Lexical Analysis
Parsing

15-411/15-611 Compiler Design
Seth Copen Goldstein

February 5, 2026

Reminders

e Office Hours are a valuable resource!

e Please name your tests properly, e.g.,
<team>-<file>.|2

e Please make sure partners are on
submissions.

Your TAs are nicer than | am.

Mislabeled tests and lack of partner on
submission will lead to lower score.

15-411/611 © 2019 Goldstein

Today

e Lexing
e Parsing

© 2019 Goldstein

Today — part 1

_exing

-lex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

Compiler Phases

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

— Strips out “unnecessary characters”

e comments
e whitespace
— Classify tokens by type
e keywords
e numbers
e punctuation
e identifiers

— Track location
— Associate with syntactic information

15-411/611 © 2019 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char¥*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{

static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

— More concise
— Easier to parse

’

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019 Goldstein 10

Lexical Analyzers

e Input: stream of characters
e Qutput: stream of tokens (with information)

e How to build?
— By hand is tedious
— Use Lexical Analyzer Generator, e.g., flex

e Define tokens with regular expressions

e Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.

15-411/611

FLEX

e Define tokens
e Generate scanner code

e Main interface: yylex () which reads
from yyin and returns tokens til EOF

Sequence
of

tokens
Lex.| file

Or lex
Source program

Input Stream

© 2019 Goldstein

12

2. Flex Program Format

* A flex program has three sections:

Definitions
RE rules & actions

User code

wc As a Flex Program

3 {
int charCount=0, wordCount=0, lineCount=0;
%}
word [~ \t\n]+
%%
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
{charCount++;}
%%
int main (void) {
yylex();
printf (“Chars %d, Words: %d, Lines: %d\n”,
charCount, wordCount, lineCount);
return O;

14

A Flex Program

int charCount=0, wordCount=0, lineCount=0; I)I)efhlﬁﬂJHS

word [~ \t\n]+

{word} {wordCount++; charCount += yyleng;
'|S n] = {charCount++; lineCount++;} 2) Rules & Actions

{charCoygnt++;}

o
int mgip (void) {
—mbyylex () ;
printf (“Chars %d, Words: %d, Lines: %d\n”, 3) User Code

charCount, wordCount, 1lineCount)

return 0 ; —

15

Section 1: RE Definitions

* Format:
name RE
* Examples:
digit [0-9]
letter [A-Za-Zz]
id {letter} ({letter}|{digit})*

word [~ \t\n]+

Regular Expressions in Flex

X matc
\. matc
"string" matc

matc
matc
matc
(xyz] matc
(Axyz] matc
a-2z] matc

n the char x

n the char.

n contents of string of chars
n any char except \n

n beginning of a line

n the end of a line

n one char x,y, orz

N any char except x, y, and z

noneofatoz

Regular Expressions in Flex (cont)

r*

r+

r"?

rl r2
rl | r2
(r)

rl \ r2
{ name }

closure (match O or more r's)
positive closure (match 1 or more r's)
optional (match O or 1)

match rl then r2 (concatenation)
match rl or r2 (union)

grouping

match r1 when followed by r2

match the RE defined by name

Some number RESs

[0-9] A single digit.
[0-9]+ An integer.
[0-9]+ (\.[0-9]+)? Aninteger orfp number.

[+-1? [0-9]+ (\.[0-9]+)? ([eE][+-]1?[0-9]+)>
Integer, fp, or scientific notation.

Section 2: RE/Action Rule

e Arule has the form:

name { action }
re { action }

— the name must be defined in section 1
— the action is any C code

* |f the named RE matches™ an input

character sequence, then the C code is

executed. * Some caveats here

Rule Matching

e Longest match rule.

“int” { return INT; }
“integer” { return INTEGER; }

e If rules can match same length input,
first rule takes priority.

“int” { return INT, }
[a-z]+ { return ID; }
[0-9]+ { return NUM; }

© 2019 Goldstein

Section 3: C Functions

* Added to end of the lexical analyzer

Removing Whitespace

whitespace
%%
name -

{whitespace}

RE —

%%

int main(void)
{

yylex();
return O;

[\t\n]

/ empty action

14

{ ECHO; }

T

ECHO macro

23

, Printing Line Numbers
°o{

int lineno =1; the matched text
%} /
%%
A(.*)\n { printf("%$4d\t%s", lineno, yytext);
lineno++;}

%%
int main(int argc, char *argvi])
{

// appropriate arg processing & error
handling,

yyin = fopen(argv[l], "r");
yylex();
return 0;

24

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

Under The Covers

e How to go from REs to a working scanner?

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

15-411/611 © 2019 Goldstein

26

Regular Languages

e Finite Alphabet, X, of symbols.

T
e word (or string), a finite sequence of symbols
from 2.

e Language over X is a set of words from 2.
— e ———

e Regular Expressions describe Regular Languages.

— easy to write down, but hard to use directly

e The languages accepted by Finite Automata are
also Regular.

8/2

9/00

Regular Expressions defined

e Base Cases:
— A single character a r’
— The empty string g &
e Recursive Rules:
If R, and R, are regular expressions

—Concatenation RR,
—Union B:IR,
—Closure R.*
—Grouping (R;)

RE Examples

even a’s
odd b’s

even a’s or odd b’s
even a’s followed by odd b’s

RE Examples 2 7 Jeny 6

e even a’s /é/—\-V\

e 0dd b’s \ML\I 11

a*ba*(ba*ba*)*)
e even a’s or odd b’gb\/\/-w

e even a’s followed by odd b’s

RE Examples

even a’s

RA=Db*(ab*ab*)*
odd b’s

RE=a*ba*(ba*ba*)*
even a’s or odd b’s

RA | RB
even a’s followed by odd b’s

RA RB

15-411/611

Regular Languages

e Regular Expressions are great
— concise notation
— automatic scanner generation

— |lots of useful languages
e But, ...

— Not all languages are regular
—am® Context Free Languages
e Context Sensitive Languages

— Even simple things like balanced parenthesis,
ﬁ
e.g., L={ A*Bk} (or nested comments!)

— RL can’t count

© 2019 Goldstein

80

Not all Scanning is easy

e Language design should start with lexemes

— My favorite example from PL/I
1f (th h = elseg; 1 = th
@en r__e_’n then els ee.\fsié t ei
e blanks not important in Fortran

e nested comments in C

e |imited identifier lengths in Fortran

Today — part 2

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

Compiler Phases

Abstract syntax tree

=

© 2019 Goldstein

Languages

e Compiler translates from sequence of
characters to an executable.

e Aseries of language transformations

e |exing: characters — tokens

e parsing: tokens — “sentences”

@ | threw | vegetables
%
trash

%

15-411/611 © 2019 Goldstein

15-411/611

Languages
Compiler translates from sequence of
characters to an executable.

A series of language transformations
lexing: characters — tokens

parsing: tokens — parse trees

,,kid'éfﬂl threw | vegetables

© 2019 Goldstein

85

Grammers and Languages

e A grammer, G, recognizes a language, L(G)

-2 set of terminal symbols
- A set of non-terminals
- S the start symbol, a non-terminal
- P a set of productions
e Usually,

T, E: Y, ..{ strings of terminals and/or non-terminals
— A, B, C, ... are non-terminals

—a, b, c, .. areterminals

N
e General form of a productionis: oo — 3

- o~V

15-411/611 © 2019 Goldstein

Derivation

e A sequence of applying productions starting with
S and ending with w

S—=>Y7 =2V, . D>V >W
S >*w
., L(Gﬂ are all the w that can be derived from S

Regular Grammar (NFA)

e Regular expressions and NFAs can be

described by a regular grammar L
S o Al

e £.G, %éf
g:ﬁ A 24l
A= Sb =
S>¢

e An example derivation of aab; - Gb

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—> aS
S = bA

A— e
A - cA

e An example derivation of aabc:
S—>as

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—> aS
S = bA

A— €
A - cA

e An example derivation of aabc:
S > aS-> ads!

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>asS
S = bA

A— €
A - cA

e An example derivation of aabc:
S > aS-> aaS> aabA

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>aS
S = bA
A-e
A —> cA

e An example derivation of aabc:
S - aS—> aaS—> aabA— aabcA

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>asS
S = bA

A— €
A - cA

e An example derivation of aabc:
S = aS—> aaS—> aabA-> aabcA - aabc

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e £.G, a*bc* i}
S—>as
S = bA
A— €
A - cA
e Above is a right-regular grammar
e All rules are of form: A—a
A - aB

A— €

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e right regular grammar: A—a

A - 4B}

A— €
e |eft regular grammar: A—a

A >E

A— €

e Regular grammars are either right-regular
or left-regular.

15-411/611

Expressiveness

Restrictions on production rules limit
expressiveness of grammars.

No restrictions allow a grammar to
recognize all recursively enumerable

— N\ — -~
languages

A bit too expressive for our uses ©
Regular grammars cannot recognize a”b”]
We need something more expressive

© 2019 Goldstein

97

Chomsky Hierarchy

“word”
Class Language Automaton problem

Recursively Turing HEHES
0 Enumerable Machine any undecidable Corresp.
_'__) J— problem
1 Context Linear- oc;A‘: - PSPACE- Jnpnen
\ Sensitive 7 Bounded TM T v complete
Pushdown
2 Context Free A—a C a"b"
Automata
e - \J
3 Regular NFA a'b’

A—a)
hnear!

15-411/611 © 2019 Goldstein 98

Today — part 2

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

Context-Free Grammar

e A context-free grammar, G, is described by:

— 2, a set of terminals (which are just the set of
. _

possible tokens from the lexer)

e.g.,,1f, then,while, 1d, 1nt, string, ...
— A, a set of non-terminals.

e ———————

Non-terminals are syntactic variables which

define sets of strings in the language

e.g., stmt, expr, term, factor, vardec|, ...

~S
—Pp

© 2019 Goldstein

Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.

-5, S @he start symbol
The set of strings derived from S are the valid
string in the language.

— P, set of productions that specify how
terminals and non-terminals combine to form
strings in the language
a production, p, has the form: A— o

—

Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.
—S,S € A, the start symbol

— P, set of productions ...
a production, p, has the form:: A—> o

S:=E
Naks

terminals

What makes a grammar CFE?

e Only one NT on left-hand side — context-free
e \What makes a grammar context-sensitive?

. ocAE_\—my?) where
|8
— QL or may be empty,
— but y is not-empty

e Are context-sensitive grammars useful for
compiler writers?

Simple Grammar of Expressions

© =B

Exp = Exp + Exp
Exp = Exp - Exp
Exp .= Exp * Exp
Exp .= Exp / Exp
Exp =1d

Xp :=1int

Describes a language of expressions. e.g.: 2+3*x I

Derivation 3
e A derivation is a chosen sequence of @

productions (expansions) AN

L+ (.
e S Exg —, Exp + Exp — id; Exp —>‘|—<_:I_‘+J|‘n_t,-('—r

e A successful seéquence of expansions that: % ¢
match the input constitute a parse

— Connecting the expansions in each successive
step produces a parse tree

— Parse tree is a form of abstract syntax tree
— Building a correct AST is the whole point

15-411/611

Derivations Y
e A sequence of steps in which a non-terminal is
replaced by its right-hand side.

1 §S._.-Fwvn >

2 Ex There are possibly mclirr\F derivations

determined by the NT chosen to P
3 Ex expand. .

4 Exp:= Exp ™ Exp
5 Exp:= Exp / Exp
6 Exp:s id by 7 = int, + Exp * id,

7 Expi= int by 7 = int, + int3 * id,

by 2 = Exp + Exp * id,

Leftmost Derivations

e Leftmost derivation: leftmost NT always chosen

—

< [/
¥, 7

S

byl:@
by 4=Exp " Exp

by 2 = Exp/+ Exp * Exp

S = Exp
Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:: int

by 7 = int, + Exp * Exp

o Ol b W N

by 7 = int, + int; * Exp

by 6 — intz + int3 x ldx

Rightmost Derivations

e Rightmost derivation: rightmost NT always

NONO bW NN -

chosen

S = Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:: int

S
by 1= Exp
by 4 = Exp * Expj

by 6 = Exp * id,
by 2 = Exp + Exp * id,
by 7 = Exp + int; * id,

by 7 — intz + int3 x ldx

Parse Trees

e symbols in rhs are children of NT being

rewritten
S

by 1 = Exp

by 4 = Exp * Exp

by 2 = Exp + Exp * Exp
by 7 = int, + Exp * Exp

by 7 = int, + int3 * Exp

by 6 — intz + int3 x ldx

7 Exp:= int

1 S :=Exp
xp:= Exp + Ex
Exp:= Exp - Exp
4) Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Parse Trees

e parse tree for rightmost derivation

by 1 = Exp

by 4 = Exp * Different derivations can
by 6 = Exp’ Iead to the same parse tree.

by 2 = Exp + Exp d)
by 7 = Exp + int; *
by 7 — 1nt2 + :|.nt3

© 2019 Goldstein 111

Ambiguous Grammars

* £812 What does ambiguitypaint out? :
sentence wi parse trees. or,

e |f grammer has >1 leftmost (rightmost)
derivations it is ambiguous

S)

Resolving Ambiguity

e Ambiguity is a problem with the grammar

e One possible fix:
Add precedence with more non-terminals

e In this example, one for each level of precedence:

— (i"i)., exp o
- (*,/) term {—

— (id, int) factor ¢

— Make sure parse derives sentences that respect the
precedence

— Make sure that extra levels of precedence can be
bypassed, i.e., “x” is still legal

15-411/611

A Better Exp Grammar

N sl

1S := Exp

2 Exp := Exp + Term by 1 = Exp

3 Exp :=Exp-Term by 2 = Exp + Term

4 Exp :=Term by 4 = Term + Term
- .« — E 3

5 Term :=Term * Factor by 7 — Factor + Term

6 Term :=Term/ Factor by 9 = int, + Term

/ Term :=Factor ~—"

] *
8 Factor :=id by 5 = int, + Term * Factor

9 Factor :=int by 7 = int, + Factor * Factor

J—
by 9 = int, + int; * Factor

by 8 — 1nt2 + 1nt3 x ldx

15-411/611 © 2019 Goldstein “5

A Better Exp Grammar

1S = Exp

2 Exp = Exp + Term

3 Exp = Exp - Term -@
4 Exp :=Term

5 Term :=Term * Factor

6 Term :=Term/Factor

7 Term :=Factor

8 Factor :=id

9 Factor :=int
7
° E/&) |
by 1= Exp
by 2 = Exp + Term
by 4 = Term + Term
by 7 = Factor + Term
by 9 = int, + Term
by 5= int, + Term * Factor
by 7 = int, + Factor * Factor
by 9 = int, + int3 * Factor

by 8 = int, + int3 * id,

15-411/611 © 2019 Goldstein 116

Another Ambiguous Grammer

S = 1f E thenS
- _', ,
| ifEthenSelseS

| othe?

e What s the

e What is the language déesigre

e |s there a context-free solution?

15-411/611 © 2019 Goldstein 117

Dangling Else Grammar

S := matchedS
| unmatchedS
unmatchedS:= if E thenS

| if Ethen matchedS else unmatchedS

matchedS = if E then matchedS else matchedS
| other

e |s this clearer?

e What is parse tree for: :f E then if E thenSelseS?

15-411/611 © 2019 Goldstein 118

A primitive robot

Swing := Back Swing Forward
L)
|
Back = back-1-inch
Forward = forward-2-inchs

e What is L(Swing)?

A primitive robot

S :=BSF S
| /TN
e /5 5 'Ml
5 = b glﬂ\ k

F = f (55?
f

e What is L(Swing)?
e What is the parse tree for “bbff”

Parsing a CFG

e Top-Down
— start at root of parse-tree
— pick a production and expand to match input
— may require backtracking
— if no backtracking required, predictive

e Bottom-up

— start at leaves of tree

— recognize valid prefixes of productions

— consume input and change state to match
— use stack to track state

15-411/611 © 2019 Goldstein 121

Top-down Parsers

* Starts at r@ot of parse tree and recursively
expands children that match the input

— —

* In general case, may require backtracking

e Such a parser uses recursive descent.

e When a grammar does not require
backtracking a predictive parser can be
built.

0]

- W

A Predictive Parser &

w\-v-'
~~

\E

R
~
—’
‘oo NN aa

if match(b) -> B() SQ); F();action();
~ Ya>> S

else r'e’rur'n

mustMatch('b’); action(); return;}
e ————m— P —
mustMatch('f'); action(); return;}

(

Top-Down parsing

e Start with root of tree, i.e.,!S]

e Repeat until entire input matched:

— pick a non—terminahﬁ?nd pick a production
A—>y that can match input, and expand tree

— if no such rule applies, backtrack

e Key is obviously selecting the right
production

Top-down for Exp Grammar

1 S'_E @ |int2-int3*idx
f_Z’ E::E"'T by1:>E |int2-int3*idx
3 E=E-T S |
\’_4_ E =T

5 T:=T*F

6 T=T/F

7 T.=

8 F :=id

9 F = int

input: 2+3*x

15-411/611 © 2019 Goldstein 125

Top-down for Exp Grammar

{ S-E S lint, - int; * id,
2 E:=E+T byl= E lint, - int3 * id,
3 E=E-T by2::<€}‘r lint, - int; * id,
4 E =T by4:>T:{ |int, - int3; * id,
5 T:=T*F by 7:>?+ T |int; - int3 * id,
3 1 ::/F by 9= int,+ T intJ{ints * id,
9 F :=int

input: 2+3*x

15-411/611 © 2019 Goldstein 126

Top-down for Exp Grammar

1 S = E S I intz - int3 x ldx
2 E::E"'T by1:>E |int2-int3*idx
3 E:=E-T by = E+T 4 lint, - int3 * id,
4 E =T by T |int, - int3 * id,
5 T:=T*F b i€, - intg * id,
6 T = T/ F b 9 - + T L/uf‘(- x d
—— Yy 9 = int, int,l- int3 ™ id,
8 F:-ig by3:3:§:j;) lint, - int; * id,
9 F :=int by4= T1,-T lint, - int; * id,
by7:> E'T |int2—int3*idx
-
by 9= ;_Etz £ intzl-"int3 x ldx
by b= intz -T* F intz -|int3 * ldx

input: 2+3*x

15-411/611 © 2019 Goldstein 127

Top-down for Exp Grammar

{ S-E S lint, - int; * id,
2 Ew=E+T byl= E lint, - int3 * id,
3 E:=E-T by2—= E+T lint, - int3 * id,
4 E = by4d—= T+T |int, - int3; * id,
5 T:=T*F by 7= F+T |int; - int3 * id,
6 T:=T/F by 9= int,+ T int,]- int3 * id,
g ::-zid by3= E-T lint, - int3 * id,
9 F :=int by4= T-T lint, - int; * id,

by 7= F-T |int, - int; * id,

by 9= int,- T int,l- int; * id,

t, -lint; * id,

15-411/611 © 2019 Goldstein 128

Top-down for Exp Grammar

S lint, - int3 * id,
byl= E lint, - int3 * id,
by2—= E+T lint, - int; * id,
by2—= E+E+T |int, - int3 * id,
by2= E+E+E+T |int, - int3 * id,

Will not terminatel Why?

grammar is left-recursive
What should we do about it?

Eliminate left-recursion

input: 2+3*x - —

15-411/611 © 2019 Goldstein 129

Does this work?

44 mmmon
i
—\ <4 4 mMmm

1

L+

-1 -
m
1
- m
+
m

*

— m
A

|.|. |.|. —r,

]
rr

O 0O NONOL P WN =
]
Q. ~
m m
O 00O NOOT D WN =
]
H T ™
—|

m m
i
m M
1

It is right recursive, but also right associativel

15-411/611 © 2019 Goldstein 130

Eliminating Left-Recursion

e Given 2 productions:
A=Aa|p
Where neither a nor 3 start with A

(e.g., Forexample, E:=E+T | 1)

e Make it right-recursive: v

A:=BR
R:=0a&R |Ris right recursive

e Extends to general case.

\ Rewriting Exp Grammar
/

O 00 N OO U A W IN BB

m M -4 4 4 m m m O

=1int

15-411/611

E

n i
! +
.—l

m jm

*FT
/FT

VOO A WN -
'.l.
Q.

mTm o+ 4 mmlm o

"
'.l.
o

ct

|

© 2019 Goldstein

2 E=TF

5 T:=FT

132

Try again

S .intz - int3 * ldx

1 é :EE byl= E ®int, - int; * id,
2 E:=JFE , . . .

2! """E'J; ::?-E:.F-E, by 2 :>P_:_r) E | .Zf.ntz - Zf.nt3 : ldx

= F-.TF by5= FTE ®int, - int3; * id,

‘= by 9 — 2 T' E' intz ?' int3 * ldx

5 T:=FT by7 = 2F int, ®- int; * id,

5 T:=*FT | by33=2-TF int, - ®int; * id,

& i:z/FT by5=2-FTFE int, - ®int; * id,

7 Ti=

_ ' . _ .* .

8 Fi=ig by 9': 2-3 ;l: E | :f.ntz :f.nt3 ‘ :f.d)<

9 F :=int by5=>2-3*FTE int, - int3; * @id,

int3 x ldx.

int3 * ldx.

15-411/611 © 2019 Goldstein 133

15-411/611

L.ookahead

How to pick right production?

Lookahead in input stream for guidance

General case: arbitrary lookahead required

Luckily, many context-free grammars can be
parsed with limited lookahead

If we have A — o | [3, then we want to
correctly choose either A— o orA — 3

define FI
first sym
aekf

RST(o) as the set of tokens that can be
ol of a, i.e.,

RST(av) iff o —™* ay for some vy

L.ookahead -

e How to pick right production?

e If we have A — a | [3, then we want to
correctly choose either A — aorA — [3

e define FIRST(a) as the set of tokens that can be
first symbol of ¢, i.e.,
a € FIRST(a) iff oo >* ay for some y

e IfA— a | 3 wewant:
FIRST(ct) M FIRST(B) = &

e |f that is always true, we can build a predictive
parser.

15-411/611

FIRST sets

e We use next k characters in input stream to guide
the selection of the proper production.

e Given: A:=a | B we want next input character to
decide between a and 3.

e FIRST(at) = set of terminals that can begin
any string derived from o..

e |OW: a € FIRST(a) iff oo =* ay for some y

e FIRST(at) ™ FIRST(B) = D — no backtracking needed

Computing FIRST (o)
e Given X:=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=a2a

15-411/611

Computing FIRST (o)
e Given X:=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=a2a

C:=c
e FIRST(X) must also include FIRST(C)

e |OW:

— Must keep track of NTs that are nullable
— For nullable NTs, determine FOLLOWS(NT)

nullable(A)

e nullable(A) is true if A can derive the empty
string

e For example:

B:=XYb
X=X

| YY
Y =

In this case, nullable(X) = nullable(Y) = true
nullable(B) = false

FOLLOW(A)

e FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

° |.e,
a € FOLLOW(A) iff S =* aAa} for some o and 3

Building a Predictive Parser

e \We want to know for each non-terminal which
production to choose based on the next input
character.

e Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A:=a, in (A, a) iff
— FIRST(o) contains a or
— nullable(a) and FOLLOW/(A) contains a

The table for the robot

S =BSF FIRST | FOLLOW |nullable
| S|b $ yes
6 =b 15 Tw
, no
F =f
b f $
S
B
F

The table for the robot

S =BSF FIRST | FOLLOW |nullable
| S|b $ yes
B Z=b B b b,f no
FIf f.$ no
FI FIRST(BSF) = b
ﬁ /] nullable(¢)=true

FOLLOW(S) = $

b / f 1% /_ and
S

Table 1

VWO U O hwWRNRN

MM 4 44 4mMmmmm W0

m

TE

+TFE
-TFE

F T

*FT
/FT

id

int

FIRST |FOLLOW |nullable
S |id,int | $
E |id,int |$
E' |+, - $ yes
T |id,int |+,-$
T/, * +-.% yes
F |id,int |/, *%
+ - / id | int | $

M| H(4A|MmMmwn

© 2019 Goldstein

Table 1

VWO U O hwWRNRN

MM 4 44 4mMmmmm W0

— m
m

+TFE
-TFE

F T

*FT
/FT

id

int

15-411/611

FIRST |FOLLOW |nullable

S |id,int | $

E |id,int |$

E' |+, - $ yes

T |id,int |+,-$

T/, * +-.% yes

F |id,int |/, *%

+ - / id | int
S =B |=E
E =TE' :=TE'
e =+TE' [:=-TE' =
T =FT |:=FT
T |= = =*FT=/FT =
F =id |:=int

© 2019 Goldstein

147

Using the Table

e Each row in the table becomes a function

e For each input token with an entry:
Create a series of invocations that
implement the production, where

— a hon-terminal is eaten
— a terminal becomes a recursive call

e For the blank cells implement errors

Example function

+ - x / id int $
S =k |:=E
E :=TE' [=TE'
E' [=+TE |[=-TF =TE [=TE" |:=
= ———
m—— B R How to handle errors?
F i i:ﬁd L:nw i i

15-411/611

Eprime () {

switch (token) {
case PLUS:

case MINUS.:
case ID:
case INT:
default:

eat (PLUS); T(); Eprime(); break;
eat (MINUS); T(); Eprime(); break;
T(); Eprime();
T(); Eprime();

error () ;

© 2019 Goldstein

149

Left-Factoring

e Predictive parsers need to make a choice
based on the next terminal.

e Consider:
S:=,gi§ E then §(else S)
|1tif E then S

e When looking at 1 £, can’t decide
e so |left-factor the grammar

S:=1f E then S |X

Top-Down Parsing

e Can be constructed by hand

y(k rammars can be parsed L_‘L.Cl\

— Leftsto-right
— Leftmost>derivation

— with k symbols ldokahead
e Often requires

— |left-factoring

— Elimination of left-recursion

Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

e Bottom-up parsers use the entire right-
hand side of the production

" (R (A

— Left-to-right parse,
P |

— Rightmost derivation (in reverse),

— k look ahead tokens

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

unscanned ned unScanned

Top-down Bottom-up

Example - Top-down

S =X Is this grammar LL(k)?
X=%n
| b How can we make it LL(Kk)?
Si=X_
X := b(R
R = aR:
-V

What about a bottom up parse?

Example - Bottom-up

Si=X
XI-%(“S‘

right-most derivation: S

Left-to-Right, Rightmost in reverse R
" X @

aa
a

n X X

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up

A Rightmost Derivation

S
1S = Exp Vv
3 Exp :=Exp+Term by 1= Exp o
>3 Exp := Exp - Term by 2 = Exp + ferm-
e
4 Exp :=Term by 5= Exp+Term * Factor
TeLm :=Term * Factor by8 = Exp+Term * id,
6 Term :=Term /Factor by 7 = Exp + Factor * id,
/ Term :=Factor

: . -
8 Factor ‘= id by9 = Exp+int;*id,

by 7= Factor+int; * id,

, by9 = int,+int;*id,
input: 2+3*x

15-411/611 © 2019 Goldstein 158

A Rightmost Derivation In Reverse

int, +int; * id,
Factor + int3 *id,
Term i

ex

Exp +Factor * id,

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

S

15-411/611 © 2019 Goldstein 159

A Rightmost Derivation In Reverse

: : : int, @+ int, * id
int, +int; * id, 2 3 X

: : ®+j * 3
Factor + int; * id, Factor @ +int, * 1d,

. : Terme®+int, * i
Term+ int, * id, 3 14

: .
Exp + int, * id, Exp+int.,® * id,

Exp + Factor * id ;:? Exp + Factor @ * id,
X

. -
Exp + Term * id, Exp + Term * id, ®

X
Exp + Term * Factor Exp + Term * Factor @

Exp + Term Exp + Term @

Exp @
Se

Exp
S

15-411/611 © 2019 Goldstein 160

A Rightmost Derivation In Reverse

: : : int, ®+int; *id
int, +int; * id, 2 3 x

: : @+ * 3
Factor + int, * id, Factor @ +int, * 1d,

: : Term® + int, * i
Term+ int; * id, 3 1o

: %
Exp+int, * id Exp+int;® * id,

%
Exp + Factor * id, Exp + Factor @ * 1d,

. -
Exp + Term * 3 Exp + Term * 1d, ®

Factor @

Exp + Term

Exp + Term

EXp Exp ®
Se

S

15-411/611 © 2019 Goldstein 161

A Rightmost Derivation In Reverse

int, +int, *id, $

inte +int, *id $
Factor +int, *id $
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp+ int, *id, S
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S © 2019 Goldstein 162

A Rightmost Derivation In Reverse

int, +int, *id, $

'-/i:t: +int, *id, $
Factor +int, *id, S
Telrm +int, *id S
E‘S‘!p €« — +inty*id$
Exp + int, *id S

fi"/@-“‘/ *id,$
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S

Exp + Term * i

15-411/611 S S © 2019 Goldstein

163

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, S
Factor +int, *id, S
Term +int; *id, S
EXp +int, *id $
Exp + int, *id S
Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 164

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id S reduce by F — int
Factor
Term
Exp
Exp +
Exp + int, *id, S
Exp + Factor *id S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S
Exp + Term * Factor S
Exp + Term S
Exp S
sayen S S 165

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int; *id, S

EXp rint,*id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 166

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
EXp +int, *id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 167

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
~N o

Exp +int, *id, S shift +

E;(.;) + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 168

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +
Exp + int, *id S shift 3
Exp + int, * ids&%
—_
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 169

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 170

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 171

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 172

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 173

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor

S
Exp + Term S
Exp S

S

15-411/611 S 174

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor reduceby T—>T*F

S
Exp + Term S
Exp S

S

15-411/611 S 175

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor reduceby T—>T*F

S
Exp + Term S reducebyE > E+T
Exp S

S

15-411/611 S

176

A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int;

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $
*id $
*id S

id, $

S

S
S
S
S

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int
reduceby F—>T
shift *

shift x

reduce by F — id
reduceby T—>T*F
reducebyE > E+T

reduce by S —> E

177

A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int;

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $
*id $
*id S

id, $

S

S
S
S
S

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int
reduceby F—>T
shift *

shift x

reduce by F — id
reduceby T—>T*F
reducebyE > E+T

reduce by S —> E

Caccept! D

178

11S

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, S
Factor +int, *id, S
Term +int; *id, S
EXp +int, *id $
Exp + int, *id S
Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int; *id, S

Term +int; *id, S

EXp rint,*id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S

15-411/611 S 180

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
EXp +int, *id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S

15-411/611 S

181

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S

15-411/611 S 182

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S

15-411/611 S 183

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S

15-411/611 S 184

Handles

LR parsing is handle pruning

LR parsing finds a rightmost derivation (in
reverse)

A handle in vy, a right-hand sentential form, is

— a position in y matching [3

—a productionm l

S % QAW —;@v

if a grammar is unambiguous, then every y has
exactly 1 handle

A Rightmost Derivation In Reverse

int,+int; *id, S shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S

15-411/611 S 186

A Rightmost Derivation In Reverse

Where is next handle? int,+int,*id,$ shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S

15-411/611 S 187

Where is next handle?

OO N U D WM =

A Rightmost Derivation In Reverse

int,
Factor
Term

Exp

Exp +

Exp + int;

Exp + Factor

MM A4 4 4 mMmmm®n
.. .
_'

*

-

int, +int, *id, $

+int,*id $
+int; *id, S
+int,*id $
rint,*id $
int, * id $
*id $
*id $

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int

®

7
©

O

188

A Rightmost Derivation In Reverse

Where is next handle? int, +int; *id $

int, +int; *id, S
Factor +int; *id, S
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp + int, *id, S

Exp + Factor *id, S

1 S:=E

2 E=E+T

3 E=E-T @
4 E =T

B T:=T*F

6 T:=T/F

I Ti=

s ® @

9 F :=int

A Rightmost Derivation In Reverse
Where is next handle? E-Iif*x and T—> F S

int, +int, *id, S
Factor +int; *id, S
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp + int, *id, S
Exp + Factor *id, S
Exp + Term *id, S @
1 S:=E
2 E:=E+T @
3 E=E-T
4 E =T
5 T:=T*F
6 T:=T/F
f 1=
®
9 F :=int

Handle Pruning

e LR parsing consists of

— shifting til there is a handle on the top of the
stack

— reducing handle
e Key is handle is always on top of stack, i.e.,

if B is a handle with A — 3, then [3 can be
found on top of stack.

A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int,
Exp + Factor

Exp + Term

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $

*id $

148 ®

top of stack does
not have a handle,
so must shift.

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

id, $
S

O
ORORS)

S
S
S
S

192

A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int,
Exp + Factor
Exp + Term
Exp + Term *

Exp + Term * id,

int, +int, *id, $
+int, *id $ Now, x is a handle.
+int; *id, S

+int, *id, $

+int,*id, $

int, *id, $

*id S

*id $

‘148 ®

id, $
S

Exp + Term * Factor
Exp + Term

Exp

11S

O
ORORS)

S
S
S
S

A Shift-Reduce Parser

e Stack holds the viable prefixes.
e input stream holds remaining source
e Four actions:

— shift: push token from input stream onto stack

— reduce: right-end of a handle (3 of A — [3) is at top of
stack, pop handle ([3), push A

— accept: success

— error: syntax error discovered

Table-driven LR(K) parsers

S)
source Driver
code

a / tokens AST

Lexer : Action table
Stack
&

GOTO table

Push down automata:
FSM with stack

15-411/611 © 2019 Goldstein 195

(=.

)

¢

source

code

Table-driven LR(K) parsers

Lexer

tokens

Driver

&

Action table

GOTO table

Stack

)
‘J-Grammar

15-411/611

Parser
Generator

© 2019 Goldstein

Push down automata:

AST

FSM with stack

196

15-411/611

Parser Loop

Driver

e Same code regardless of grammar
— only tables change

e (Very) General Algorithm:

— Based on table contents, top of stack, and current

input character either
e shift: pushes onto stack, reads next token

e reduce: manipulate stack to simplify representation of

already scanned input
e accept: successfully scanned entire input
e error: input not in language

© 2019 Goldstein

197

Stack

e Represents the scanned Input >tack
e Contents?
— Reduced nonterminals not enough
— Must store previously seen states
e the context of the current position
— In fact, nonterminals unnecessary
e include for readability
T
+
X tye+z T

15-411/611 © 2019 Goldstein 198

Parser Tables Actiogtable

Action table GOTO table

e given state s and terminal a tells parser
loop what action (shift, reduce, accept,
reject) to perform

Goto table

e used when performing reduction; given a
state s and nonterminal X says what state
to transition to

15-411/611

Parser Tables

Action table

&
GOTO table
push state N onto stack
reduce by rule R
goto state N
accept .
action goto
error state | ident + E T
0 gl g2
1
2
3
4 g5 g2
5

© 2019 Goldstein

200

Parser Loop Revisited

while (true)

s = state on top of stack

a = current input token

if (action[s] [a] == sN)
push N
read next input token

else if (action[s][a] == rR)
pop rhs of rule R from stack
X = lhs of rule R
N = state on top of stack
push goto[N] [X]

else if (action[s][a] == a)
return success

else
return failure

15-411/611 © 2019 Goldstein

Driver

accept

error

201

action goto
state | ident + E T
s3 gl g2
g5 g2

Current input token = X
State on top of the stack =

X+y$

15-411/611

© 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(0,5)

202

action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(3,x)
(0,5)

203

action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)
(0,5)

204

action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)

(0,5)

205

action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack =

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)

(0,5)

206

action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack= 2

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(2,T)
(0,5)

207

action goto
state | ident + S E T
gl g2
d
s4
g5 g2

Current input token = +
State on top of the stack= 2

X +y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(2,T)
(0,5)

208

action goto
state ident + S E T
gl g2
d
s4
g5 g2

Current input token =Y
State on top of the stack = 4

x +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E>T

T — identifier

(4,+)
(2,T)
(0,5)

209

action goto
state ident + E T
gl g2
s3 g5 g2

Current input token =Y
State on top of the stack = 4

X +y$

15-411/611

© 2019 Goldstein

S — ES
E—>T+E
E>T

T — identifier

(4,+)
(2,T)
(0,5)

210

action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = S
State on top of the stack = 3

X+y$

15-411/611

© 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,y)
(4,+)
(2,T)
(0,5)

211

action goto S ES
state | ident + S E T E S T4E
81 | &2 E>T
a . .
T — identifier
g5 g2

(2,T)
Current input token = S

State on top of the stack = 3

(4,+)
(2,T)
X +y$ (0,5)

© 2019 Goldstein

15-411/611 -

action goto S ES
state | ident + S E T S T+E
81 | &2 E>T
d

T — identifier

g5 g2
Current input token = S (2,T)
State on top of the stack = 2 (4,+)

(2,T)
X +y$ (0,5)

15-411/611 © 2019 Goldstein 213

action goto S ES
state | ident + S E T S T+E
Bl | 8 2p 7
a . .
5 T — identifier
r
g5 g2
Current input token = S (2,T)
State on top of the stack = 2 (4,+)

(2,T)
X +y$ (0,5)

15-411/611 © 2019 Goldstein 214

action goto
state | ident + S E T
gl g2
d
r2
g5 g2

Current input token = S
State on top of the stack = 2

X+y$

15-411/611

© 2019 Goldstein

S > ES
E>T+E
‘EST

T — identifier

(4,+)
(2,T)
(0,5)

(?,E)

215

action goto S ES
state ident + S E T EST+E
8l | &2 E>T
d

T — identifier

g> g2
Current input token = S (5,E)
State on top of the stack = g (4,+)

(2,T)
X e y$ (O,S)

15-411/611 © 2019 Goldstein 216

action goto S ES
state ident + S E T 1E_ST+E
8l | &2 E>T
d

T — identifier

g> g2
rl
Current input token = S (5,E)
State on top of the stack = g (4,+)

(2,T)
X e y$ (O,S)

15-411/611 © 2019 Goldstein 217

action goto
state | ident + S E T
gl g2
d
g5 g2
rl

Current input token = S
State on top of the stack = g

X+y$

15-411/611 © 2019 Goldstein

S — ES
'E>T+E

E—>T

T — identifier

(5,E)
(4,+)
(2,T)

(0,5)

218

action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = S
State on top of the stack = 1

X+y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(1,E)
(0,5)

219

state

action

Example

goto

ident

+

E

T

gl g2
Accept!

g5

g2

15-411/611

Current input token = S
State on top of the stack = 1

X+y$

© 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(1,E)
(0,5)

220

(=.

)

¢

source

code

Table-driven LR(K) parsers

Lexer

tokens

Driver

&

Action table

GOTO table

Stack

)
‘J-Grammar

15-411/611

Parser
Generator

© 2019 Goldstein

Push down automata:

AST

FSM with stack

221

The parser generator | Parser

Generator

e Finds handles
e Creates the action and GOTO tables.
e Creates the states

— Each state indicates how much of a handle we
have seen

— each state is a set of items

Items

e |[tems are used to identify handles.

e LR(k) items have the form:
[production-with-dot, lookahead]

e For example, A — a X b has 4 LR(0) items
— [A—> ® a XDb]
— [A—> ae®XDb]
—[A—>aXeb]
—-[A—>aXbe

What LR(0) Items Mean

* [X—>eoafy]
input is consistent with X > a By

* [X—>aepy]
input is consistent with X - o 3 vy and we
have already recognized o

* [X—>oafpey]
input is consistent with X = o 3 v and we
have already recognized o [3

* [X—>oafye]
input is consistent with X - o 3 vy and we
can reduce to X

Generating the States

e Start with start production.

e |n this case, “S — ES” S > ES
E—>T+E
E—>T
S *E5 T — identifier

e Each state is consistent with
what we have already shifted
from the input and what is
possible to reduce. So, what
other items should be in this
state?

Completing a state
e For each item in a state, add

in all other consistent items.

S —>ES
S > oFS E—>T+E
E—> eT+E E—>T
E_> o T — identifier
T — eidentifier

e This is called, taking the
closure of the state.

Closure”

closure ()
repeat
foreach item A — aeXb in
foreach production X — w
.add(X — ew)
until does not change
return

Intuitively:

Given a set of items, add all production rules that
could produce the nonterminal(s) at the current
position in each item

*: for LR(0) items

15-411/611 © 2019 Goldstein 228

What about the other states?

e How do we decide what the

other states are?

e How do we decide what the
transitions between states are?

S — eES

E— e

E—>eT+E

T — eidentifier

S — ES
E—>T+E
E>T

T — identifier

\%ei:ztiﬁer

-|S — E*S

T — identifiere

E—>Te+E
E—>Te

Next(state, sym)

e Next function determines what state to
goto based on current state and symbol
being recognized.

e For Non-terminal, this is used to determine
the GOTO table.

e For terminal, this is used to determine the
shift action.

Constructing states

= closure ({start production})
state set.add(initial state)
state queue.push(initial state)

A state is a set of

while (!state queue.empty()) LR(0) items

= state queue.pop ()
foreach item A — aeXb in
= closure (next (s, X))
if(!'state set.contains(n))
state set.add(n) get “next” state
state queue.push(n)

15-411/611 © 2019 Goldstein 231

Closure”

S— ES
closure({S — ES}) = E>T+E

E—>T

S— ES T — identifier

*: for LR(0) items

© 2019 Goldstein

Closure”

S — ES
closure({S — *ES}) = E—>T+E
E>T
S —> *ES T — identifier
E—>elT+E
E— e

T — eidentifier

*: for LR(0) items

© 2019 Goldstein

Next

next (state, X)
ret = empty
0
foreach item A — a*Xb in state S— ES
ret.add (A —> aXeb) lESTH+E
return ret 2 ET

*T — identifier

initial: next(initial, E)

S — ¢ES]
E—> T +E

E— ‘T | next(initial, T)

T — eidentifier "

(N(”“Ual, identlfiel’)

15-411/611 © 2019 Goldstein

234

Example

0 1 S > ES$
S —> ¢ES . S —> EeS =
E—>eT+E E->T+E
E—>eT 2 E>T
T — eidentifier T E—>Te+E T— identiﬁer
E—>Te
3 | identifier
. 4 IT l +
T — identifiere
E—>T+eE
identifier E—> eT+E
E— o
T — eidentifier
5 |E

E—>T+Ee

© 2019 Goldstein

15-411/611 235

Parse Tables for LR(0) parser

0
S — eES
What can we fill out? E—> oT+E
E— T
T — eidentifier
3 \dentifier
T — identifiere
3ction 20to identifie
state ident + E T
0
1
2
3
4
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

a [T 4+

E—>T+e E
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

236

transition on terminal

Parse Tables for LR(0) parser

0

S — eES
E—>eeT+E
E— T

T — eidentifier

identifie

15-411/611

3 \dentifier
T — identifiere
action goto
state ident + E T
0
1
2
3
4
5

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

a [T §*

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

237

Parse Tables for LR(0) parser

0 1
S — ES S— EeS
gOtO E—>eT+E 2
transition on nonterminal e NG E>Te+E
T — eidentifier E s Te
dentifier A
3 Wdentifi A
T — identifiere
Tontife E>T+eE
action goto aenty E—> eT+E
' E—>eT
state ident + S E T T dentiior
: |-E —> T+ Ee
2 s4
3 S—>ES
> E>T

T — identifier

15-411/611 © 2019 Goldstein 238

Parse Tables for LR(0) parser

0
S — eES
accept E - :1 tE
about to shift S T —> eidentifier
3 \dentifier
T — identifiere
_ identifie
action goto
state ident + E T
0 s3 gl g2
1
2 s4
3
4 s3 g5 g2
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

4 |7 3¢

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

239

Parse Tables for LR(0) parser

reduce

item has dot at end

0

S — eES

E— T

E—>eT+E

T — eidentifier

\dentifier

identifie

A— we 3
T — identifiere
action goto

state ident + E T
0 s3 gl g2
1
2 s4
3
4 s3 g5 g2
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

4 |7 3¢

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

240

LR(0)

0 1
S > oES S — EeS
No lookahead E—>eT+E <z
E— T o
reduce state for all T s sidentifier T E:I tE
nonterminals 3 identifier s 11 1+
T — identifiere E T 1eE
_ identifie E—s oT+E
action goto
E— T
state ident + S E T T — eidentifier
0 gl g2 5 VE
1 a |-E —> T+ Ee
2 /
X S—ES
p - > E—>T+E
S © E>T
> T — identifier

15-411/611 © 2019 Goldstein 241

/

conflict
need to be pickier about

LR(0)

0

S — eES

E—>eT+E
E— T

T — eidentifier

identifie

when we reduce 3 Wentifier
T — identifiere
action goto

state ident + E T
0 gl g2
1
2 r2/s4
3
4 g5 g2
5

15-411/611

© 2019 Goldstein

E—>T+e E
E—> eT+E
E— T

T — eidentifier
+ E

5
|-E—>T+E-

S —>ES
E—>T+E
E—>T

T — identifier

242

SLR - Simple LR

Only reduce in position (s,a)
by rule R:A —> wifaisin the

0

S — eES
E—>eeT+E
E— T

identifie

follow set of A T3_’ "'de’;;Z‘;er
T — identifiere
action goto

state ident + S E T
0 gl g2
1 a
2
3
4 g5 g2
5

15-411/611 © 2019 Goldstein

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

243

Reminder: Follow sets

follow(X) S—ES
. E—>T+E
set of terminals that can
E—>T

appear immediately after . |
the nonterminal X in some T — identifier
sentential form

l.e., t € FOLLOW(X) iff S =* aXt[3 for some o and [

follow(E) = {S}
follow(T) = {+,S}

SLR - Reduce using follow sets

0 1
S — eES S > Ee5
follow(E) = {S} E s oTE)
E—oel NG| EoTe+E
follow(T) = {+,5} [cidenifer £ Te
3 \dentifier ‘
4 |17 }*
T — identifiere
— 1 E-—>T+eE
action goto RN E > +T + E
. E— T
state ident + S E T T — eidentifier
0 gl g2 5 VE
1 3 |-E > T+Ee
2
: S — ES
p : » E—>T+E
g 8 E>T
> T — identifier

15-411/611 © 2019 Goldstein 246

SL.LR Limitations
e SLR uses LR(0) item sets

e Can remove some (but not all) shift/reduce
conflicts using follow set

e Consider

S > ES
E—>L=R
E—R
L — id
L —> *R
R—o>L

Example

S—ES S—>E- E SL—R-

E—>L=R 0|S—eE IR

F >R E—>+«L=R E—->L=°<R

L > id E—<R

L — *R L—>«*R L—>+*R
L—eid L—>-id

R—>L Rosel

What are the
reduce states?

15-411/611 © 2019 Goldstein 248

Example

S—ES S—>E- E SL—R-

E—>L=R 0|S—eE IR

F >R E—>+«L=R E—->L=°<R

L > id E—<R

L — *R L—>«*R L—>+*R
L—eid L—>-id

R—>L Rosel

What are the
reduce states?

15-411/611 © 2019 Goldstein 249

S S ES

'E—>L=R 0
‘E—>R
*L—>id
“L— *R
"R—>L

S — ¢E$

E—>+L=R

E—><*R
L —>e«*R
L—>eid
R—>-L

shift/reduce
conflict

follow(R) = {=,S}

15-411/611

L—o>id-

© 2019 Goldstein

250

Problem with SLLR

e Reduce on ALL terminals in FOLLOW set
S —> L=R

R 2[S—>Le=R
L —> * R R_>Le

| id
R — L

e FOLLOW(R) = FOLLOW/(L)

e But, we should never reduceR — L on ‘=’
l.e., R=... is not a viable prefix for a right

sentential form
e Thus, there should be no reduction in state 2
e How can we solve this?

15-411/611

LR(1) Items

e An LR(1) item is an LR(0) item combined with a
single terminal (the lookahead)

e [X—> o @[3, a] Means
— o is at top of stack

— Input string is derivable from [3a
e |In other words, when we reduce X — o3, a had
better be the look ahead symbol.

e Or, Only put ‘reduce by X - af}’ inaction/[s,a]
e Can construct states as before, but have to
modify closure

What LR(1) Items Mean

e [X—>eoqa[y,a]
input is consistent with X > a By

e [X—>aoa®py,al
input is consistent with X - o 3 vy and we
have already recognized o

e [X>apey,a]
input is consistent with X = o 3 v and we
have already recognized o [3

e [X—>afye,a]
input is consistent with X > o By and if
lookahead symbol is a, then we can reduce
to X

15-411/611

LR(1) Closure

closure (state)
repeat
foreach item A —» a*Xb, t in state
foreach production X — w
and each terminal t’ in FIRST (bt)
state.add(X > ew, t’)

until state does not change
return state

© 2019 Goldstein

254

Closure

S —ES
closure({S — *ES, ?}) = E—>L=R
E—>R
L —id
?
S — eES, : R

R—>L

15-411/611 © 2019 Goldstein 255

Closure

closure({S — ®ES, ?}) =

S — eES, ?
E— eL=R,
E — eR,

W N

2019 Goldstein

S —ES
E—->L=R
E—R
L — id
L— *R
R—>L

Closure

S—ES
closure({S — *ES, ?}) = E—>L=R
E—R
S —> eES, ? L_’fkd
L—> *R
E— eL=R, S R s L
E— eR, S
L — eid, =

L — o*R,

2019 Goldstein

Closure

S—ES
closure({S — *ES, ?}) = E—>L=R

E—>R

S — eES, ? L_’fkd
L—> *R

E— eL=R, S R s L

E— eR, S

L — eid, =

L — e*R, =

R— el S

© 2019 Goldstein

Closure

S—>ES
closure({S — *ES, ?}) = E—>L=R
E—R
S—).Es, ? L > id
L —> *R
E— eL=R, S R s L
E— eR, S
L — eid, =
L — e*R, =
R— el S
L > eid, S
L — ¢*R, S

© 2019 Goldstein

LR(1) Example

0[S —> eES ? 1S —>Ee§ 2 o)
E—>eL=R S
E— eR S 6
L — eid = E—->Le=R §| =
L — ¢*R = R —>Le $ '
R— el S
L — eid 5 E—>Re §
L— ¢*R S
* .
L *eR = L—ide
L *eR $ L — ide =
R— el =
R—elL S Ro>Lle = :
L — eid = R— Le
L — ¢*R =
% L — eid S L — *Re =
L —> ¢*R S L—>*Re S 13

15-411/611 © 2019 Goldstein 260

LR(1) Example

S > eES ? 1S —>Ee§ 2
E—>eL=R S| E

E— eR S

L —> ej] =|/1 2|E>Le=R §
L —> e*R = R —>Le $
R— el S

L— eid > E—>Re §
L— ¢*R S

L > *eR _ : L—)l:do

L *eR $. L — ide =
R—> ol =] ¢

R— el > L 7|R>Le =
L — eid = ﬁR_)l_o

L—> e*R = R

L — eid S L — *Re =
L — ¢*R S L — *Re

© 2019 Goldstein

261

Parsing Table

e 14 states versus 10 LR(O) states

e In general, the number of states (and
therefore size of the parsing table) is much
larger with LR(1) items

LALR: Lookahead LR

e More powerful than SLR

e Given LR(1) states, merge states that are
identical except for lookaheads

e End up with same size table as SLR
e Can this introduce conflicts?

Merge-able states

© 2019 Goldstein

0[S —>eES? 14 S—> Ee§ ? 9 |E—>L=Re S
E—>eL=R S
E— eR S 6 |[E>L=*R R
L—> eid = E—>Le=R §| = |[R—>eL
L — *R = R —Le $ 1L— eid

/R—>-L S L —> ¢*R
L— eid > E—>Re §
L— ¢*R S *

* .

|L— *eR = L_)l.d. 11
L s *eR $ L>ide =
R— el = L—>*eR $
it ol > R—>Le = R—> el S
L_)'id - R—>1Le Lo>eid S
2Ol = L—>e*R S
L — eid S L — *Re
L —> ¢*R S L — *Re L—>*Re S

15-411/611

Merge-able states

E— L=Re S

S > oF$? S—>Ee§ ?
E—>eL=R S

E— R S

L —> ej] - E—>Le=R $
L— ¢*R = R —>Le $
R— el S

L— eid > E—>Re §
L— ¢*R S

L —> *eR - S e

L s *eR $ L>ide =
R— el =

R— el S R—le =
L — eid = R— Le

L — ¢*R =

L — eid S L — *Re =
L — ¢*R S L—> *Re S,

E>L=eR ¢| |R
|R— oL S
1L— eid S d
L— *R S

12

3L — *Re

1l R>Le S

L—o>ide S

265

15-411/611

Merge-able states

S — eES

E—>eL=R

E— eR
L — eid
L —> e*R
R— el
L — eid
L —> e*R

i unun v

W WUnWn il

L —> *eR
L —> *eR
R— el

R— el

L —> eid
L —> e*R
L — eid
L —> e*R

1 02 N | I V2 0 |

W N i

S—>FEe§ ? E— L=Re S
6 E—>L=eR S
E —> L ee=R $ ‘ R— el S
R —>Le $ 1L— eid S
L —> e*R S
E—>Re §
"1y R> LS
L — ide
L—>ide =
R—>Le = 12
R— Le
L—> *Re =
L — *Re S/

id

4

266

15-411/611

Merge-able states

S > oF$? 14 S—>Ee§ ? 9 |E—>L=Re S
E-—>eL=R $

E— eR S 6 |[E>L=*R S
L — eid = E—>Le=R §| = |R>eL S
L — e*R = R — Le $ L— eid S
R—> el $ L— ¢*R S
L— eid > E—>Re §

L—> *R S

L *eR _ L—>ide S

L s *eR $ L—>ide =

R— el =

R— el S R—le =

L — eid = R— Le S

L—> e*R =

L — eid S L — *Re =

L — ¢*R S L—>*Re S

e

267

LALR

e Can generate parse table without
constructing LR(1) item sets
— construct LR(0) item sets
— compute lookahead sets

e more precise than follow sets

e LALR is used by most parser generators
(e.g., bison)

LR(O)
SLR

LALR
LR(1)

Recap

not very useful

uses follow sets to reduce
uses lookahead sets

uses full lookahead context

Power of shift-reduce parsers

e There are unambiguous grammars which
which cannot be parsed with shift-reduce
parsers.

e Such grammars can have
— shift/reduce conflicts
— reduce/reduce conflicts

e There grammars are not LR(k)

e But, we can often choose shift or reduce to
recoghize what want.

Expression Grammars & Precedence

15-411/611

S i=eF i S=Ete E= E'E
E-—@F*E />E:=E°*E | E+E
E:=®E+E E:=E®+E | id
* -
E:=eid /\‘
E:=E*®E E=E+©E
E:=0E*E E:=0E*E
E:=eE+E E:=®E+E
EE:='id E:=eid
E:=E*Ee® E=Eb+Ee
F:=Fe®*F E:=E®*E
E:=E®+E E=Ee+F

© 2019 Goldstein

272

15-411/611

Expression Grammars & Precedence

E*E
E+E
id

S =eE S:=Es E
E x
E:=@EX*E /’EI:E. E
—®FE+F E:=E®+E
* +
= 0 jd /\‘
E:=E*e®E E=E+eE
=®E*E
=®FE+E
= o id
—
E:=E*Ee®
E:=E®*E

© 2019 Goldstein

273

Handling Ambiguity

E:= E*E
’::.E S’I=E.
E:=z=@E*E _/E»EFE.*E | E+E
' | id
E:=eid

What to do on + or *?
- shift
- reduce by E —> E+E?

15-411/611 © 2019 Goldstein 274

Bison

e Precedence and Associativity declarations

e Precedence derived from order of directivies:
from lowest to highest

e Associativity from %left, %right, %nonassoc

e Can be attached to rules as well (This can
solve the dangling if-else problem

Dangling Else

S = if E thenS
| if EthenSels

| other

e We can be in the following state:

...1f EthenS else .. $

e What do we do?
— shiftthe else (hoping to reduce by second rule)

— reduce by first rule

15-411/611 © 2019 Goldstein 280

Next Time

e From words to sentences.

e From regular languages to context free
anguages.

e Parsing

15-411/611 © 2019 Goldstein 281

	Slide 1
	Slide 2: Reminders
	Slide 3: Today
	Slide 4: Today – part 1
	Slide 5: Compiler Phases
	Slide 6: The Lexer
	Slide 7: The Lexer
	Slide 8: The Lexer
	Slide 9: The Lexer
	Slide 10: The Lexer
	Slide 11: Lexical Analyzers
	Slide 12: FLEX
	Slide 13: 2. Flex Program Format
	Slide 14: wc As a Flex Program
	Slide 15: A Flex Program
	Slide 16: Section 1: RE Definitions
	Slide 17: Regular Expressions in Flex
	Slide 18: Regular Expressions in Flex (cont)
	Slide 19: Some number REs
	Slide 20: Section 2: RE/Action Rule
	Slide 21: Rule Matching
	Slide 22: Section 3: C Functions
	Slide 23: Removing Whitespace
	Slide 24: Printing Line Numbers
	Slide 25: Today – part 1
	Slide 26: Under The Covers
	Slide 27: Regular Languages
	Slide 28: Regular Expressions defined
	Slide 29: RE Examples
	Slide 30: RE Examples
	Slide 31: RE Examples
	Slide 80: Regular Languages
	Slide 81: Not all Scanning is easy
	Slide 82: Today – part 2
	Slide 83: Compiler Phases
	Slide 84: Languages
	Slide 85: Languages
	Slide 87: Grammers and Languages
	Slide 88: Derivation
	Slide 89: Regular Grammar (NFA)
	Slide 90: Regular Grammar (NFA)
	Slide 91: Regular Grammar (NFA)
	Slide 92: Regular Grammar (NFA)
	Slide 93: Regular Grammar (NFA)
	Slide 94: Regular Grammar (NFA)
	Slide 95: Regular Grammar (NFA)
	Slide 96: Regular Grammar (NFA)
	Slide 97: Expressiveness
	Slide 98: Chomsky Hierarchy
	Slide 99: Today – part 2
	Slide 100: Context-Free Grammar
	Slide 101: Context-Free Grammar
	Slide 102: Context-Free Grammar
	Slide 103: What makes a grammar CF?
	Slide 105: Simple Grammar of Expressions
	Slide 106: Derivation
	Slide 107: Derivations
	Slide 108: Leftmost Derivations
	Slide 109: Rightmost Derivations
	Slide 110: Parse Trees
	Slide 111: Parse Trees
	Slide 112: Ambiguous Grammars
	Slide 113: Resolving Ambiguity
	Slide 115: A Better Exp Grammar
	Slide 116: A Better Exp Grammar
	Slide 117: Another Ambiguous Grammer
	Slide 118: Dangling Else Grammar
	Slide 119: A primitive robot
	Slide 120: A primitive robot
	Slide 121: Parsing a CFG
	Slide 122: Top-down Parsers
	Slide 123: A Predictive Parser
	Slide 124: Top-Down parsing
	Slide 125: Top-down for Exp Grammar
	Slide 126: Top-down for Exp Grammar
	Slide 127: Top-down for Exp Grammar
	Slide 128: Top-down for Exp Grammar
	Slide 129: Top-down for Exp Grammar
	Slide 130: Does this work?
	Slide 131: Eliminating Left-Recursion
	Slide 132: Rewriting Exp Grammar
	Slide 133: Try again
	Slide 134: Lookahead
	Slide 135: Lookahead
	Slide 138: FIRST sets
	Slide 139: Computing FIRST()
	Slide 140: Computing FIRST()
	Slide 141: nullable(A)
	Slide 142: FOLLOW(A)
	Slide 143: Building a Predictive Parser
	Slide 144: The table for the robot
	Slide 145: The table for the robot
	Slide 146: Table for exp grammar
	Slide 147: Table for exp grammar
	Slide 148: Using the Table
	Slide 149: Example function
	Slide 150: Left-Factoring
	Slide 151: Top-Down Parsing
	Slide 152: Bottom-up parsers
	Slide 153: Bottom-up parsers
	Slide 154: Top-down vs. Bottom-up
	Slide 155: Example - Top-down
	Slide 156: Example - Bottom-up
	Slide 157: Top-down vs. Bottom-up
	Slide 158: A Rightmost Derivation
	Slide 159: A Rightmost Derivation In Reverse
	Slide 160: A Rightmost Derivation In Reverse
	Slide 161: A Rightmost Derivation In Reverse
	Slide 162: A Rightmost Derivation In Reverse
	Slide 163: A Rightmost Derivation In Reverse
	Slide 164: A Rightmost Derivation In Reverse
	Slide 165: A Rightmost Derivation In Reverse
	Slide 166: A Rightmost Derivation In Reverse
	Slide 167: A Rightmost Derivation In Reverse
	Slide 168: A Rightmost Derivation In Reverse
	Slide 169: A Rightmost Derivation In Reverse
	Slide 170: A Rightmost Derivation In Reverse
	Slide 171: A Rightmost Derivation In Reverse
	Slide 172: A Rightmost Derivation In Reverse
	Slide 173: A Rightmost Derivation In Reverse
	Slide 174: A Rightmost Derivation In Reverse
	Slide 175: A Rightmost Derivation In Reverse
	Slide 176: A Rightmost Derivation In Reverse
	Slide 177: A Rightmost Derivation In Reverse
	Slide 178: A Rightmost Derivation In Reverse
	Slide 179: A Rightmost Derivation In Reverse
	Slide 180: A Rightmost Derivation In Reverse
	Slide 181: A Rightmost Derivation In Reverse
	Slide 182: A Rightmost Derivation In Reverse
	Slide 183: A Rightmost Derivation In Reverse
	Slide 184: A Rightmost Derivation In Reverse
	Slide 185: Handles
	Slide 186: A Rightmost Derivation In Reverse
	Slide 187: A Rightmost Derivation In Reverse
	Slide 188: A Rightmost Derivation In Reverse
	Slide 189: A Rightmost Derivation In Reverse
	Slide 190: A Rightmost Derivation In Reverse
	Slide 191: Handle Pruning
	Slide 192: A Rightmost Derivation In Reverse
	Slide 193: A Rightmost Derivation In Reverse
	Slide 194: A Shift-Reduce Parser
	Slide 195: Table-driven LR(k) parsers
	Slide 196: Table-driven LR(k) parsers
	Slide 197: Parser Loop
	Slide 198: Stack
	Slide 199: Parser Tables
	Slide 200: Parser Tables
	Slide 201: Parser Loop Revisited
	Slide 202: Example
	Slide 203: Example
	Slide 204: Example
	Slide 205: Example
	Slide 206: Example
	Slide 207: Example
	Slide 208: Example
	Slide 209: Example
	Slide 210: Example
	Slide 211: Example
	Slide 212: Example
	Slide 213: Example
	Slide 214: Example
	Slide 215: Example
	Slide 216: Example
	Slide 217: Example
	Slide 218: Example
	Slide 219: Example
	Slide 220: Example
	Slide 221: Table-driven LR(k) parsers
	Slide 222: The parser generator
	Slide 224: Items
	Slide 225: What LR(0) Items Mean
	Slide 226: Generating the States
	Slide 227: Completing a state
	Slide 228: Closure*
	Slide 229: What about the other states?
	Slide 230: Next(state, sym)
	Slide 231: Constructing states
	Slide 232: Closure*
	Slide 233: Closure*
	Slide 234: Next
	Slide 235: Example
	Slide 236: Parse Tables for LR(0) parser
	Slide 237: Parse Tables for LR(0) parser
	Slide 238: Parse Tables for LR(0) parser
	Slide 239: Parse Tables for LR(0) parser
	Slide 240: Parse Tables for LR(0) parser
	Slide 241: LR(0)
	Slide 242: LR(0)
	Slide 243: SLR - Simple LR
	Slide 244: Reminder: Follow sets
	Slide 246: SLR - Reduce using follow sets
	Slide 247: SLR Limitations
	Slide 248: Example
	Slide 249: Example
	Slide 250: Example
	Slide 251: Problem with SLR
	Slide 252: LR(1) Items
	Slide 253: What LR(1) Items Mean
	Slide 254: LR(1) Closure
	Slide 255: Closure
	Slide 256: Closure
	Slide 257: Closure
	Slide 258: Closure
	Slide 259: Closure
	Slide 260: LR(1) Example
	Slide 261: LR(1) Example
	Slide 262: Parsing Table
	Slide 263: LALR: Lookahead LR
	Slide 264: Merge-able states
	Slide 265: Merge-able states
	Slide 266: Merge-able states
	Slide 267: Merge-able states
	Slide 268: LALR
	Slide 269: Recap
	Slide 270: Power of shift-reduce parsers
	Slide 272: Expression Grammars & Precedence
	Slide 273: Expression Grammars & Precedence
	Slide 274: Handling Ambiguity
	Slide 275: Bison
	Slide 280: Dangling Else
	Slide 281: Next Time

