
15-411/15-611 Compiler Design

Ben L. Titzer and Seth Goldstein

SSA (2 of 2)

January 30, 2025

15-411/611 © 2019-2025 Titzer/Goldstein

Today

● Thinking in SSA: Local reasoning

● Maintaining SSA properties during optimization

● Deconstructing SSA

○ Two issues: critical edges and ordering moves

● Syntax-directed SSA generation

● Bonus: Virgil compiler’s SSA CFG

2

15-411/611 © 2019-2025 Titzer/Goldstein

Recap From Last Time

● SSA is an IR for analysis and optimization
● Every modern optimizing compiler uses it!
● Invariant: every variable defined statically once
● Φ-functions are a notational fiction for merging dataflow at joins
● Can build SSA using the dominator tree
● Iterated dominance frontier guides Φ placement
● Renaming step walks down dominator tree
● General algorithm handles all possible CFGs

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

4

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

join
A Φ merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.y4

WHAT?

WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ anyway?

5

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

join
A Φ merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.y4

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ (for a loop) anyway?

6

y1 ← …

y4 ← y3

y3 ← Φ(y1,y2,y4)

y2 ← … Φs at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Allows finding
induction
variables really
easily.

loop header

backedgeWHAT?

WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

What is a Φ (for a loop) anyway?

7

y1 ← …

y4 ← y3

y3 ← Φ(y1,y2,y4)

y2 ← … Φs at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Allows finding
induction
variables really
easily.

loop header

backedge

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
8

0

4

52

3

1

entry

exit

idomCFG

The dominance
frontier can be
determined by
looking at CFG
edges that
leave a
dominator
subtree to
non-dominated
nodes.

Dominance Frontier

15-411/611 © 2019-2025 Titzer/Goldstein

0

4

52

3

1

entry

exit
9

0

4

52

3

1

entry

exit

idomCFG

The dominance
frontier can be
determined by
looking at CFG
edges that
leave a
dominator
subtree to
non-dominated
nodes.

Dominance Frontier

WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Local Φ simplifications
○ y = Φ(x, x) ⇝ x
○ y = Φ(x, y) ⇝ x

WHAT?

WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Local Φ simplifications
○ y = Φ(x, x) ⇝ x 
○ y = Φ(x, y) ⇝ x 

A Φ can be
simplified if all inputs
are the same, or all
inputs are the same
or the Φ itself.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Constant propagation
○ x = 13;

y = x + 2;
z = func(x);
w = x - x;

y = 13 + 2;
z = func(13);
w = 13 - 13;

⇝ WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Constant propagation
○ x = 13;

y = x + 2;
z = func(x);
w = x - x;

y = 13 + 2;
z = func(13);
w = 13 - 13;

⇝

After SSA
construction, any
variable which is
assigned a constant
can be substituted
everywhere it
occurs.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Copy propagation
○ x = a;

y = x + 2;
z = func(x);
w = x - x;

y = a + 2;
z = func(a);
w = a - a;

⇝ WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Copy propagation
○ x = a;

y = x + 2;
z = func(x);
w = x - x;

y = a + 2;
z = func(a);
w = a - a;

⇝

After SSA
construction, any
variable which is
assigned a simple
copy can be
substituted
everywhere it
occurs.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Copy propagation
○ x = a;

y = x + 2;
z = func(x);
w = x - x;

y = a + 2;
z = func(a);
w = a - a;

⇝

After SSA
construction, any
variable which is
assigned a simple
copy can be
substituted
everywhere it
occurs.

Copies are vestigial.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Reasoning about value ranges of Φs
○ x = Φ(3, 7);

y = x > 0;
z = x == 12;
w = 33 / x;

y = true;
z = false;
w = 33 / x (safe);

⇝ WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Reasoning about value ranges of Φs
○ x = Φ(3, 7);

y = x > 0;
z = x == 12;
w = 33 / x;

y = true;
z = false;
w = 33 / x (safe);

⇝

Φ inputs represent
all the possible
values the phi could
take on across all
control flow.
Therefore some
conditions are
statically decidable.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Dominating conditions
○ if (x == 0) return x; ⇝ if (x == 0) return 0;

○ if (x != null) return x.f; ⇝ if (x != null) return x.f (safe);

○ if (x != 0) return 1000 / x; ⇝ if (x != 0) return 1000 / x;

WHAT?

WHAT?

WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Dominating conditions
○ if (x == 0) return x; ⇝ if (x == 0) return 0;

○ if (x != null) return x.f; ⇝ if (x != null) return x.f (safe);

○ if (x != 0) return 1000 / x; ⇝ if (x != 0) return 1000 / x;

Any branch can
assume the condition
is true or false on
the respective output
control flow edges.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Dominating conditions
○ if (x == 0) return x; ⇝ if (x == 0) return 0;

○ if (x != null) return x.f; ⇝ if (x != null) return x.f (safe);

○ if (x != 0) return 1000 / x; ⇝ if (x != 0) return 1000 / x;

Any branch can
assume the condition
is true or false on
the respective output
control flow edges.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

0

4

52
3

1

entry

exit

0

4

52

3

1

entry

exit

Dominator Tree

CFG

if (x > 0)
Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.

0

4

52
3

1

entry

exit

0

4

52

3

1

entry

exit

Dominator Tree

CFG

if (x > 0)

x > 0WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

0

4

52
3

1

entry

exit

0

4

52

3

1

entry

exit

Dominator Tree

CFG

if (x > 0)

x > 0 Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

0

4

52
3

1

entry

exit

0

4

52

3

1

entry

exit

Dominator Tree

CFG

if (x > 0)

x > 0x <= 0WHAT? Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

0

4

52
3

1

entry

exit

0

4

52

3

1

entry

exit

Dominator Tree

CFG

if (x > 0)

x > 0x <= 0 Any branch can
assume the condition
is true or false on the
respective output
control flow edges
and their
dominated blocks.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Branch folding
○ if (x == x) {

 y1 = a + 3;
} else {
 y2 = a + 5;
}
y3 = Φ(y1, y2)

if (true) {
 y1 = a + 3;
} else {
 y2 = a + 5;
}
y3 = y1

⇝ WHAT?

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

● Branch folding
○ if (x == x) {

 y1 = a + 3;
} else {
 y2 = a + 5;
}
y3 = Φ(y1, y2)

if (true) {
 y1 = a + 3;
} else {
 y2 = a + 5;
}
y3 = y1

⇝

Any branch with a
constant condition
can be folded and
edges removed from
the CFG.

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

Any branch with a
constant condition
can be folded and
edges removed from
the CFG.

0

4

52

3

1

entry

exit

if (x == x)

0

4

52
3

1

entry

exit

Dominator Tree

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

The entire dominator
subtree will become
dead and can be
removed.

0

4

52

3

1

entry

exit

true

0

4

52
3

1

entry

exit

Dominator Tree

✗
✗

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

The entire dominator
subtree will become
dead and can be
removed.

0

4

52

3

1

entry

exit

0

4

52
3

1

entry

exit

Dominator Tree

✗
✗

true

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

The entire dominator
subtree will become
dead and can be
removed.

0

4

5
3

entry

exit

Dominator Tree

0

4

5

3

entry

exit

true

15-411/611 © 2019-2025 Titzer/Goldstein

Thinking in SSA: Local Reasoning

To maintain SSA,
any Φs at join points
with dead
predecessors need
to be edited and
simplified.

0

4

5
3

entry

exit

Dominator Tree

0

4

5

3

entry

exit

true

Edit Φs

15-411/611 © 2019-2025 Titzer/Goldstein

Editing and simplifying Φs

34

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

join
A Φ merges multiple
versions of a variable at
a join point in the CFG.

Inputs positionally
correspond with
predecessor edges.y4

15-411/611 © 2019-2025 Titzer/Goldstein

Editing and simplifying Φs

35

y1 ← … y3 ← …

y4 ← Φ(y1,y2,y3)

y2 ← …

join
A Φ merges multiple
versions of a variable at
a join point in the CFG.

Dead predecessors
mean dead input values.y4

15-411/611 © 2019-2025 Titzer/Goldstein

Editing and simplifying Φs

36

y1 ← … y3 ← …

y4 ← Φ(y1, y3)
join

Dead predecessors
mean dead input values.

Simply edit the input
values out.

May lead to further
simplification.

y4

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

● Real machines don’t have Φ functions.
● Have to insert moves at predecessors.
● Mentioned earlier, but with huge caveats.
● We resolve those caveats today.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

● When during compilation to deconstruct SSA?
● There are two common choices: before or after regalloc.
● Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
IR

non-SSA
IR

Target
Program

SSA
construction

SSA
deconstruction regalloc

colored
SSA IR

regalloc SSA
deconstruction

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

● When during compilation to deconstruct SSA?
● There are two common choices: before or after regalloc.
● Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
IR

non-SSA
IR

Target
Program

SSA
construction

SSA
deconstruction regalloc

colored
SSA IR

regalloc SSA
deconstruction

Nice chordal interference graphs

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

● When during compilation to deconstruct SSA?
● There are two common choices: before or after regalloc.
● Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
IR

non-SSA
IR

Target
Program

SSA
construction

SSA
deconstruction regalloc

colored
SSA IR

regalloc SSA
deconstruction

Possibly
better code?

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA

● When during compilation to deconstruct SSA?
● There are two common choices: before or after regalloc.
● Regalloc before deconstruction is relatively new (2010s).

Source
Program

SSA
IR

non-SSA
IR

Target
Program

SSA
construction

SSA
deconstruction regalloc

colored
SSA IR

regalloc SSA
deconstruction

Deconstruction is more or
less the same either way.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert Φ-resolution moves and remove Φs.

a2 ← b + 2
c2 ← y + 1

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1
a3 ← a2

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x
a3 ← a1

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1
a3 ← a2

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x
a3 ← a1

Notice the alignment
of data flow and
control flow. The Φ
nodes represent this
explicitly in the IR.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1
a3 ← a2
c3 ← c2

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x
a3 ← a1
c3 ← c1

Each Φ introduces
one move into each
predecessor node.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1
a3 ← a2
c3 ← c2

a3 ← Φ(a1,a2)
c3 ← Φ(c1,c2)
a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x
a3 ← a1
c3 ← c1

Remove Φs after
inserting moves.

15-411/611 © 2019-2025 Titzer/Goldstein

Deconstructing SSA
● Insert moves according to the positional correspondence of inputs.

a2 ← b + 2
c2 ← y + 1
a3 ← a2
c3 ← c2

a4 ← c3 + a3

a1 ← x + y
b1 ← a1 + x
a3 ← a1
c3 ← c1

The program is now
directly executable
again.

Removing all Φs after
deconstruction gives
a completely valid
non-SSA program.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a simple triangle CFG.

49

b1 ← exp1
if cond goto L

b3 ←φ(b1,b2)
ret b3

b2 ← exp2

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a simple triangle CFG.

50

b1 ← exp1
if cond goto L

b3 ←φ(b1,b2)
ret b3

b2 ← exp2

But wait, there’s a
bug in the SSA for
this program!

What’s the bug?

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a simple triangle CFG.

51

b1 ← exp1
if cond goto L

b3 ←φ(b1,b2)
ret b3

b2 ← exp2

But wait, there’s a
bug in the SSA for
this program!

What’s the bug? hint

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a simple triangle CFG.

52

b1 ← exp1
if cond goto L

b3 ←φ(b2,b1)
ret b3

b2 ← exp2

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

53

b1 ← exp1
b3 ← b1
if cond goto L

b3 ←φ(b2,b1)
ret b3

b2 ← exp2
b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

54

b1 ← exp1
b3 ← b1
if cond goto L

ret b3

b2 ← exp2
b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

55

b1 ← exp1
b3 ← b1
if cond goto L

ret b3

b2 ← exp2
b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ.

Dynamic execution paths

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

56

b1 ← exp1
b3 ← b1
if cond goto L

ret b3

b2 ← exp2
b3 ← b2

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ.

Naïve insertion can
introduce redundant code
on some execution paths.

redundant
move

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a simple triangle CFG.

● We insert moves in both predecessors and remove the Φ.

Naïve insertion can
introduce redundant code
on some execution paths.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ.

Naïve insertion can
introduce redundant code
on some execution paths.

BA

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ.

Naïve insertion can
introduce redundant code
on some execution paths.

BA

AA

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 1: Critical Edges

● Consider a more complicated CFG.

● We insert moves in all predecessors and remove the Φ.

Naïve insertion can
introduce redundant code
on some execution paths.

B

BA

A

Can actually get really bad.

A B

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an
empty block between.

✗

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an
empty block between.

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an
empty block between.

● This block is the proper place for Φ-resolution moves.

✓

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an
empty block between.

● This block is the proper place for Φ-resolution moves.

A critical edge is any edge that
connects a block with multiple
successors to a block with
multiple predecessors.

✗

multiple successors

multiple predecessors

15-411/611 © 2019-2025 Titzer/Goldstein

Splitting Critical Edges

● To avoid redundant moves, split critical edges by inserting an
empty block between.

● This block is the proper place for Φ-resolution moves.

Splitting all critical edges prior
to SSA deconstruction is easy.

multiple successors

multiple predecessors

✓

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?
● For CFGs without loops, no.
● Let’s convince ourselves.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

● Consider a join with at least two Φs.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.

x1 ← …

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.

y1 ← …

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.
● It cannot be the case that the LHS is live,

because previously there was only one
definition, below.

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1
y3 ← y1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.
● It cannot be the case that the LHS is live,

because previously there was only one
definition, below.

● Therefore we are only assigning to fresh
variables, and not overwriting anything.

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ←φ(x1,x2)
y3 ←φ(y1,y2)

x3 ← x1 y3 ←
y1
y3 ← y1 x3 ←
x1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.
● It cannot be the case that the LHS is live,

because previously there was only one
definition, below.

● Therefore we are only assigning to fresh
variables, and not overwriting anything.

● Therefore any order is fine.

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?

x3 ← x1 y3 ←
y1
y3 ← y1 x3 ←
x1

● Consider a join with at least two Φs.
● Moves are inserted into predecessors.
● By SSA invariants, the definition of the

RHS of each move dominates the move.
● It cannot be the case that the LHS is live,

because previously there was only one
definition, below.

● Therefore we are only assigning to fresh
variables, and not overwriting anything.

● Therefore any order is fine.

dom

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

● Does the order of Φ-resolution moves matter?
● For CFGs without loops, no.
● But what about loops?

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

77

y1 ← …

y3 ← y2 +
1

y2 ← Φ(y1,y2)
loop header

Φs at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

A loop Φ can be
defined in terms
of itself.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

78

y1 ← …
y2 ← y1

y3 ← y2 +
1
y2 ← y3

y2 ← Φ(y1,y2)
loop header

Like any other
join, we insert
Φ-resolution
moves at
predecessors.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

79

y1 ← …
y2 ← y1

y3 ← y2 +
1
y2 ← y3

y2 ← Φ(y1,y2)
loop header

Like any other
join, we insert
Φ-resolution
moves at
predecessors.

With only one Φ,
there is no
problem yet.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

80

x1 ← …
y1 ← …

x3 ← y2 +
1
y3 ← x2 +
1

x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

loop header

Like any join, a loop
header can have
multiple Φs.

Because Φs can use
inductively defined
versions of
themselves, they can
be recursive or even
mutually recursive.

backedge

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

81

x1 ← …
y1 ← …

x3 ← y2
y3 ← x2

x2 ← Φ(x1,x3)
y2 ← Φ(y1,y3)

A simple example:
swap of variables in
a loop.

ret x2

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

82

x1 ← …
y1 ← …

x3 ← y2
y3 ← x2

x2 ← Φ(x1,y2)
y2 ← Φ(y1,x2)

After optimizations
such as copy
propagation, the Φs
can be mutually
recursive.

ret x2

Replace
x3 with y2
y3 with x2

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

83

x1 ← …
y1 ← …

x2 ← Φ(x1,y2)
y2 ← Φ(y1,x2)

After optimizations
such as copy
propagation, the Φs
can be mutually
recursive.

ret x2

This is totally legal
and cool.

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

84

x1 ← …
y1 ← …

x2 ← y2
y2 ← x2

x2 ← Φ(x1,y2)
y2 ← Φ(y1,x2)

SSA deconstruction
using the naïve
move insertion will
always generate
incorrect code,
regardless of the
order.

ret x2 ✗
Incorrect code

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

85

x1 ← …
y1 ← …

x2 ← y2
y2 ← x2

x2 ← Φ(x1,y2)
y2 ← Φ(y1,x2)

SSA deconstruction
using the naïve
move insertion will
always generate
incorrect code,
regardless of the
order.

ret x2
x2 y2

✗
Incorrect code

15-411/611 © 2019-2025 Titzer/Goldstein

Issue 2: Ordering Moves

86

x1 ← …
y1 ← …

x2 ← Φ(x1,y2)
y2 ← Φ(y1,x2)

The reason is that
phi resolution moves
have parallel move
semantics.

ret x2
x2 y2

x2
y2

y2
x2

←

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without
overwriting old versions.

● One simple solution: introduce new temps again.

x0
x1
x2
x3

←
y0
y1
y2
y3

t0 ← y0
t1 ← y1
t2 ← y2
t3 ← y3
x0 ← t0
x1 ← t1
x2 ← t2
x3 ← t3

generates

Works every time.

Generates a lot of
temporaries, but
maybe the register
allocator / copy
propagation can
clean them up?

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without
overwriting old versions.

● Better solution: order moves more intelligently.

x0
x1
x2
x3

←
y0
y1
y2
y3

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without
overwriting old versions.

● Better solution: order moves more intelligently.

x0
x1
x2
x3

←
y0
y1
y2
y3

Notice that because
parallel moves
originate from SSA
deconstruction,
variables on the LHS
appear only once on
the LHS.

x0 ≠ x1 ≠ x2 ≠ x3

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without
overwriting old versions.

● Better solution: order moves more intelligently using LTG.

x0
x1
x2
x3

←
y0
y1
y2
y3

We can build a graph
where each node in
the parallel moves
gets a node, and
directed edges
represent moves.

x0 ≠ x1 ≠ x2 ≠ x3

x0 x1

x2 x3

Location Transfer Graph

15-411/611 © 2019-2025 Titzer/Goldstein

Implementing Parallel Moves

● Φ resolution moves must be done in parallel, without
overwriting old versions.

● Better solution: order moves more intelligently using LTG.

x0
x1
x2
x3

←
y0
y1
y2
y1

Variables may
appear multiple
times on the RHS,
and may appear on
both LHS and RHS.

x0 ≠ x1 ≠ x2 ≠ x3

y0 y1

y2

Location Transfer Graph

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3

impossible

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x3
x0
x1
x2

x0

x2
x1

x3

impossible to
have nested
cycles

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x3
x0
x1
x2

x0

x2
x1

x3 Can’t enter a cycle
anywhere

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3 Can leave a cycle
though!

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs
● A location transfer graph represents a set of parallel moves.
● It can be traversed to generate a legal move ordering.
● It’s constrained:

○ Every node in the graph has at most one incoming edge.
○ That implies the graph can only have simple cycles.

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3

Also known as
“windmill graphs” [1]

[1] See “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

[1] See “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.

y0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

cursor

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

cursor

stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

cursor

stack

stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

emit

stack

stack
x1 ← x0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

stack

cursor

x1 ← x0
stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

stack

emit

x1 ← x0
x2 ← x0stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

stack

x1 ← x0
x2 ← x0cursor

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

stack

x1 ← x0
x2 ← x0
x0 ← y0

emit

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0

cursor

x1 ← x0
x2 ← x0
x0 ← y0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2

←
y0
x0
x0

x0

x2x1

y0 x1 ← x0
x2 ← x0
x0 ← y0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3
cursor

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3
stack

cursor

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3
stack

cursorstack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

x0

x2
x1

x3
stack

cursorstack

Break cycle by
saving in a temp

t0 ← x0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3
stack

emitstack

Break cycle by
saving in a temp,
overwriting, and
using the temp
instead.

t0 ← x0
x0 ← x2

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3
stack

emit

t0 ← x0
x0 ← x2
x2 ← x1

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3
emit

t0 ← x0
x0 ← x2
x2 ← x1
x1 ← t0

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3

cursor
t0 ← x0
x0 ← x2
x2 ← x1
x1 ← t0

stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3

emit
t0 ← x0
x0 ← x2
x2 ← x1
x1 ← t0
x3 ← t0

stack

15-411/611 © 2019-2025 Titzer/Goldstein

Location Transfer Graphs

● Post-order depth-first search (DFS) on this graph yields a legal
move ordering.

● Must break cycles with a temporary (or use swaps [1])

x0
x1
x2
x3

←
x2
x0
x1
x0

t0

x2
x1

x3

t0 ← x0
x0 ← x2
x2 ← x1
x1 ← t0
x3 ← t0

15-411/611 © 2019-2025 Titzer/Goldstein

SSA Elimination After Register Allocation

● Breaking cycles in LTG is easy with a temporary
● Before regalloc, temporaries are plentiful
● If deconstructing after register allocation, all regs may be used

○ How do we know? May need to save something from regalloc

● It’s possible to implement LTG with swaps and/or sequences of
xor’s

● Another option is to use a temporary slot
● See paper for details:

○ “SSA Elimination after Register Allocation” by Pereira and Palsberg, 2009.

15-411/611 © 2019-2025 Titzer/Goldstein

Syntax-directed SSA Construction

● Is it possible to skip dominators/dominance frontier?
● “Single-Pass Generation of Static Single-Assignment Form for

Structured Languages” by Brandis and Mössenbock (1994).
○ https://dl.acm.org/doi/10.1145/197320.197331

● Also done in my Virgil compiler
○ https://github.com/titzer/virgil

https://dl.acm.org/doi/10.1145/197320.197331
https://github.com/titzer/virgil

