS);
O if(x!=0)return 1000 /x; - if (x != 0) return HOOONR:
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Any branch can
assume the condition
is true or false on
the respective output
control flow edges.
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Thinking in SSA: Local Reasoning

Dominator Tree

entry
0
1 4
2| | [s
3

exit

© 2019-2025 Titzer/Goldstein

Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.



Thinking in SSA: Local Reasoning

Dominator Tree
entry

0 [whar? Any branch can

~\ assume the condition
1 4 is true or false on the
respective output
control flow edges

2 . S and their

3 |~ / dominated blocks.

exit
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Thinking in SSA: Local Reasoning

Dominator Tree
entry

0 | ¥ Any branch can

~\ assume the condition
1 4 is true or false on the
respective output
control flow edges

2 . S and their

3 |- / dominated blocks.

exit
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Thinking in SSA: Local Reasoning

Dominator Tree

entry

0 | ¥ Any branch can

N\ assume the condition

4 is true or false on the

respective output

control flow edges

! 5 and their
/3 |- / dominated blocks.

exit
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Thinking in SSA: Local Reasoning

Dominator Tree
entry

<=0 0 | ¥ Any branch can

e ~\ assume the condition
1 4 is true or false on the
respective output
control flow edges

2 . S and their

- 7/ 3 |~ S/ dominated blocks.

exit
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Thinking in SSA: Local Reasoning

e Branch folding
o if (x==x){
w=a+&

} else { N
y,=a+9;

}
Y, = Py, Y,)

WHAT?
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e Branch folding

O

Thinking in SSA: Local Reasoning

if (x==x){
W=a+&

} else {
b=a+&

}

Y3 = Py, Y,)

if (H) {

y,=a+3;

feise {

y,=W

© 2019-2025 Titzer/Goldstein

Any branch with a
constant condition
can be folded and

edges removed from
the CFG.
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Thinking in SSA: Local Reasoning

Dominator Tree

entry
0
1 4
2| | |5
3
exit

© 2019-2025 Titzer/Goldstein

Any branch with a
constant condition
can be folded and

edges removed from
the CFG.
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Thinking in SSA: Local Reasoning

Dominator Tree

entry
0
1 4
2| | [
3
exit

© 2019-2025 Titzer/Goldstein

The entire dominator
subtree will become
dead and can be
removed.
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Thinking in SSA: Local Reasoning

Dominator Tree

entry
0
1 4
2 | [s
3
exit
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The entire dominator
subtree will become
dead and can be
removed.
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Thinking in SSA: Local Reasoning

Dominator Tree

entry
0
4
L[5
3
exit

© 2019-2025 Titzer/Goldstein

The entire dominator
subtree will become
dead and can be
removed.



Thinking in SSA: Local Reasoning

entry Dominator Tree
& en’ﬁry
0 To maintain SSA,
any ®s at join points
4 with dead

predecessors need
to be edited and
S simplified.

Edit ®s

3 3

exit exit

15-411/611 © 2019-2025 Titzer/Goldstein
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Editing and simplifying ®s

© 2019-2025 Titzer/Goldstein

A ® merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.
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Editing and simplifying ®s

© 2019-2025 Titzer/Goldstein

A ® merges multiple
versions of a variable at
a join point in the CFG.

Dead predecessors
mean dead input values.



15-411/611

Editing and simplifying ®s

© 2019-2025 Titzer/Goldstein

Dead predecessors
mean dead input values.

Simply edit the input
values out.

May lead to further
simplification.



Deconstructing SSA

Real machines don’t have @ functions.
Have to insert moves at predecessors.
Mentioned earlier, but with huge caveats.
We resolve those caveats today.

15-411/611 © 2019-2025 Titzer/Goldstein



e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

P>

SSA non-SSA
deconstruction IR
SSA
IR
colored

regalloc

SSA IR

© 2019-2025 Titzer/Goldstein

regalloc

Target
Program

SSA
deconstruction




e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA

construction
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P>

SSA non-SSA
deconstruction IR
SSA
IR
regalloc colored
A SSAIR

-~ -
- -

Nice chordal interference graphs

© 2019-2025 Titzer/Goldstein

regalloc

Target
Program

SSA
deconstruction




e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

P>

SSA non-SSA
deconstruction IR
SSA
IR
regalloc colored
SSAIR
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Possibly

regalloc

ZQ: better code?

Target
Program

SSA
deconstruction




e \When during compilation to deconstruct SSA?

Deconstructing SSA

e There are two common choices: before or after regalloc.
e Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
construction

15-411/611

P>

SSA non-SSA
deconstruction IR
SSA
IR
regalloc colored
SSAIR

regalloc
Target
Program
SSA
deconstruction

~- Deconstruction is more or

© 2019-2025 Titzer/Goldstein

less the same either way.



Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y a2<—b+2

b<—a1+x C2<—y+1

1
a., « CID(al,az)

3

C, « CID(cl,cz)

a4<—c3+a3

15-411/611 © 2019-2025 Titzer/Goldstein
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Deconstructing SSA

Insert @-resolution moves and remove Os.

a
b

1
1

X +y
—a + X

a2<_b+2

C2<—y+1

\

3

3

4

a. CID(al,az)
C. « CID(cl,cz)

a<—c3+a3

/|

© 2019-2025 Titzer/Goldstein



Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

b, —« a, + x

N

c3 - CID(c

a4<—c3+a3
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Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y

b, « a, + x

Notice the alignment \
of data flow and

control flow. The ® a; « CD)
nodes represent this c, « ®(c;,c,)
explicitly in the IR.

a<—c3+a3

15-411/611 © 2019-2025 Titzer/Goldstein



Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y a2<—b+2

Each @ introduces
one move into each ¢ (a,,a,)
predecessor node.

a<—c3+a3

15-411/611 © 2019-2025 Titzer/Goldstein



Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y
b « a, + x

— b + 2
Remove ®s after \ /

inserting moves. _

a4<—c3+a3

15-411/611 © 2019-2025 Titzer/Goldstein



Deconstructing SSA

e Insert moves according to the positional correspondence of inputs.

a1<—x+y
b1<—a1+x
a; <« &,
C; < &

Qo P

w W N DN

Removing all ®s after\

a<—C3+a3

deconstruction gives
a completely valid
non-SSA program.

15-411/611

(O L i o ¥
+ +
RN

2

/|

4

© 2019-2025 Titzer/Goldstein

The program is now
directly executable
again.



15-411/611

Issue 1: Critical Edges

® Consider a simple triangle CFG.

b, — expl

if cond goto L

b, — exp2

© 2019-2025 Titzer/Goldstein

b3 <—(P (bl ,b2)
ret b3




Issue 1: Critical Edges

® Consider a simple triangle CFG.
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But wait, there’s a
bug in the SSA for
this program!

What’s the bug?

b, — expl

if cond goto L

b, — exp2

© 2019-2025 Titzer/Goldstein

b3 <—(P (bl ,b2)
ret b3




Issue 1: Critical Edges

® Consider a simple triangle CFG.

15-411/611

But wait, there’s a
bug in the SSA for
this program!

What’s the bug?

b, — expl

if cond goto L

2

b, — exp2

© 2019-2025 Titzer/Goldstein

b3<— (bl,bZ)
ret 3
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Issue 1: Critical Edges

® Consider a simple triangle CFG.

b, — expl

if cond goto L

b, — exp2

© 2019-2025 Titzer/Goldstein

b3 <—(P (b2 ,bl)
ret b3




Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the O.

b, — expl

if cond goto L

b, — exp2

T

ret b3
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Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the O.

b, ~ expl

b3'* b1

if cond goto L

b, — exp2
ret b3
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Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the O.

b, ~ expl

b, - b,

if cond goto L

b, — exp2
b3 — bZN
ret b3

Dynamic execution paths
15-411/611 © 2019-2025 Titzer/Goldstein




Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the O.

redundant | [P1 < exPl

move b3 - b1

Naive insertion can if cond goto L

introduce redundant code
on some execution paths.

15-411/611 © 2019-2025 Titzer/Goldstein



Issue 1: Critical Edges

® Consider a simple triangle CFG.

® \We insert moves in both predecessors and remove the O.

Naive insertion can
introduce redundant code
on some execution paths.
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Issue 1: Critical Edges

® Consider a more complicated CFG.

® \We insert moves in all predecessors and remove the O.

Naive insertion can

introduce redundant code
on some execution paths. /\
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Issue 1: Critical Edges

® Consider a more complicated CFG.

® \We insert moves in all predecessors and remove the O.

Naive insertion can u

introduce redundant code

on some execution paths. /\
A B
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Issue 1: Critical Edges

® Consider a more complicated CFG.

® \We insert moves in all predecessors and remove the O.

Naive insertion can
introduce redundant code
on some execution paths.

Can actually get really bad.
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Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.
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Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

T

\
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Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

e This block is the proper place for ®-resolution moves.
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Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an
empty block between.

e This block is the proper place for ®-resolution moves.

A critical edge is any edge that multiple successors
connects a block with multiple
successors to a block with X

multiple predecessors.
multiple predecessors
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Splitting Critical Edges

® To avoid redundant moves, split critical edges by inserting an

empty block between.

e This block is the proper place for ®-resolution moves.

Splitting all critical edges prior

4

multiple successors

to SSA deconstruction is easy. Ve

multiple predecessors M

15-411/611 © 2019-2025 Titzer/Goldstein




Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?
e For CFGs without loops, no.
e Let’s convince ourselves.

15-411/611 © 2019-2025 Titzer/Goldstein



Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s.

15-411/611

© 2019-2025 Titzer/Goldstein

X, < (xllxz)
Y, <@(y, ¥,)




Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s.
e Moves are inserted into predecessors.

15-411/611
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X3<— Xl

Y- ¥,

X, < (xllxz)
Y, <@(y, ¥,)




Issue 2: Ordering Moves
e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s.
e Moves are inserted into predecessors. P
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Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s. XD“

e Moves are inserted into predecessors. dom

e By SSA invariants, the definition of the X, A x
RHS of each move dominates the move. Y = X1

15-411/611 © 2019-2025 Titzer/Goldstein



Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?

e Consider a join with at least two ®s. <%

e Moves are inserted into predecessors. dom

e By SSA invariants, the definition of the X, h
RHS of each move dominates the move.

Vv

X, <—(p© x,)
Y,)
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Issue 2: Ordering Moves
e Does the order of ®-resolution moves matte?

e Consider a join with at least two ®s.
e Moves are inserted into predecessors. dom

e By SSAinvariants, the definition of the
RHS of each move dominates the move.

e [t cannot be the case that the LHS is live,
because previously there was only one
definition, below.
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Issue 2: Ordering Moves
e Does the order of ®-resolution moves matte?

e Consider a join with at least two ®s.
e Moves are inserted into predecessors. dom

e By SSAinvariants, the definition of the
RHS of each move dominates the move.

e [t cannot be the case that the LHS is live,
because previously there was only one
definition, below.

e Therefore we are only assigning to fresh
variables, and not overwriting anything.
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Issue 2: Ordering Moves
e Does the order of ®-resolution moves matte?

e Consider a join with at least two ®s.

e Moves are inserted into predecessors.

e By SSAinvariants, the definition of the
RHS of each move dominates the move.

e It cannot be the case that the LHS is live,
because previously there was only one
definition, below.

e Therefore we are only assigning to fresh
variables, and not overwriting anything.

e Therefore any order is fine.
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Issue 2: Ordering Moves
e Does the order of ®-resolution moves matte?

e Consider a join with at least two ®s.

e Moves are inserted into predecessors.

e By SSAinvariants, the definition of the
RHS of each move dominates the move.

e It cannot be the case that the LHS is live,
because previously there was only one
definition, below.

e Therefore we are only assigning to fresh
variables, and not overwriting anything.

e Therefore any order is fine.
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Issue 2: Ordering Moves

e Does the order of ®-resolution moves matter?
e For CFGs without loops, no.
e But what about loops?

15-411/611 © 2019-2025 Titzer/Goldstein



Issue 2: Ordering Moves

®s at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Aloop @ can be
defined in terms
of itself.

backedge
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Issue 2: Ordering Moves

loop header

Like any other
join, we insert
®-resolution
moves at
predecessors.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein



Issue 2: Ordering Moves

loop header

Like any other
join, we insert
®-resolution
moves at
predecessors.

With only one O,
there is no
problem yet.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein
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Issue 2: Ordering Moves
kl _—
R Like any join, a loop
header can have
multiple ®s.

loop header x, — ®(x,,x,) Because ®s can use
inductively defined
— &
Yy (¥,,¥5) versions of

themselves, they can
be recursive or even

X

1 mutually recursive.
y? — x2 +

1 backedge

© 2019-2025 Titzer/Goldstein
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Issue 2: Ordering Moves

ret x

X

y, — ¢(y,,¥,)

© 2019-2025 Titzer/Goldstein

A simple example:
swap of variables in
a loop.



Issue 2: Ordering Moves

After optimizations
such as copy
propagation, the ®s
can be mutually
recursive.

ret x, y, with x

15-411/611 © 2019-2025 Titzer/Goldstein
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Issue 2: Ordering Moves

ret x

x, — ®(x,y,)

y2 — Q(yl_lxg)

© 2019-2025 Titzer/Goldstein

After optimizations
such as copy
propagation, the ®s
can be mutually
recursive.

This is totally legal
and cool.
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Issue 2: Ordering Moves

ret x

Incorrect code

© 2019-2025 Titzer/Goldstein

SSA deconstruction
using the naive
move insertion will
always generate
incorrect code,
regardless of the
order.
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Issue 2: Ordering Moves

ret x

Incorrect code

© 2019-2025 Titzer/Goldstein

SSA deconstruction
using the naive
move insertion will
always generate
incorrect code,
regardless of the
order.
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Issue 2: Ordering Moves

ret x

© 2019-202

The reason is that
phi resolution moves
have parallel move
semantics.



Implementing Parallel Moves

e @ resolution moves must be done in parallel, without
overwriting old versions.
e One simple solution: introduce new temps again.

%o < Yo Works every time.
r N r N tl £
X y t, <V¥, Generates a lot of
xo yo generates t, < ¥, temporaries, b_ut
o el x o t maybe the register
* Y ’ ° llocator / co
? 2 X «— t a Py
*3 Y3 ' ' propagation can
0T *2 = 5 clean them up?
X; < 4

15-411/611 © 2019-2025 Titzer/Goldstein



Implementing Parallel Moves

e @ resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently.

r N r N
x0 y0
x1 «— yl
x2 y2
x3 y3

\ / \ /

15-411/611 © 2019-2025 Titzer/Goldstein



Implementing Parallel Moves

e @ resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently.

Notice that because

F F parallel moves
X y originate from SSA
0 0 .
5 v deconstruction,
w | < yl variables on the LHS
x2 2 appear only once on
IR EE) the LHS.

x0¢x1¢x2¢x3
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Implementing Parallel Moves

e @ resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently using LTG.

Location Transfer Graph

We can build a graph
RN RN where each node in
y the parallel moves
0
v gets a node, and 6
1 directed edges
represent moves.
Y3 % %
X, F X, ¥ X, ¥ X,

15-411/611 © 2019-2025 Titzer/Goldstein
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w N Rr O
<
N




Implementing Parallel Moves

e @ resolution moves must be done in parallel, without
overwriting old versions.
e Better solution: order moves more intelligently using LTG.

Location Transfer Graph
Variables may

F F appear multiple
X, Y, times on the RHS,
% y and may appear on @
<« | |y both LHS and RHS. ,J I
2 y2
X3 Y,

\ y \ y
XO¢X1¢X2¢X3 ;
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

r N r N a
. / . / a a
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

impossible

r N r N a
. / . / a a
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

R R
v | |, Gy ()
x, | | =%,
X X . .
2 1 . impossible to
X3 % @ have nested
\ 7 \ 7

cycles
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

r N r N
X, X, @ Can’t enter a cycle
x x anywhere
1|~ |%o
X2 x1
%3 %,
- 7 - 7
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

N N
X, X, 6 @ Can leave a cycle
X X thOUgh'
1| | %o
x2 xl
X, X, 6 a
8 7 8 7
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Location Transfer Graphs

e Alocation transfer graph represents a set of parallel moves.
e |t can be traversed to generate a legal move ordering.
e It's constrained:

O Every node in the graph has at most one incoming edge.

O  That implies the graph can only have simple cycles.

Also known as
“‘windmill graphs” [1]

r 3 r 3
x| |x, oS
Xl - XO
x2 x1
SIS I Cy Sy
8 7 8 7

[1] See “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

r N r N
ol _|¥ O
Xl — XO
SRS ()
\ / \ /

[1] See “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

o @
ol |Y (%)
U ()
- 7 - 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,

r N r N
cursor
x0 y0
Xl — XO
X2 x0
\ / \ /
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,

r N r N
x0 y0
X — | X
1 0 cursor
X2 x0
\ / \ /
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,
X — X

r N r N L 0

X, Yo

X | —|x .

1 0 emit

X, X,

\ S \ S
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,
I
I
— X — X
r N r N b L 0
stack , -
X, Yo
X171 %0
X, X,
\ S \ S
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,
|
|
\ - X «— X
r N r N L 0
stack , = X, — X,
%0 Y,
X171 %o
% %0
8 7 8 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack
r N r N xl - Xo
X, < %
X0 Yo
X, || %,
X, X0
. 7 . 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

stack ,=-——-,
I
|
r N r N \._ xl - Xo
emit X, < X,
%0 Yo X, < Y,
X171 %0
X, X,
. 7 . 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

cursor
@ Xl «— X

r N r N
X, < %
o Yo Xo < Yy
X117 [ %o
X, X0
\ 7 \ 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

r N r N
X, < %
o Yo Xo < Yy
X117 [ %o
X, X0
\ 7 \ 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

r N r N a
. / . / a a
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

) ) cursor
< (2] (@&
0 2
X X .J
1|« | %o
X, X
X, X, ° @
\ 7 \ 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

r N r N
x0 X2
x1 «— x0
X2 x1
X3 x0

\ / \ /
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

r 3 r 3
%0 %
Xl <] %o
X, X, cursor
%3 %0
8 7 8 7
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

Break cycle by
saving in a temp

r

K X X N
w N K O

r

I I N
o B O N
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

e Must break cycles with a temporary (or use swaps [1])

Break cycle by t, < x
saving in a temp,
overwriting, and
using the temp
instead.

=) =]
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

tO «— xo
X — X

r N r N 0 2
X — X
2 1

x0 x2

x1 «— x0

x2 x1

x3 x0

\ S \ S
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

tO «— xo
X «— X
Y Y emit 0 z
X, «— X
2 1
x0 X2 £
X «—
Xl - XO 1 0
X2 x1
X3 x0
\ y \ y
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.
e Must break cycles with a temporary (or use swaps [1])

tO «— xo
X — X
- N - N 0 2
X — X
2 1
x0 X2 t
X “«—
Xl - XO 1 0
X2 x1
X3 x0
. J . J
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

e Must break cycles with a temporary (or use swaps [1])

tO «— xo
X — X
r N r N 0 2
X — X
2 1
x0 X2 £
X “«—
Xl - XO 1 0
X, X, X, < to
X3 x0
\ S \ S
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Location Transfer Graphs

e Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

e Must break cycles with a temporary (or use swaps [1])

tO «— xo
X — X
r N r N 0 2
X — X
2 1
x0 X2 £
X “«—
Xl - XO 1 0
X, X, X, < to
X3 x0
\ S \ S
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SSA Elimination After Register Allocation

Breaking cycles in LTG is easy with a temporary

Before regalloc, temporaries are plentiful

If deconstructing after register allocation, all regs may be used
O How do we know? May need to save something from regalloc

It's possible to implement LTG with swaps and/or sequences of
Xor’s

Another option is to use a temporary slot

See paper for details:

O “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.
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Syntax-directed SSA Construction

e Is it possible to skip dominators/dominance frontier?

e “Single-Pass Generation of Static Single-Assignment Form for
Structured Languages” by Brandis and Mossenbock (1994).
O  https:/dl.acm.org/doi/10.1145/197320.197331

e Also done in my Virgil compiler
O https://aithub.com/titzer/viraqil
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https://dl.acm.org/doi/10.1145/197320.197331
https://github.com/titzer/virgil

