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Today
® Trivial SSA
® (-functions
® Dominance
® Placement & Renaming

® Bonus SSA in practice?
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SSA

@® Static single assignment is an intermediate representation (IR)
where every variable has only one definition

O Single static definition
O (Could be in a loop which is executed dynamically many times.)

® ¢-functions used at CFG join points
® All definitions dominate uses

® Variable names don’t matter; IR implementation is literally nodes
in a graph that point to each other
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Advantages of SSA

® Makes def-use-chains explicit

® Makes dataflow optimizations more robust

O Easier to get right
O Multiple optimizations can compose

O Applies to more places

® Improves register allocation

O Makes building interference graphs easier
O Easier register allocation algorithm

O Decoupling of spill, color, and coalesce

® For most programs reduces space/time requirements

O Smaller IR, faster optimizations
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Implications of single definition

® Never have to worry about a variable being overwritten

O Before SSA, compilers had to worry about variable names and redefinitions
O A“node” in SSA IR represents a computation, rather than a storage location

® Improves pattern-matching optimizations

O Constant propagation (y =13; x+y » -)
O Constant folding (3 +5 ~ .)

O Strength reduction (x + 0 » .)

O Algebraic simplification (x +y - x » .)

® Improves reasoning across control flow

® Think of it as a “bulk solution” to many forward dataflow problems
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Trivial SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all live variables.

X « 1 xl(_l
y « X y « 2 q Y, — % ‘Y/zHZ
Z —y + X

Z<—y3+x
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Trivial SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all live variables.

X<—1

‘_le
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Trivial SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all live variables.
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® Each assignment generates a fresh variable.

Minimal SSA

® At each join point insert ® functions for all variables with multiple
outstanding defs.
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X<—1

/\

y « 2 q

<—x1J

Z<—y+x
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Minimal SSA

® Each assignment generates a fresh variable.

® At each join point insert ® functions for all variables with multiple
outstanding defs.

X<—1

SO0

Z<—y+x

Z<—y3'|'x
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Handling cyclic control flow

e Introduce @-functions to handle joins in CFG

e Loops have joins too!

X — ..

while(x < 100) {
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X — ..

if (x >= 100) goto end

loop:

if (x < 100) goto loop

end:
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Handling cyclic control flow

® SSArequires single

X — ..
definition for each use v

® |Introduce ¢-functions if (x >= 100) goto end
loop:

to handle joins at loop

headers too X —x + 1

if (x < 100) goto 1loop
end:
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Handling cyclic control flow

® SSArequires single X .
definition for each use Y « .
if (x >= 100) goto end

® |Introduce @-functions /\'/—\

to handle joins at loop loop: N
headers too %  x + 1

y «y +1
i;:xlm)wmem if (x < 100) goto loog/

loop:
X ¢« x +1
y<«<y+1
if (x < 100) goto loop end:
end:
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Handling cyclic control flow

® SSArequires single X, .
definition for each use Y, < -
if (x, >= 100) goto end

® [ntroduce ¢-functions /\’/\

to handle joins at loop loop: AN

headers too -

x3<—x2+1

X < .

v« . Y; < ¥, +1

if (x >= 100) goto end if (%, < 100) goto loop /
loop:

X ¢« x +1

y<«<y+1

if (x < 100) goto loop end:
end:
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Handling cyclic control flow

® SSArequires single X, .
definition for each use Y, < -
if (x, >= 100) goto end

® [ntroduce ¢-functions /\’/\

to handle joins at loop loop: N
headers too -
x3 — x2 + 1
v e Yy ¥, + 1
if (x >= 100) goto end if (x, < 100) goto loop
loop: ° 3 /
X < x + 1
y<«<y+1
if (x < 100) goto loop end:
end:
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Handling cyclic control flow

® SSArequires single X, .
definition for each use Y, < -
if (x, >= 100) goto end

® [ntroduce ¢-functions /\’/\

to handle joins at loop loop: AN

headers too -

x3<—x2 + 1
X <« ..
Yy €«

k. .
if (x >= 100) goto end (x, < 100) goto 1loop
loop: 3 4///

NPER JOIN!!!

y<«<y+1
if (x < 100) goto loop
end:
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Handling cyclic control flow

® SSArequires single X, .
definition for each use Y, < -
if (x, >= 100) goto end

® [ntroduce ¢-functions /\’/\

to handle joins at loop loop: AN

headers too -

x3<—x2+1

X <« ..
v« . Y; < ¥, +1
if (x >= 100) goto end if (%, < 100) goto loop

loop: /
X ¢« x + 1 W
y<«<y+1
if (x < 100) goto loop end:

- -
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What is a ® anyway?

® O is afictional operator; it merges multiple definitions into a
single definition at a join in the control flow graph.

® At a BB with p predecessors, there are p inputs to the ®.

X — <I>(x1, X X

new 37 7 xp)

2/

® \What do the inputs to a ® mean?

O The inputs to ¢-functions positionally correspond to the incoming
control-flow edges.

O They relate control flow merging and data flow merging.
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What is a ® anyway?

join

Join points in the
control flow graph
may require insertion
of ® functions.
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What is a ® anyway?

join

Join points in the
control flow graph
may require insertion
of ® functions, if
there are different
versions of the
variable arriving.
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What is a ¢ anyway?

yl — .. yg — .. Y; < -

join

y, — ¢ (Yl 1Y, 'Ys) Each incoming control
edge supplies a
corresponding data
value for the ® from
the predecessor.
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What is a ® anyway?

join

y, — @ ( AeA@ Each incoming control

edge supplies a
corresponding data
value for the @ from
the predecessor.

15-411/611 © 2019-2025 Titzer/Goldstein



What is a ® anyway?

Uses of the variable
after the join get the
new value, not the old
value(s)!
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Another Loop Example

a 0

\4’_\

b-a+1 q
c—~c+Db

a b * 2
a <N

[~

return c
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Another Loop Example

a 0

b-a+1
c—~c+Db
a b * 2
a <N

return c
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What is a @ (for a loop) anyway?

© 2019-2025 Titzer/GOTOSEIN

®s at loop
headers relate
the dataflow on a
loop backedge
with the control
flow.

Allows finding
induction
variables really
easily.



® Each assignment generates a fresh variable.

Minimal SSA

® At each join point insert ® functions for all variables with multiple
outstanding defs.
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X<—1

/

!

y <« 2 q

<—x1J

Z<—y+x
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When do we insert ©?

If there is a def of a in block
5, which nodes need a @()?
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When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

e There is a block y # x containing a def of b X p o expl
*There is a nonempty path P of edges from x to z if cond goto L

e There is a nonempty path Pyz of edges fromytoz

*Paths P _and P do not have any node in
common other than z, and... b — exp2

*The node z does not appear within both P _and

P ' h d, th h it '
. prior to the end, though it may appear in one rot b
or the other.
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When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X! |p  expl
*There is a nonempty path P of edges from x to z if cond goto L

e There is a nonempty path Pyz of edges fromytoz

*Paths P _and P do not have any node in Y.
common other than z, and... b — exp2

*The node z does not appear within both P _and

P ' h d, th h it '
. prior to the end, though it may appear in one rot b
or the other.

15-411/611 © 2019-2025 Titzer/Goldstein



When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X:

b - expl

*There is a nonempty path P of edges from x to z if cond goto L
e There is a nonempty path Pyz of edges fromytoz *
ePaths P and Pyz do not have any node in Y.

common other than z, and... b — exp2 *
*The node z does not appear within both P _and *

Pyz prior to the end, though it may appear in one 7. |ret b

or the other. '
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When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X:

b - expl
*There is a nonempty path P of edges from x to z if cond goto L
eThere is a nonempty path Pyz of edges fromytoz
ePaths P and Pyz do not have any node in g —
common other than z, and... < exp
*The node z does not appear within both P _and

Pyz prior to the end, though it may appear in one
or the other.
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When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

e There is a block y # x containing a def of b X: p o expl
*There is a nonempty path P of edges from x to z if cond goto L
e There is a nonempty path Pyz of edges fromytoz | *
ePaths P _and PyZ do not have any node in g "
common other than z, and... - P *
*The node z does not appear within both P _and

Pyz prior to the end, though it may appear in one
or the other.
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When do we insert ¢?
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X:

b - expl
*There is a nonempty path P of edges from x to z if cond goto L
e There is a nonempty path Pyz of edges fromytoz | *
ePaths P and Pyz do not have any node in g —
common other than z, and... — ©Xp *
*The node z does not appear within both P _and

Pyz prior to the end, though it may appear in one
or the other.
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lterative Insertion

® Implicit def of every variable in start node
® |Inserting ®-function creates new definition

® \While there 3 x,y,z that

O satisfy path-convergence criteria

O and z does not contain ®-function for b

® do

O insertb « ®(b,b,b,...,b ) at node z, z having n predecessors.
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Dominance Property of SSA

® |nh SSA definitions dominate uses®*.

O Ifx isusedin x — ®(..., x, ...), then

BB(x.) dominates i" predecessor of BB(®)

O Ifxisusediny « ... x...
then BB(x) dominates BB(y)

® \We can use this for an efficient algorithm to convert to SSA
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Dominance Property of SSA

® |nh SSA definitions dominate uses®*.

O Ifx isusedin x — ®(..., x, ...), then

BB(x.) dominates i" predecessor of BB(®)

O Ifxisusediny « ... x...
then BB(x) dominates BB(y)

® \WVe can use this for an efficient algorithm to convert to SSA

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.
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Dominance Property of SSA

® |nh SSA definitions dominate uses®*.

O Ifx isusedin x — ®(..., x, ...), then

BB(x.) dominates i" predecessor of BB(®)

O Ifxisusediny « ... x...
then BB(x) dominates BB(y)

® \We can use this for an efficient algorithm to convert to SSA

*well akshully, this only true for strict SSA**,
where all variables are defined before they are used.
**well double akshully, we can insert assignments to

convert any program to strict SSA
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Side trip: Dominators
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Dominators

® adomb entry

O block a dominates block b if every possible execution path from

entry to b includes a
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Dominators

® adomb entry

O block a dominates block b if every possible execution path from

entry to b includes a
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Dominators

® adomb entry

O block a dominates block b if every possible execution path from

entry to b includes a

B entry dominates everything

B 0 dominates everything but entry

B 1 dominates 2 and 1 2
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Dominators

® adomb entry

O block a dominates block b if every possible execution path from

entry to b includes a

Dominators are useful in:
e Dataflow analysis
Constructing SSA 2
Identifying “natural” loops

Code motion
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Definitions

® asdomb |

O If a and b are different blocks and a dom b, we say that a

strictly dominates b

® aijdomb

O If a sdom b, and there is no ¢ such that a sdom c and ¢ 2

sdom b, we say that a is the immediate dominator of b
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Properties of Dom

e Dominance is a partial order on the blocks of the flow graph, i.e.,
o 1. Reflexivity: a doma for all a
o 2. Anti-symmetry: adom b and b dom a impliesa="b

o 3. Transitivity: a dom b and b dom ¢ implies a dom ¢

e NOTE: there may be blocks a and b such that
neither a dom b or b dom a holds.

e [he dominators of each node n are linearly ordered by the dom
relation. The dominators of n appear in this linear order on any
path from the initial node to n.
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Computing dominators

® \WVe want to compute D[n], the set of blocks that dominate n

Initialize each D[n] (except D[entry]) to be the set of all blocks, and
then iterate until no D[n] changes:
Dlentry] = {entry}

D[n] = {n} U ( M D[p]) , for n # entry

pepred(n)
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Example

Initialization
block D[n]
entry {entry}
0 {entry,0,1,2,3,4,5,exit}
1 {entry,0,1,2,3,4,5,exit}
2 {entry,0,1,2,3,4,5,exit}
3 {entry,0,1,2,3,4,5,exit}
4 {entry,0,1,2,3,4,5,exit}
5 {entry,0,1,2,3,4,5,exit}
exit {entry,0,1,2,3,4,5,exit}

15-411/611
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Example

e : entry
Initialization First Pass
block D[n] D[n] |
entry {entry} {entry}
0 {entry,0,1,2,3,4,5,exit) {0,entry}
1 {entry,0,1,2,3,4,5 exit) {1,0,entry}
2 {entry,0,1,2,3,4,5,exit} {2,1,0,entry}
3 {entry,0,1,2,3,4,5,exit} {3,1,0,entry}
4 {entry,0,1,2,3,4,5,exit} {4,0,entry}
5 {entry,0,1,2,3,4,5,exit} {5,4,0,entry}  ~ 2
exit {entry,0,1,2,3.4,5,exit} 1exit,3,1,0,entry}
Update rule: Plnl ={n}U D], J
pepred(n) exit

15-411/611 © 2019-2025 Titzer/Goldstein



Example

First Pass Second Pass entry
block D[n] D[n] L
entry {entry} {entry}
0 {0,entry} {0,entry}
1 {1,0,entry} {1,0,entry}
2 {2,1,0,entry} {2,1,0,entry}
3 {3,1,0,entry} {3,0,entry}
4 {4,0,entry} {4,0,entry}
) {5,4,0,entry} {514lolentrY} B 2
exit {exit,3,1,0,entry) {exit,3,0,entry}
Update rule: [n] = {n}U (N Dlnl|. J
pepred(n) exit
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Example

Second Pass Third Pass entry
block D[n] D[n] |
entry {entry} {entry}

0 {0,entry} {0,entry}

1 {1,0,entry} {1,0,entry}

2 {2,1,0,entry} {2,1,0,entry}

3 {3,0,entry} {3,0,entry}

4 {4,0,entry} {4,0,entry}

5 {5,4,0,entry} {5,4.0,entry} 2

exit {exit,3,0,entry} {exit,3,0,entry}

Update rule: D[n] = {n} U (| Dpl|. J

pepred(n) exlt
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Computing dominators

® |terative algorithm is O(n’e)
O assuming bit vector set

O choosing a good iteration order matters

® More efficient algorithm due to
Lengauer and Tarjan

o(e,n) 1s inverse Ackermann
O 0O(e-ale,n))
much more complicated

O
O Books provide simple algorithms that are fast in practice(faster than Tarjan algorithm for realistic CFGs)
O

For a clever algorithm see: “A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and Kennedy
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https://www.cs.rice.edu/~keith/EMBED/dom.pdf

Immediate dominators

e Let sD[n] be the set of blocks that strictly dominate n, then
sD[n] = D[n] - {n}

e To compute iD[n], the set of blocks (size <= 1) that
immediately dominate n

o Set iD[n] = sD[n]
e Repeat until no iD[n] changes:
iD[n] = iD[n] — U(sD[d])

d € iD[n]
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Example

CFG
Initialization First Pass entry
block iD[n]=sD[n] iD[n] |
entry {} {}
0 {entry} {entry}
1 {0,entry} {0}
2 {1,0,entry} {1}
3 {0,entry} {0}
4 {0,entry} {0}
5 {4.0,entry} 4} 2
exit {3,0,entry} {3}
Update rule: iD[n] =iD[n] - U (SD[d]) 4
deiD[n] exlit
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Dominator Tree

In the dominator tree the initial node is the
entry block, and the parent of each other
node is its immediate dominator.

entry
block iD[n] l
entry {}
0 {entry} 0
1 {0}
2 {1}
. o 1 3 4
4 (0} l, | |
5 ) 2 | exit [ g
exit {3}

Dominator Tree
© 2019-2025 Titzer/Goldstein



Post-Dominance

® Block a post-dominates b (a pdom b) if every path \

from a to the exit block includes b

® pdom on CFG is the same as dom on the reverse

(all edges reversed) CFG

® 0 post-dominates ? 2

1 post-dominates ?
4 post-dominates ?
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Dominance Frontier

\ ® zisin the dominance frontier of x If z is the first

node we encounter on the path from x which x does
not strictly dominate.

® For some path from node x to z,
X— ...—>y—>1Z
where x dom y but not x sdom z.

® Intuitively, the dominance frontier consists of nodes
“just outside the dominator tree”
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Dominance Frontier

\ ® zisin the dominance frontier of x If z is the first

node we encounter on the path from x which x does
not strictly dominate.

® For some path from node x to z,
X— ..oy —>2Z
where x dom y but not x sdom z.

® Dominance frontier of 1? {3}

® Dominance frontier of 2? {3}

J ® Dominance frontier of 4? {3,4}

15-411/611 © 2019-2025 Titzer/Goldstein



CEG idom

entry entry
x |
0
1
2 2
3
’ |
exit exit
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CEG idom

entry entry
x |
0
1
v N\
N\
2 2 N
\
3
‘ |
exit exit
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CEG idom

entry entry
x |
0
1
v N\
N\
2 2 PN
N - \
3
7
exit exit
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CEG idom

entry entry
x |
0
1 4
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CEG idom
entry entry
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Calculating the Dominance Frontier

® | et dominates[n] be the set of all blocks which block n dominates

O subtree of dominator tree with n as the root

® The dominance frontier of n, DF[n] is

DF[n] = U succ(s) - dominates[n] - {n}

s € dominates[n]
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Recap

e adomb
o every possible execution path from entry to b includes a
e asdomb
o adombandal=b
e aidomb
o ais “closest” dominator of b
e apdomb
o every path from a to the exit block includes b
e Dominator trees
e Dominance frontier
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Back to inserting ®s
Require a ¢-function for variable b at node z of the flow graph:

eThere is a block x containing a def of b

eThere is a block y # x containing a def of b X:

b - expl
*There is a nonempty path P  of edges from x to z if cond goto L
e There is a nonempty path Pyz of edges fromytoz | *
*Paths P _and PyZ do not have any node in 1\3/ —
common other than z, and... - EXp *

*The node z does not appear within both P _and \ !¢

Pyz prior to the end, though it may appear in one
or the other. £
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Using Dominance for SSA Construction

® Dominance-Frontier Criterion: Whenever node x contains a

definition of some variable a, then any node z € DF(x), z needs
a ®-function for a.

® Iterated dominance frontier: since a ®-function itself is a

definition, we must iterate the dominance-frontier criterion until
there are no nodes that need ®-functions.
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Dominance
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Dominance Frontier

CFG D-Tree
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Dominance Frontier &
path-convergence

1111111111



Dominance Frontier Criterion
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Dominance Frontier Criterion
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Dominance Frontier Criterion
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Dominance Frontier Criterion

15-411/611



Dominance Frontier Criterion
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Computing Dominance Frontier

® \We just covered a O(n®) iterative algorithm — embarrassing!

® There’s also a near linear time algorithm due to Tarjan and
Lengauer (Chap 19.2)

O SSA construction therefore near linear

O SSA form makes many optimizations linear (no need for iterative data flow)
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Using DF to Place ()

e Gather all the defsites of every variable
e Then, for every variable
o foreach defsite

B foreach node in DF(defsite)
® if we haven’t put ®() in node put one in

@ |[f this node didn’t define the variable before: add this node to the defsites

® This essentially computes the Iterated Dominance Frontier on
the fly, creating minimal SSA

15-411/611 © 2019-2025 Titzer/Goldstein



Using DF to Place &)

foreach node n {
foreach variable v defined in n {

orig[n] U= {v}
defsites[v] U= {n}
}
foreach variable v {
W = defsites|[v]
while W not empty {
foreach y in DF[n]
if y € PHI[v] {
insert “v ~ é(v,v,.)” at top of y
PHI[v] = PHI[v] U ({y}
if v € orig[yl: W=W U ({y}

15-411/611 © 2019-2025 Titzer/Goldstein



Computing SSA

1

k < 1007

j < 207?

/4\;

return j

D-tree
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Compute D-tree

k < 1007

/4\;

j < 207 return j
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Compute Dominance Frontier (DFs)

1

k < 1007

/4\;

j < 207?

return j

N O b Wi e

DFs

{1

{2}
{2}
{1

{7}
{7}
{2}



Compute defsites

DFs
1 1
j o1 2 {2}
k -« 0
3 12
==l
k < 1007
A 5 {7}
4
j < 207 return j 6 {7}
1
k «k + 2

orig[n] defsites[v]

1
2
3
4
5
6
7

{Lpky 1 {1}

U j 11,56}
{} k {1,5,6}
U

U,k}

U,k}

U

var j: W={1,5,6}



Inspect variables

DFs orig[n] defsites[v]
) 1 1 {iik i {1
3 -1 2 {2} 2 {} j {1,5,6}
- 3 {2 3 {} k {1,5,6}
k < 100? 4 {} 4 ? k}
5 {7} S5 4
J <mrn . 6 {7} 6 {J;k}
y — 7 {2y 7 {}
5
k —k + 2 var j: W={1,5,6}




Insert ¢ for |

DFs orig[n] defsites[v]
I 14 1 {iik i 1)
j 1 2 {2y 2 {} j 11,56}
_ k-0 3 {21 3 {} k {1,5,6}
k < 100? 4 {} 4 ?k}
5 {7} 5 1,
J <mrn . 6 {7} 6 {J;k}
y — 7 {2y 7 {}
T
k —k + 2 var j: W={1,5,6}

S DF[1] U DF[5] U DF[6] ={7}




Insert ¢ for |

DFs
Y 1 g
j o1 2 {2}
k -0
3 12
==l
k < 1007?
A 5 {7}
4
j < 207 return j 6 {7}
—
k «k + 2

orig[n] defsites[v]

1
2
3
4
5
6
7

{Lpky 1 {1}

U j 11,56}
{} k {1,5,6}
U

U,k}

U,k}

U

var j: W={1,5,6}



Handle new write for |

1

k < 1007

/4\;

j < 207 return j
T
k — k +

DFs

i

{2}
{2}
i

{7}
{7}
{2}

N O o~ WWN B

orig[n] defsites[v]

1
2
3
4
5
6
7

{Lpky 1 {1}

U j 11,56}
U k 11,5,6}
U

U,k}

U,k}

U

var j: W={1,5,6,7}

DF[1] U DF[5] U DF[6] U DF[7]

={7,2}



Insert more ¢ for j

DFs

i

{2}
{2}
i

{7}
{7}
{2}

N O o~ WWN B

orig[n] defsites[v]

1
2
3
4
5
6
7

{Lpky 1 {1}

U j 11,56}
U k 11,5,6}
U

U,k}

U,k}

U

var j: W={1,5,6,7}

DF[1] U DF[5] U DF[6] U DF[7]

={7,2}



Update writes for | oF
S

i

{2}
{2}
i

{7}
{7}
{2}

1

N O o~ WWN B

={7,2}

orig[n] defsites[v]

1
2
3
4
5
6
7

{Lpky 1 {1}

U j 11,56}
U k 11,5,6}
U

U,k}

U,k}

U

var j: W={1,5,6,7,2}

DF[1] U DF[5] U DF[6] U DF[7] U DF|2]



Renaming Variables

® Placing ¢ is not enough, need to update names

® \Walk down the dominator tree, renaming variables incrementally

® Replace uses with most recent renamed def

O For straight-line code this is easy

O If there are branches and joins?
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Renaming for Straight-Line Code

for each variable a:

® Need to extend for ¢-functions. =0

Stack[a] = [0]

® Need to maintain property that

renameBasicBlock(B):
definitions dominate uses. for each instruction S in block B:
for each use of a variable x in S:
i = top(Stack[x])
replace the use of x with x,
for each variable a that S defines
count[a] = Count[a] + 1
i = Count[a]
push i onto Stack[a]

replace definition of @ with a,
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Renaming in CFG

rename(n):

renameBasicBlock(n)

for each successor Y of n, where n is the j™ predecessor of Y:

for each phi-function fin Y, where the operand of f'is ‘a’
1= top(Stack[a])
replace j" operand with a,
for each child of n in D-tree, X:
rename(X)
for each instruction S € n:
for each variable v that S defines:

pop Stack[ V]
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Rename | variables

defsites[v]
1} — i {1}
o1 D i {1,56,7,2}
k -0
k {1,5,6
I < 2(3,3) 2
iy =S > &
? return j
L OOC
k — k + 2




Rename | variables

defsites[v]
1 . cursor i {1}
@D i {1,5,6,7,2}
k {1,5,6}
2
— 3 @&
return j
L= OOC
k —« k + 2




Rename | variables

defsites[v]
i {1}
@) i {1,5,6,7,2}
cursor k {115;6}
2
3 W




Rename | variables

defsites[v]
1. i {1}
@) i {1,5,6,7,2}
cursor k {1,5,6}
2
| @ @
? return j
L= OOC
k —« k + 2




Rename j vari
ename j variables defsites[v]

1. -
i {1,5,6,7,2}
k {1,5,6}




Rename j vari
ename j variables defsites[v]

1. -
i {1,5,6,7,2}
k {1,5,6}




Rename j vari
ename j variables defsites[v]

1. -
i {1,5,6,7,2}
k {1,5,6}




Rename j variables

defsites[v]

i {1}

j {1,5,6,7,2}
k {1,5,6}




Rename j variables

defsites[v]

i {1}

j {1,5,6,7,2}
k {1,5,6}




Rename j variables

defsites[v]

i {1}

j {1,5,6,7,2}
k {1,5,6}




Rename j variables

defsites[v]

i {1}

j {1,5,6,7,2}
k {1,5,6}




Rename j vari
ename j variables defsites[v]

1. o
i {1,5,6,7,2}
k {1,5,6}




Flavors of SSA

® Minimal SSA

O at each join point with >1 outstanding definition insert a ¢-function

O Some may be dead

® Pruned SSA

O only add live @-functions

O must compute LIVEOUT

® Semi-pruned SSA

O Same as minimal SSA, but only on names live across more than 1 basic block
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Summary

® SSAis a useful and efficient IR.
® Definitions dominate uses

® Constructing SSA can be efficient

(No need to do Lengaur-Tarjan Algorithm, instead see A Simple,
Fast Dominance Algorithm by Cooper, Harvey, and Kennedy )

® Don’t do any optimizations yet!
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https://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://www.cs.rice.edu/~keith/EMBED/dom.pdf

Next time

More practice building SSA
Constant propagation with SSA
Deconstructing SSA

SSA in practice
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