

Lexical Analysis Parsing

15-411/15-611 Compiler Design

Seth Copen Goldstein

February 5, 2026

Reminders

- **Office Hours** are a valuable resource!
- Please name your tests properly, e.g.,
`<team>-<file>.l2`
- Please make sure partners are on submissions.

Your TAs are nicer than I am.

Mislabeled tests and lack of partner on submission will lead to lower score.

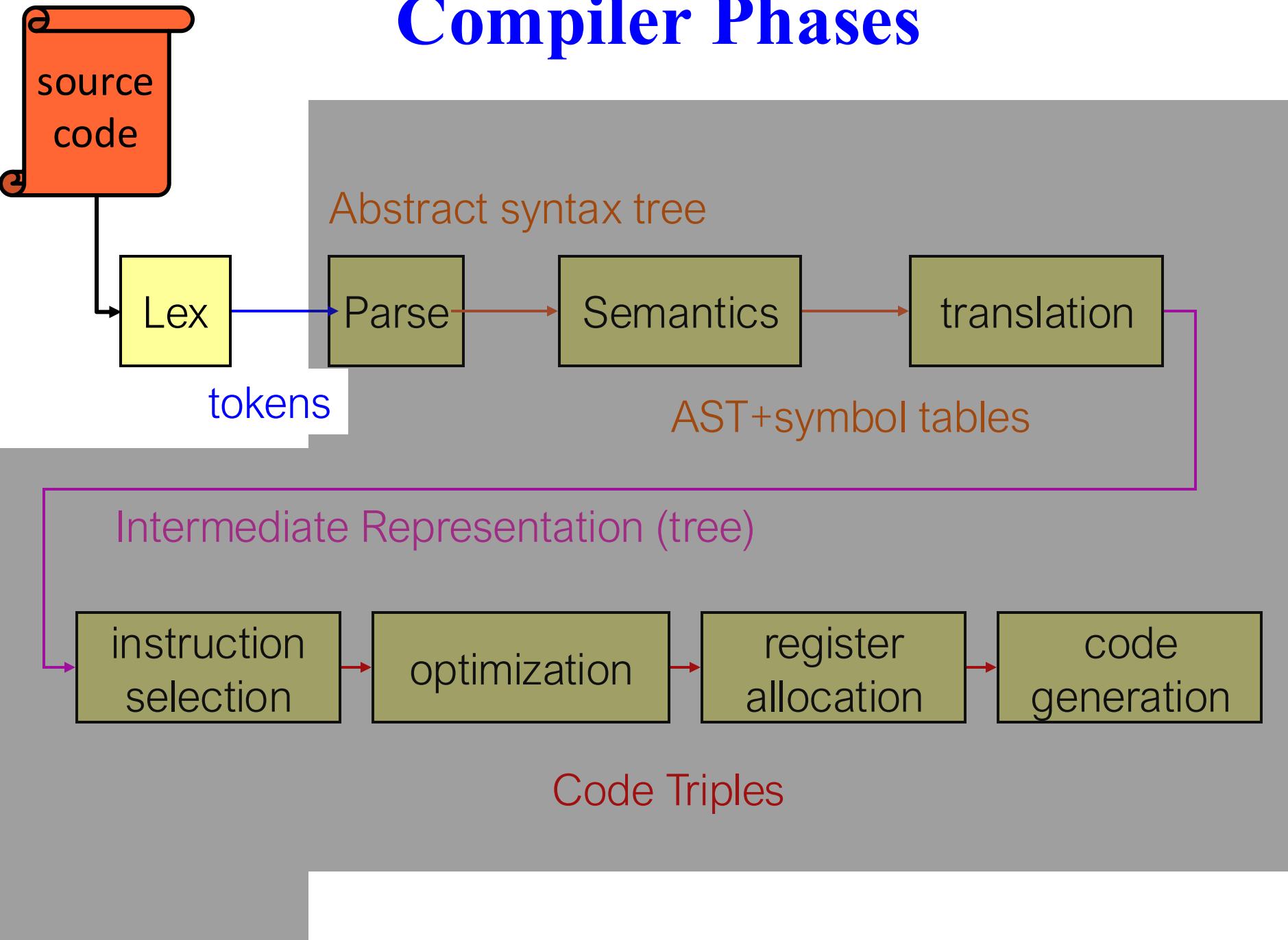
Today

- Lexing
- Parsing

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA \rightarrow Minimized DFA
- Limits of Regular Languages

Compiler Phases



The Lexer

- Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.  
// if key is absent, then use it. Otherwise use longkey  
  
char*  
ArgDesc::helpkey(WhichKey keytype, bool includebraks)  
{  
    static char buffer[128]; /* format buffer */  
    char* p = buffer;  
    ...
```

```
CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID  
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI  
CHAR STAR ID EQ ID SEMI ...
```

The Lexer

- Turn stream of characters into a stream of tokens
 - Strips out “unnecessary characters”
 - comments
 - whitespace
 - Classify tokens by type
 - keywords
 - numbers
 - punctuation
 - identifiers
 - Track location
 - Associate with syntactic information

The Lexer

- Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.  
// if key is absent, then use it. Otherwise use longkey  
  
char*  
ArgDesc::helpkey(WhichKey keytype, bool includebraks)  
{  
    static char buffer[128]; /* format buffer */  
    char* p = buffer;  
    ...
```

```
CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID  
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI  
CHAR STAR ID EQ ID SEMI ...
```

The Lexer

- Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.  
// if key is absent, then use it. Otherwise use longkey  
  
char*  
ArgDesc::helpkey(WhichKey keytype, bool includebraks)  
{  
    static char buffer[128]; /* format buffer */  
    char* p = buffer;
```

Position: 4,0

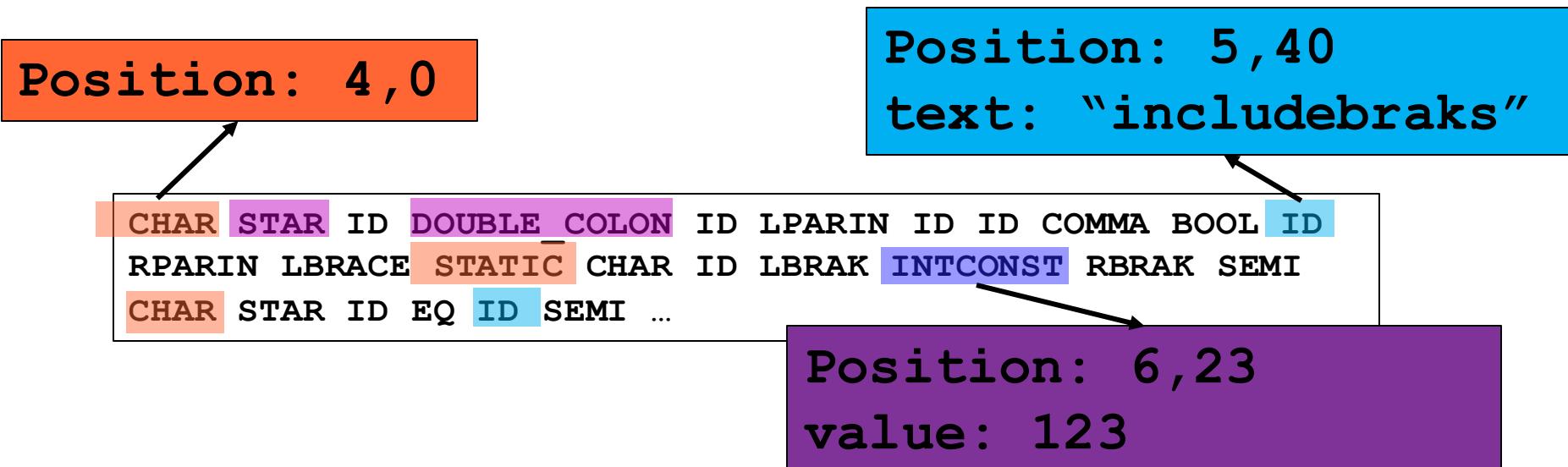
Position: 5,40
text: "includebraks"

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
CHAR STAR ID EQ ID SEMI ...

Position: 6,23
value: 123

The Lexer

- Turn stream of characters into a stream of tokens
 - More concise
 - Easier to parse

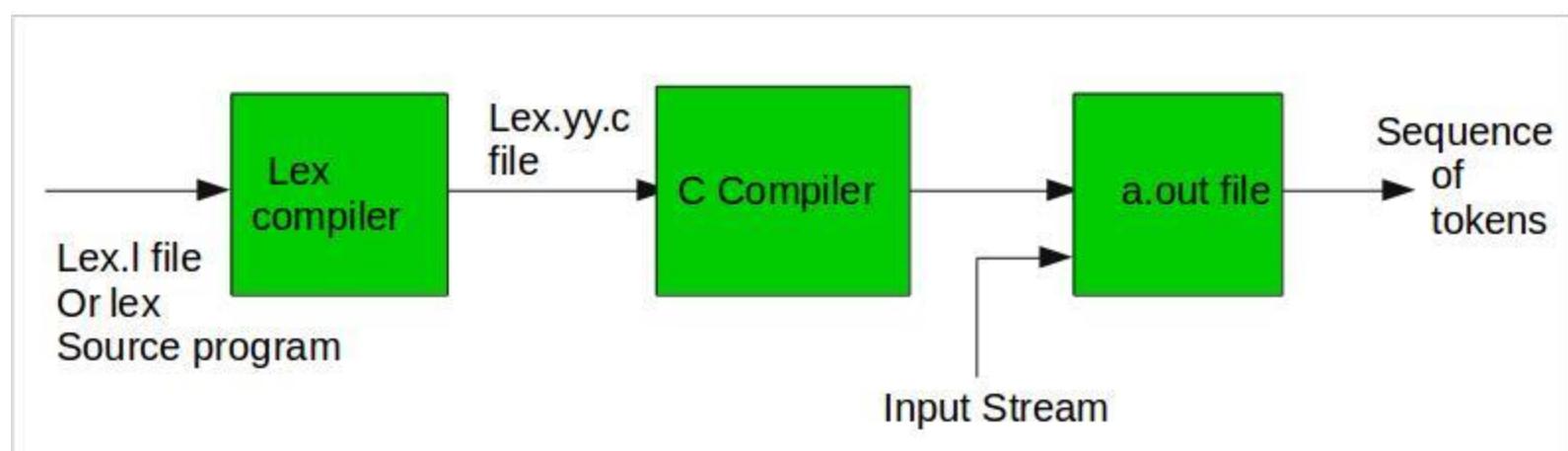


Lexical Analyzers

- Input: stream of characters
- Output: stream of tokens (with information)
- How to build?
 - By hand is tedious
 - Use Lexical Analyzer Generator, e.g., flex
- Define tokens with regular expressions
- Flex turns REs into Deterministic Finite Automata (DFA) which recognizes and returns tokens.

FLEX

- Define tokens
- Generate scanner code
- Main interface: **yylex()** which reads from **yyin** and returns tokens til EOF



2. Flex Program Format

- A flex program has three sections:

Definitions

%%

RE rules & actions

%%

User code

wc As a Flex Program

```
%{
    int charCount=0, wordCount=0, lineCount=0;
%}
word  [^ \t\n]+
%%
{word} {wordCount++; charCount += yyleng; }
[\n]   {charCount++; lineCount++; }
.     {charCount++; }
%%
int main(void) {
    yylex();
    printf("Chars %d, Words: %d, Lines: %d\n",
           charCount, wordCount, lineCount);
    return 0;
}
```

A Flex Program

```
%{  
    int charCount=0, wordCount=0, lineCount=0;  
}  
word  [^\t\n]+  
%%  
{word} {wordCount++; charCount += yylen; }  
[\n] {charCount++; lineCount++; }  
: {charCount++; }  
%%
```

```
int main(void) {  
    yylex();  
    printf("Chars %d, Words: %d, Lines: %d\n",  
        charCount, wordCount, lineCount);  
    return 0;  
}
```

1) Definitions

2) Rules & Actions

3) User Code

skip

Section 1: RE Definitions

- Format:

name	RE
------	----

- Examples:

digit	[0-9]
-------	-------

letter	[A-Za-z]
--------	----------

id	{letter} ({letter} {digit}) *
----	-------------------------------

word	[^ \t\n]+
------	-----------

Regular Expressions in Flex

x	match the char x
\.	match the char .
"string"	match contents of string of chars
.	match any char except \n
^	match beginning of a line
\$	match the end of a line
[xyz]	match one char x , y , or z
[^xyz]	match any char except x , y , and z
[a-z]	match one of a to z

Regular Expressions in Flex (cont)

r*	closure (match 0 or more r's)
r+	positive closure (match 1 or more r's)
r?	optional (match 0 or 1 r)
r1 r2	match <i>r1</i> then <i>r2</i> (concatenation)
r1 r2	match <i>r1</i> or <i>r2</i> (union)
(r)	grouping
r1 \ r2	match <i>r1</i> when followed by <i>r2</i>
{ <i>name</i> }	match the RE defined by <i>name</i>

Some number REs

[0-9]

A single digit.

[0-9] +

An integer.

[0-9] + (\. [0-9] +) ?

An integer or fp number.

[+-] ? [0-9] + (\. [0-9] +) ? ([eE] [+-] ? [0-9] +) ?

Integer, fp, or scientific notation.

Section 2: RE/Action Rule

- A rule has the form:

```
name      { action }
re        { action }
```

- the name must be defined in section 1
- the action is any C code
- If the named RE matches* an input character sequence, then the C code is executed.

* Some caveats here

Rule Matching

- Longest match rule.

```
“int”      { return INT; }  
“integer”  { return INTEGER; }
```

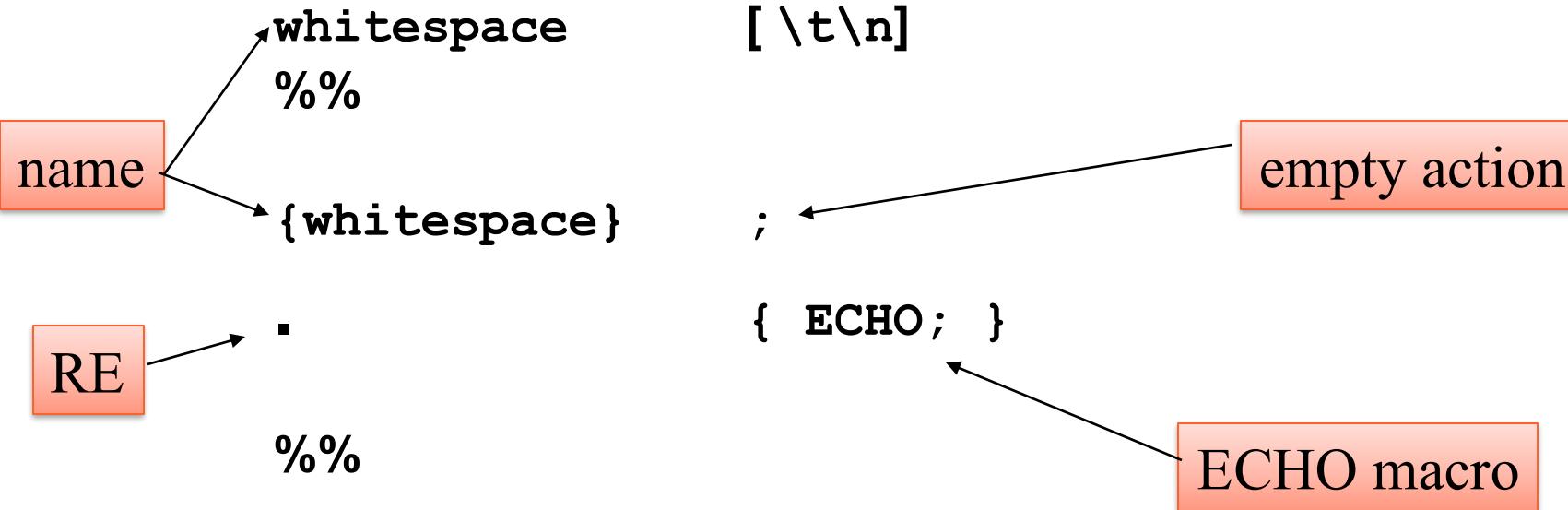
- If rules can match same length input, first rule takes priority.

```
“int”      { return INT; }  
[a-z]+     { return ID; }  
[0-9]+     { return NUM; }
```

Section 3: C Functions

- Added to end of the lexical analyzer

Removing Whitespace

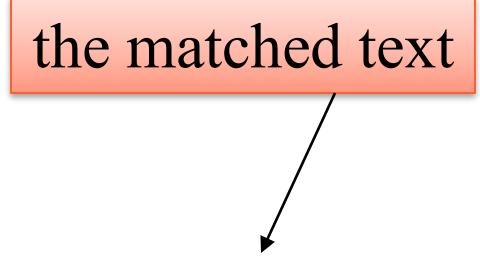


```
int main(void)
{
    yylex();
    return 0;
}
```

Printing Line Numbers

```
%{  
    int lineno = 1;  
}  
%%  
^(.*)\n    { printf("%4d\t%s", lineno, yytext);  
    lineno++; }  
%%  
int main(int argc, char *argv[])  
{  
    // appropriate arg processing & error  
    handling, ...  
    yyin = fopen(argv[1], "r");  
    yylex();  
    return 0;  
}
```

the matched text

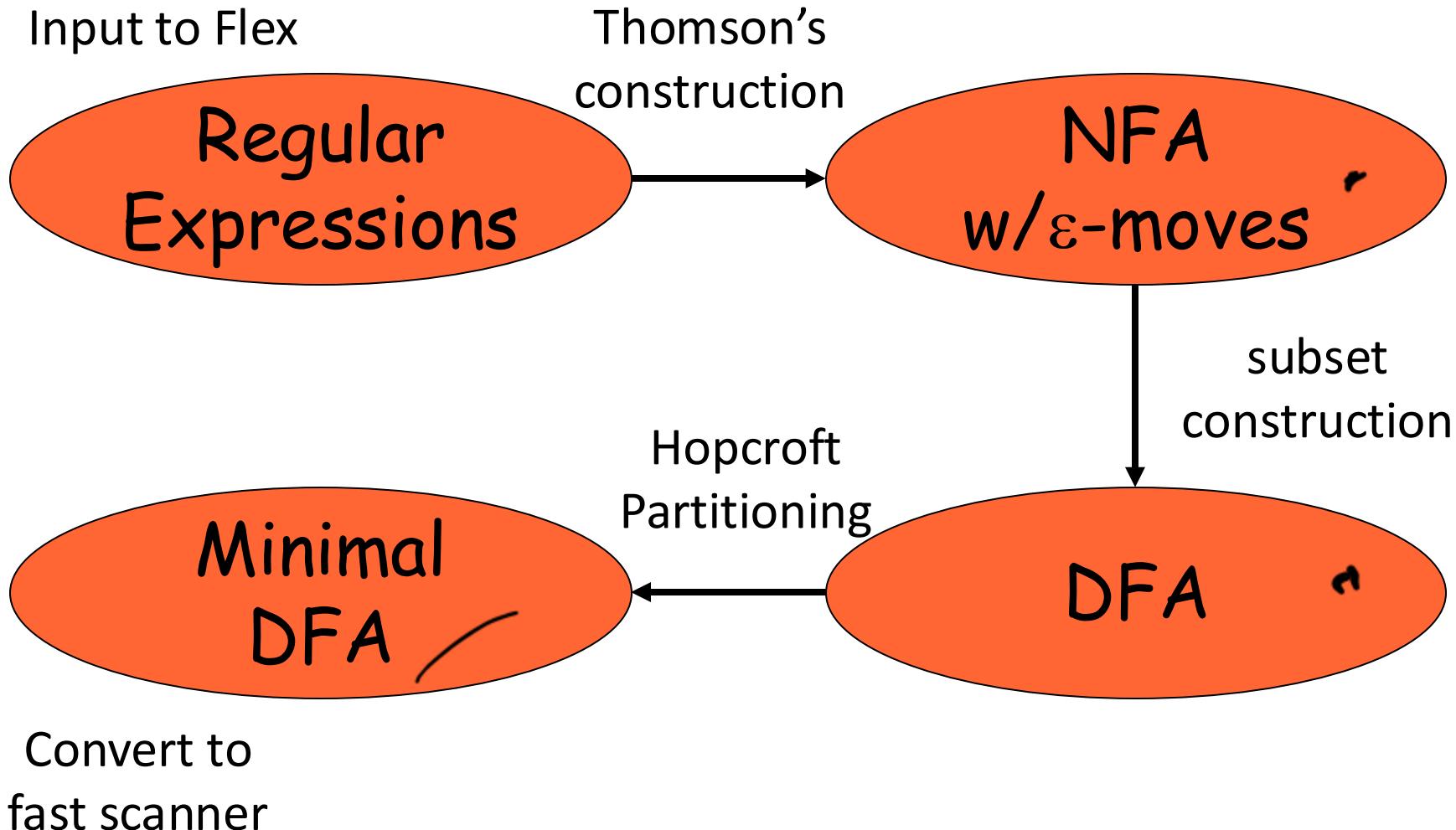


Today – part 1

- Lexing
- Flex & other scanner generators
- **Regular Expressions**
- Finite Automata
- $RE \rightarrow NFA$
- $NFA \rightarrow DFA$
- $DFA \rightarrow \text{Minimized DFA}$
- Limits of Regular Languages

Under The Covers

- How to go from REs to a working scanner?



Regular Languages

- Finite Alphabet, Σ , of symbols.
- word (or string), a finite sequence of symbols from Σ .
- Language over Σ is a set of words from Σ .
- Regular Expressions describe Regular Languages.
 - easy to write down, but hard to use directly
- The languages accepted by Finite Automata are also Regular.

Regular Expressions defined

- Base Cases:

- A single character

a

- The empty string

ϵ

- Recursive Rules:

If R_1 and R_2 are regular expressions

- Concatenation

$R_1 R_2$

- Union

$R_1 | R_2$

- Closure

R_1^*

- Grouping

(R_1)

- REs describe Regular Languages.

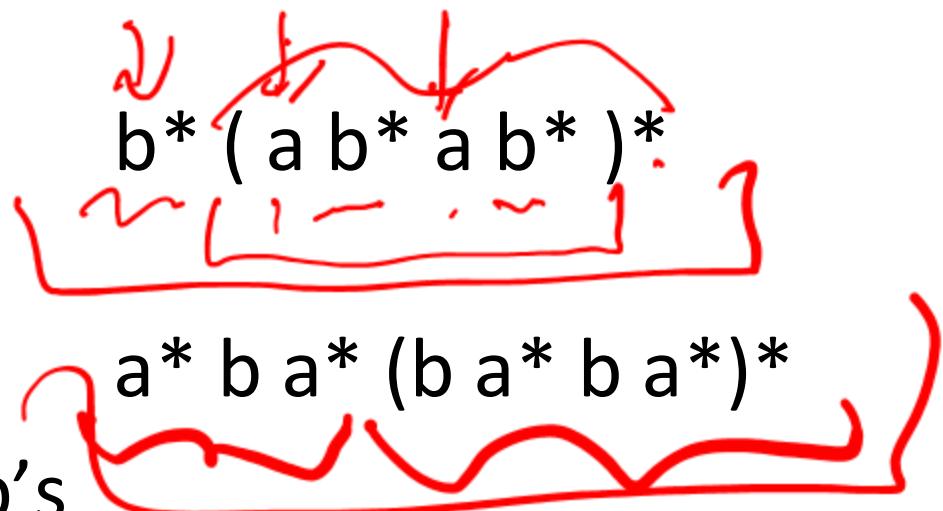
RE Examples

- even a's
- odd b's
- even a's or odd b's
- even a's followed by odd b's

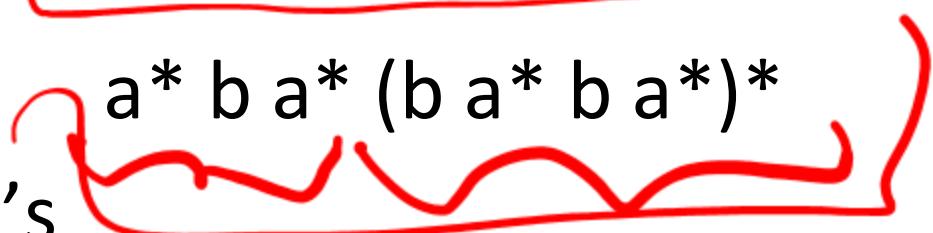
RE Examples

$\Sigma = \{a, b\}$

- even a's



- odd b's



- even a's or odd b's

- even a's followed by odd b's

RE Examples

- even a's

$$R^A = b^* (a b^* a b^*)^*$$

- odd b's

$$R^B = a^* b a^* (b a^* b a^*)^*$$

- even a's or odd b's

$$R^A \mid R^B$$

- even a's followed by odd b's

$$R^A \ R^B$$

Regular Languages

- Regular Expressions are great
 - concise notation
 - automatic scanner generation
 - lots of useful languages
- But, ...
 - Not all languages are regular
 - Context Free Languages
 - Context Sensitive Languages
 - Even simple things like balanced parenthesis,
e.g., $L = \{ A^k B^k \}$ (or nested comments!)
 - RL can't count

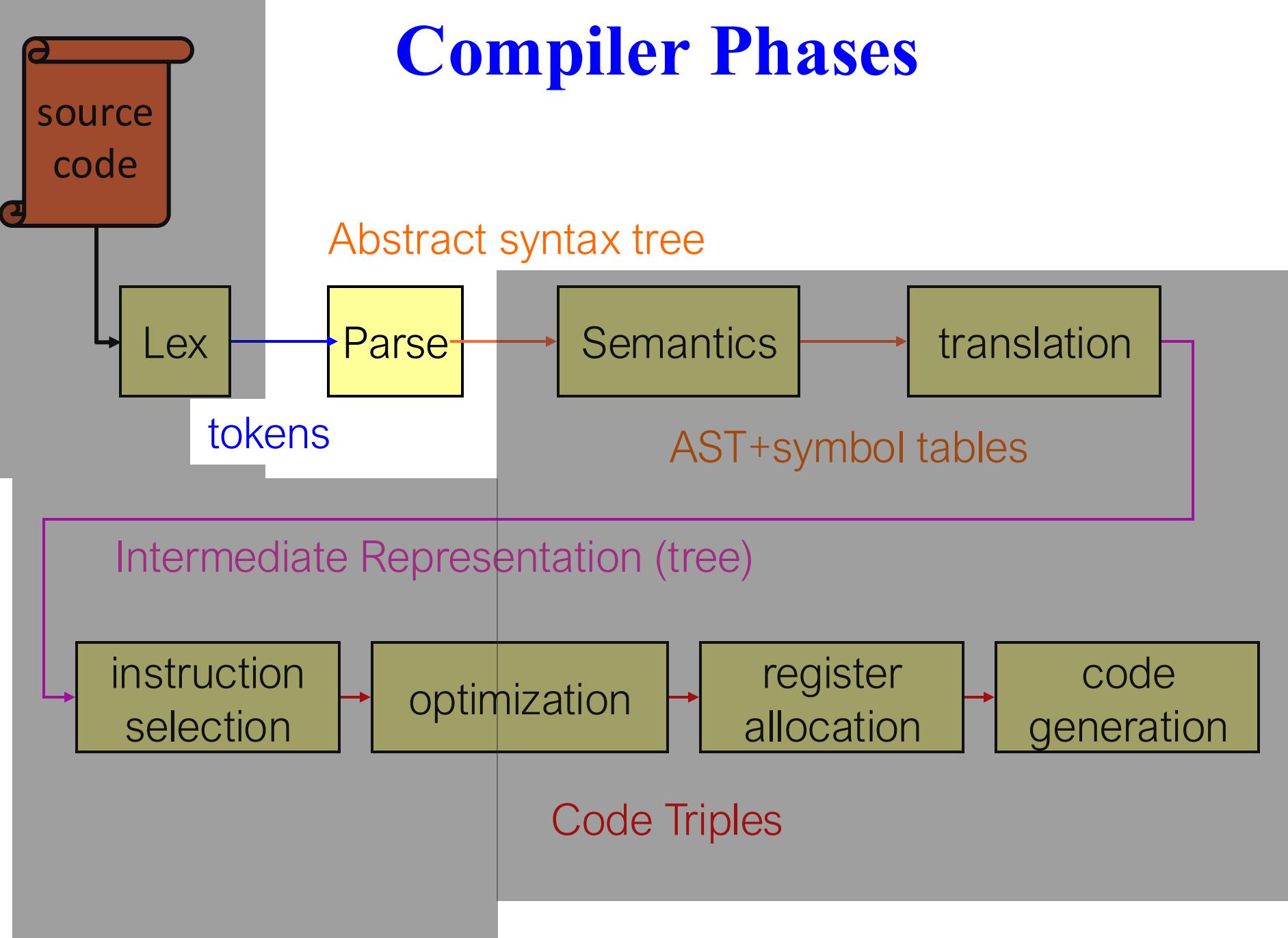
Not all Scanning is easy

- Language design should start with lexemes
 - My favorite example from PL/I
`if (then) then then = else; else else = then`
- blanks not important in Fortran
- nested comments in C
- limited identifier lengths in Fortran

Today – part 2

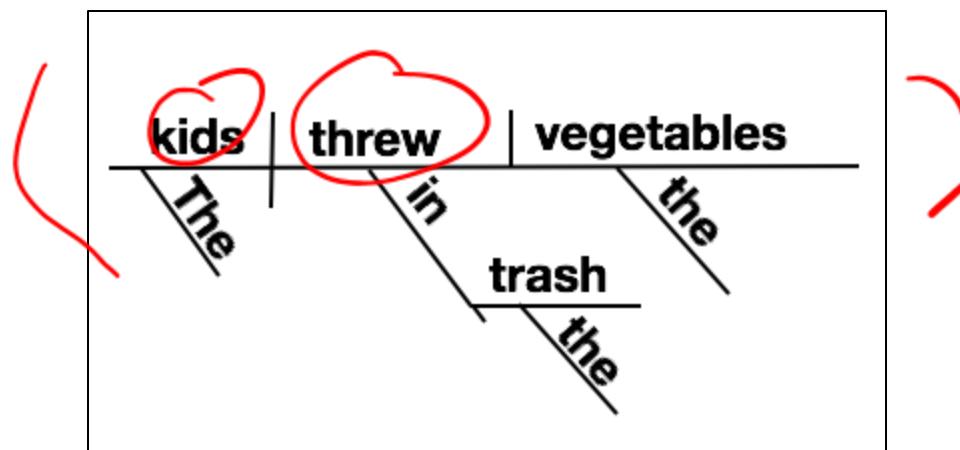
- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Compiler Phases



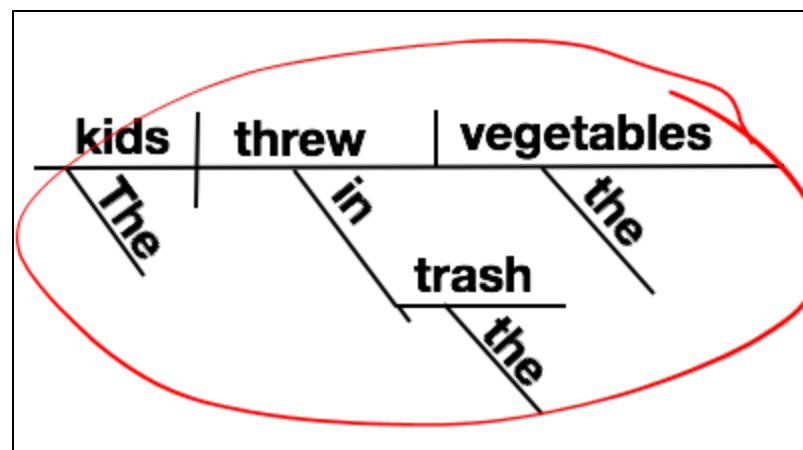
Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → “sentences”



Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → parse trees



Grammers and Languages

- A grammer, G , recognizes a language, $L(G)$
 - Σ set of terminal symbols
 - A set of non-terminals
 - S the start symbol, a non-terminal
 - P a set of productions
- Usually,
 - $\alpha, \beta, \gamma, \dots$ strings of terminals and/or non-terminals
 - A, B, C, \dots are non-terminals
 - a, b, c, \dots are terminals
- General form of a production is: $\alpha \rightarrow \beta$

Derivation

- A sequence of applying productions starting with S and ending with w

$$S \rightarrow \gamma_1 \rightarrow \gamma_2 \dots \rightarrow \gamma_{n-1} \rightarrow w$$

$$S \rightarrow^* w$$

- $L(G)$ are all the w that can be derived from S

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G.,

$$\begin{array}{l} \text{S} \rightarrow aA \\ \text{A} \rightarrow Sb \\ S \rightarrow \epsilon \end{array}$$

$$\begin{array}{l} S \xrightarrow{a} \overset{L}{A} \xrightarrow{Sb} \overset{L}{aab} \\ \xrightarrow{aab} \end{array}$$

- An example derivation of aab:

$$\begin{array}{l} S \xrightarrow{aA} \xrightarrow{Sb} \xrightarrow{aab} \\ aSb \xrightarrow{\epsilon} \end{array}$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

$$\begin{array}{l} S \rightarrow aS \\ S \rightarrow bA \\ \textcolor{red}{A \rightarrow \epsilon} \\ A \rightarrow cA \end{array}$$

- An example derivation of $aabc$:

$$S \rightarrow aS$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- An example derivation of aabc:

$$S \rightarrow aS \rightarrow aaS$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- An example derivation of $aabc$:

$$S \rightarrow aS \rightarrow aa\underline{S} \rightarrow aab\underline{A}$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$\underset{\textcolor{red}{.}}{A} \rightarrow \epsilon$$

$$\textcolor{red}{A} \rightarrow cA$$

- An example derivation of $aabc$:

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- An example derivation of $aabc$:

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA \rightarrow aabc$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a^*bc^*

↓

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- Above is a right-regular grammar

- All rules are of form:

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \epsilon$$

Regular Grammar (NFA)

- Regular expressions and NFAs can be described by a regular grammar
- right regular grammar: $A \rightarrow a$
 $A \rightarrow aB$
 $A \rightarrow \epsilon$
- left regular grammar: $A \rightarrow a$
 $A \rightarrow Ba$
 $A \rightarrow \epsilon$
- Regular grammars are either right-regular or left-regular.

Expressiveness

- Restrictions on production rules limit expressiveness of grammars.
- No restrictions allow a grammar to recognize all recursively enumerable languages
- A bit too expressive for our uses ☺
- Regular grammars cannot recognize $a^n b^n$
- We need something more expressive

Chomsky Hierarchy

Class	Language	Automaton	Form	“word” problem	Example
0	Recursively Enumerable	Turing Machine	any	undecidable	Post's Corresp. problem
1	Context Sensitive	Linear-Bounded TM	$\alpha A \beta \rightarrow \alpha \gamma \beta$	PSPACE-complete	$a^n b^n c^n$
2	Context Free	Pushdown Automata	$A \rightarrow \alpha$	cubic	$a^n b^n$
3	Regular	NFA	$A \rightarrow a$ $A \rightarrow aB$	linear	$a^* b^*$

Today – part 2

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Context-Free Grammar

- A context-free grammar, G , is described by:
 - Σ , a set of terminals (which are just the set of possible tokens from the lexer)
e.g., **if**, **then**, **while**, **id**, **int**, **string**, ...
 - A , a set of non-terminals.
Non-terminals are syntactic variables which define sets of strings in the language
e.g., **stmt**, **expr**, **term**, **factor**, **vardecl**, ...
 - S
 - P

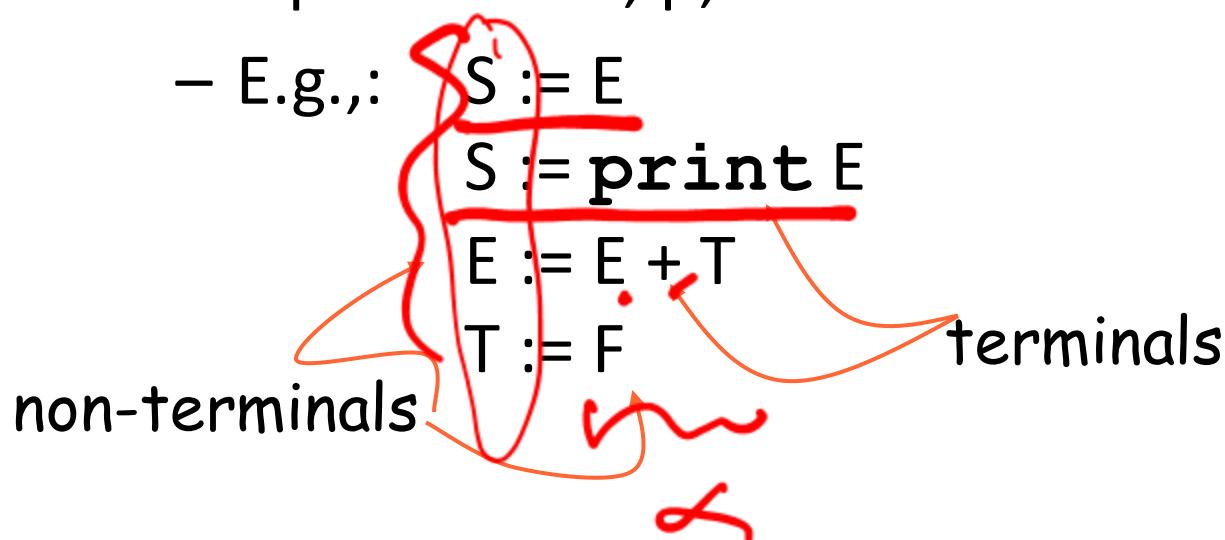
Context-Free Grammar

- A context-free grammar, G , is described by:
 - Σ , a **set of terminals** ...
 - A , a **set of non-terminals**.
 - $S, S \in A$, the **start symbol**
The set of strings derived from S are the valid string in the language.
 - P , set of **productions** that specify how terminals and **non-terminals** combine to form strings in the language
a production, p , has the form: $A \rightarrow \alpha$

Context-Free Grammar

- A context-free grammar, G , is described by:
 - Σ , a **set of terminals** ...
 - A , a **set of non-terminals**.
 - $S, S \in A$, the **start symbol**
 - P , set of **productions** ...
a production, p , has the form: $A \rightarrow \alpha$

– E.g.,:



$S \rightarrow E$
 $i \text{ pt } E$

What makes a grammar CF?

- Only one NT on left-hand side → context-free
- What makes a grammar context-sensitive?
- $\alpha A \beta \rightarrow \alpha \gamma \beta$ where
 - α or β may be empty,
 - but γ is not-empty
- Are context-sensitive grammars useful for compiler writers?

Simple Grammar of Expressions

<u>S</u>	$\coloneqq \text{Exp}$
Exp	$\coloneqq \text{Exp} + \text{Exp}$
Exp	$\coloneqq \text{Exp} - \text{Exp}$
Exp	$\coloneqq \text{Exp} * \text{Exp}$
Exp	$\coloneqq \text{Exp} / \text{Exp}$
Exp	$\coloneqq \text{id}$
Exp	$\coloneqq \text{int}$

Describes a language of expressions. e.g.: $2+3*4$

Derivation

- A *derivation* is a chosen sequence of productions (expansions)

- $S \rightarrow \text{Exp} \rightarrow \text{Exp} + \text{Exp} \rightarrow \text{id} + \text{Exp} \rightarrow \text{id} + \text{int}$

- A successful sequence of expansions that match the input constitute a *parse*

- Connecting the expansions in each successive step produces a *parse tree*
- Parse tree is a form of abstract syntax tree
- Building a *correct AST* is the whole point

Derivations

↓
input: $2+3*x$

- A sequence of steps in which a non-terminal is replaced by its right-hand side.

1	$S \quad \text{-- Exp}$	S
2	Exp	There are possibly many derivations determined by the NT chosen to expand.
3	Exp	\cdot
4	$Exp := Exp * Exp$	by $\cup \rightarrow Exp * id_x$
5	$Exp := Exp / Exp$	by 2 $\Rightarrow Exp + Exp * id_x$
6	<u>$Exp := id$</u>	by 7 $\Rightarrow int_2 + Exp * id_x$
7	$Exp := int$	by 7 $\Rightarrow int_2 + int_3 * id_x$

Leftmost Derivations

input: $2+3*4$

- Leftmost derivation: leftmost NT always chosen

- 1 $S := \text{Exp}$
- 2 $\text{Exp} := \text{Exp} + \text{Exp}$
- 3 $\text{Exp} := \text{Exp} - \text{Exp}$
- 4 $\text{Exp} := \text{Exp} * \text{Exp}$
- 5 $\text{Exp} := \text{Exp} / \text{Exp}$
- 6 $\text{Exp} := \text{id}$
- 7 $\text{Exp} := \text{int}$

FUNCTIONS, +, -, /, *, /

by 1 \Rightarrow Exp

by 4 \Rightarrow $\text{Exp} * \text{Exp}$

by 2 \Rightarrow $\text{Exp} + \text{Exp} * \text{Exp}$

by 7 \Rightarrow $\text{int}_2 + \text{Exp} * \text{Exp}$

by 7 \Rightarrow $\text{int}_2 + \text{int}_3 * \text{Exp}$

by 6 \Rightarrow $\text{int}_2 + \text{int}_3 * \text{id}_x$

Rightmost Derivations

input: $2+3^*x$

- Rightmost derivation: rightmost NT always chosen

1 $S := \text{Exp}$

2 $\text{Exp} := \text{Exp} + \text{Exp}$

3 $\text{Exp} := \text{Exp} - \text{Exp}$

4 $\text{Exp} := \text{Exp} * \text{Exp}$

5 $\text{Exp} := \text{Exp} / \text{Exp}$

6 $\text{Exp} := \text{id}$

7 $\text{Exp} := \text{int}$

S

by 1 $\Rightarrow \text{Exp}$

by 4 $\Rightarrow \text{Exp} * \text{Exp}$

by 6 $\Rightarrow \text{Exp} * \text{id}_x$

by 2 $\Rightarrow \text{Exp} + \text{Exp} * \text{id}_x$

by 7 $\Rightarrow \text{Exp} + \text{int}_3 * \text{id}_x$

by 7 $\Rightarrow \text{int}_2 + \text{int}_3 * \text{id}_x$

Parse Trees

input: $2+3*x$

- symbols in rhs are children of NT being rewritten

S

by 1 \Rightarrow Exp

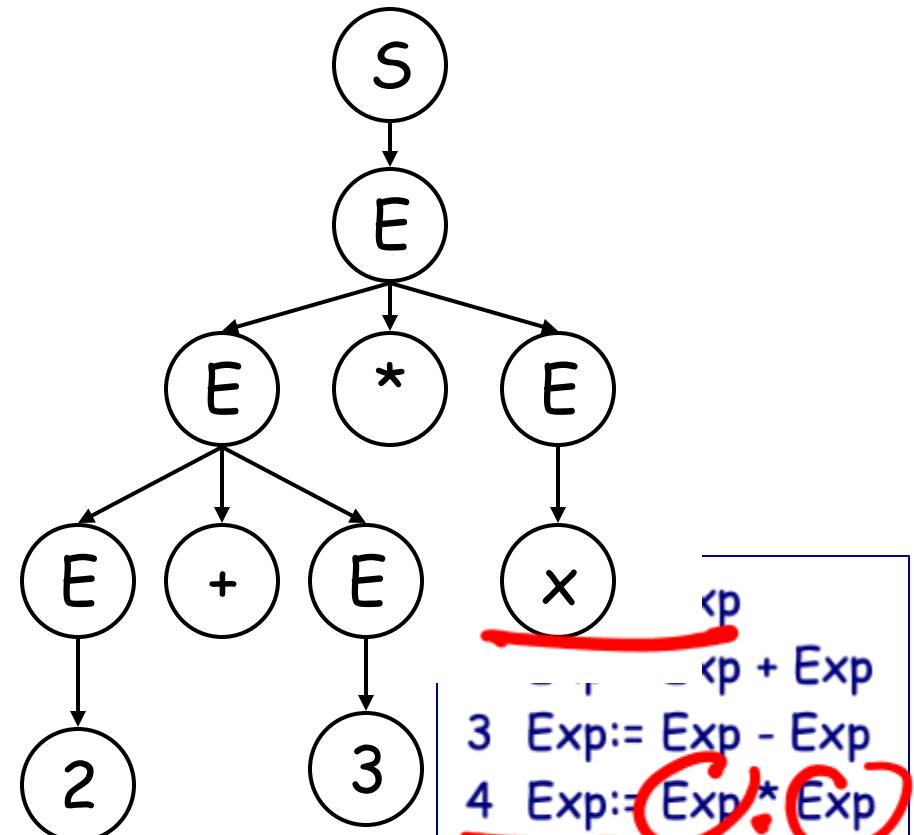
by 4 \Rightarrow $Exp * Exp$

by 2 \Rightarrow $Exp + Exp * Exp$

by 7 \Rightarrow $int_2 + Exp * Exp$

by 7 \Rightarrow $int_2 + int_3 * Exp$

by 6 \Rightarrow $int_2 + int_3 * id_x$



Parse Trees

- parse tree for rightmost derivation

1	$S := \text{Exp}$
2	$\text{Exp} := \text{Exp} + \text{Exp}$
3	$\text{Exp} := \text{Exp} - \text{Exp}$
4	$\text{Exp} := \text{Exp} * \text{Exp}$
5	$\text{Exp} := \text{Exp} / \text{Exp}$
6	$\text{Exp} := \text{id}$
7	$\text{Exp} := \text{int}$

S

by 1 \Rightarrow Exp

by 4 \Rightarrow $\text{Exp} * \text{Exp}$

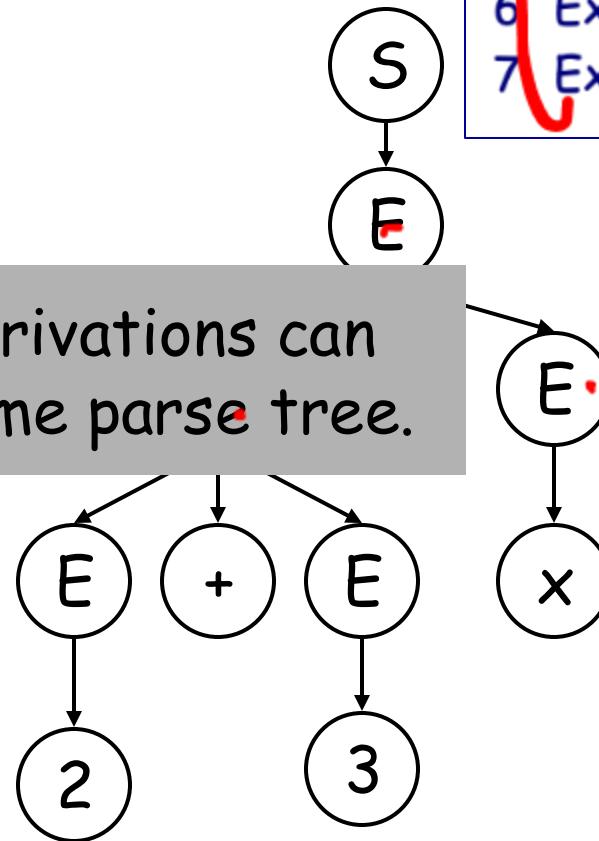
by 6 \Rightarrow Exp

by 2 \Rightarrow $\text{Exp} + \text{Exp} * \text{id}_x$

by 7 \Rightarrow $\text{Exp} + \text{int}_3 * \text{id}_x$

by 7 \Rightarrow $\text{int}_2 + \text{int}_3 * \text{id}_x$

Different derivations can lead to the same parse tree.

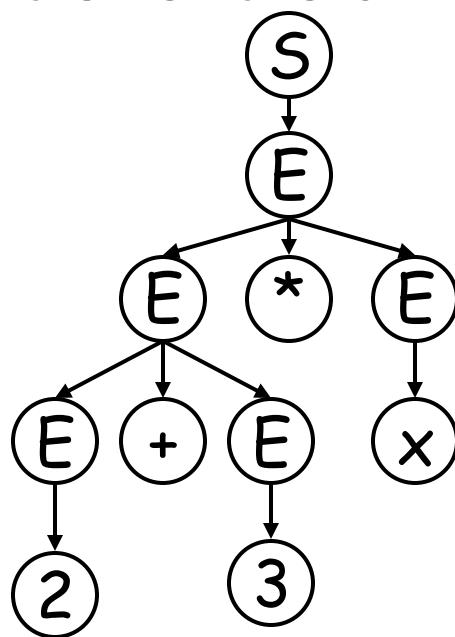
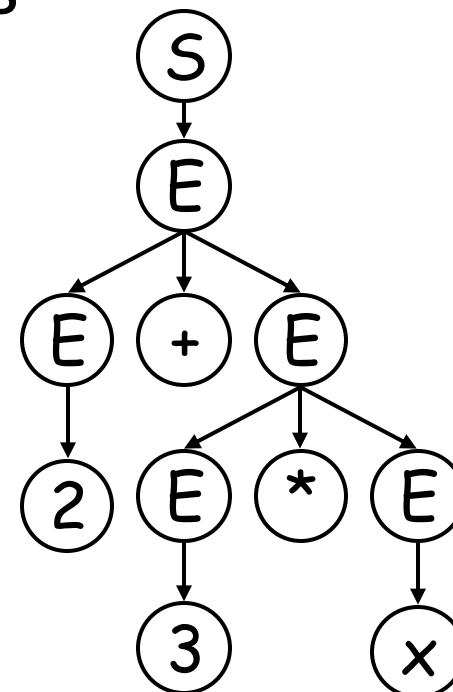


2 + 3 * x

What about different parse trees for same sentence?

Ambiguous Grammars

- A grammar is ambiguous if a sentence has more than one parse tree.
- If a grammar has more than one leftmost (rightmost) derivation, it is ambiguous.



Resolving Ambiguity

- Ambiguity is a problem with the grammar
- One possible fix:
 - Add precedence with more non-terminals
- In this example, one for each level of precedence:
 - $(+, -)$ exp
 - $(*, /)$ term
 - (id, int) factor
 - Make sure parse derives sentences that respect the precedence
 - Make sure that extra levels of precedence can be bypassed, i.e., “x” is still legal

A Better Exp Grammar

1	S	\coloneqq Exp
2	Exp	\coloneqq Exp + Term
3	Exp	\coloneqq Exp - Term
4	Exp	\coloneqq Term
5	Term	\coloneqq Term * Factor
6	Term	\coloneqq Term / Factor
7	Term	\coloneqq Factor
8	Factor	\coloneqq id
9	Factor	\coloneqq int

S

by 1 \Rightarrow Exp

by 2 \Rightarrow Exp + Term

by 4 \Rightarrow Term + Term

by 7 \Rightarrow Factor + Term

by 9 \Rightarrow int₂ + Term

by 5 \Rightarrow int₂ + Term * Factor

by 7 \Rightarrow int₂ + Factor * Factor

by 9 \Rightarrow int₂ + int₃ * Factor

by 8 \Rightarrow int₂ + int₃ * id_x

input: 2+3*x

What is the parse tree?

A Better Exp Grammar

```
1 S      := Exp
2 Exp    := Exp + Term
3 Exp    := Exp - Term
4 Exp    := Term
5 Term   := Term * Factor
6 Term   := Term / Factor
7 Term   := Factor
8 Factor  := id
9 Factor  := int
```

S

by 1 \Rightarrow **Exp**

by 2 \Rightarrow **Exp + Term**

by 4 \Rightarrow **Term + Term**

by 7 \Rightarrow **Factor + Term**

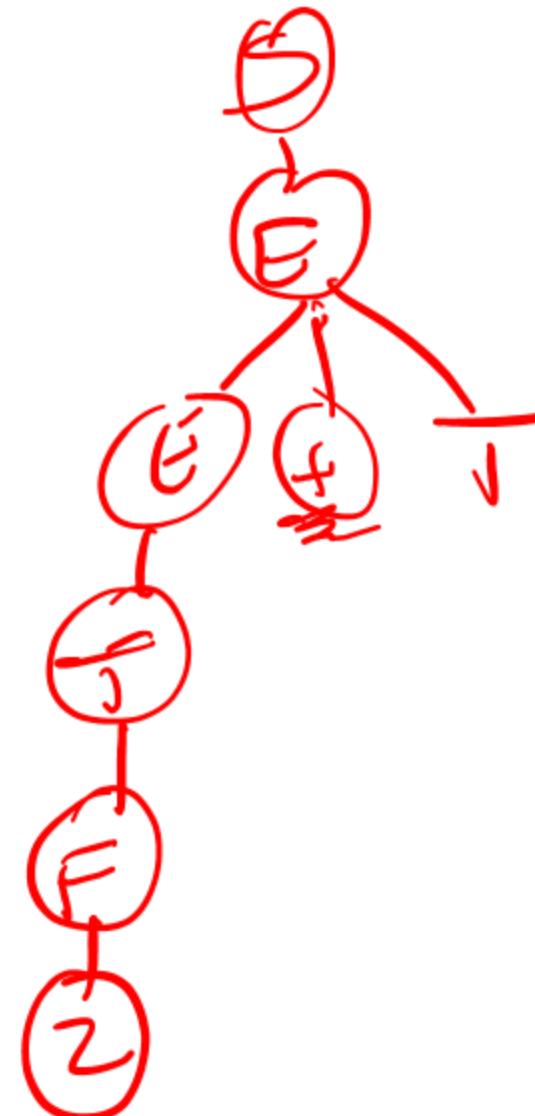
by 9 \Rightarrow **int₂ + Term**

by 5 \Rightarrow **int₂ + Term * Factor**

by 7 \Rightarrow **int₂ + Factor * Factor**

by 9 \Rightarrow **int₂ + int₃ * Factor**

by 8 \Rightarrow **int₂ + int₃ * id_x**



Another Ambiguous Grammer

```
S := if E then S
  | if E then S else S
  | other
```

- What is the parse tree for:
$$\text{if E then if E then S else S?}$$
- What is the language designers intention?
- Is there a context-free solution?

Dangling Else Grammar

S := matchedS

| unmatchedS

unmatchedS := **if E then S**

| **if E then matchedS else unmatchedS**

matchedS := **if E then matchedS else matchedS**

| **other**

- Is this clearer?
- What is parse tree for: **if E then if E then S else S**?

Parser generators provide a better way

A primitive robot

Swing := Back Swing Forward
 | |
 L ?

Back := back-1-inch

Forward := forward-2-inchs

- What is L(Swing)?

A primitive robot

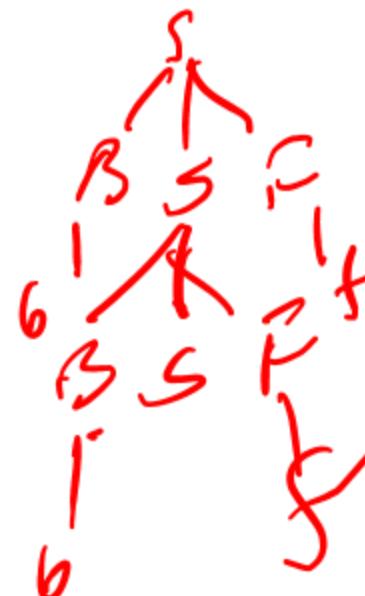
S := B S F

 |

B := b

F := f

- What is $L(\text{Swing})$?
- What is the parse tree for “bbff”



Parsing a CFG

- Top-Down
 - start at root of parse-tree
 - pick a production and expand to match input
 - may require backtracking
 - if no backtracking required, predictive
- Bottom-up
 - start at leaves of tree
 - recognize valid prefixes of productions
 - consume input and change state to match
 - use stack to track state

Top-down Parsers

- Starts at root of parse tree and recursively expands children that match the input
- In general case, may require backtracking
- Such a parser uses recursive descent.
- When a grammar does not require backtracking a **predictive parser** can be built.

A Predictive Parser

$S := B S F$
|

$B := b$

$F := f$

Idea is for parser to do something
besides recognize legal sentences.

$S() \{$

if match('b') \rightarrow B(); S(); F(); action();
else return;

}

B() {

mustMatch('b'); action(); return;}

F() {

mustMatch('f'); action(); return;}

Top-Down parsing

- Start with root of tree, i.e., \underline{S}
- Repeat until entire input matched:
 - pick a non-terminal, \underline{A} , and pick a production $\underline{A \rightarrow \gamma}$ that can match input, and expand tree
 - if no such rule applies, backtrack
- Key is obviously selecting the right production

Top-down for Exp Grammar

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := id$
9	$F := int$

by 1 \Rightarrow E

| int₂ - int₃ * id_x
| int₂ - int₃ * id_x

input: 2+3*x

Top-down for Exp Grammar

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := id$
9	$F := int$

	S	$ int_2 - int_3 * id_x$
by 1 \Rightarrow	E	$ int_2 - int_3 * id_x$
by 2 \Rightarrow	$E + T$	$ int_2 - int_3 * id_x$
by 4 \Rightarrow	$T + T$	$ int_2 - int_3 * id_x$
by 7 \Rightarrow	$F + T$	$ int_2 - int_3 * id_x$
by 9 \Rightarrow	$int_2 + T$	$ int_2 - int_3 * id_x$

Must backtrack here!

input: $2+3*x$

Top-down for Exp Grammar

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := id$
9	$F := int$

	S		
	by 1 \Rightarrow	E	$int_2 - int_3 * id_x$
	by 2 \Rightarrow	E + T	$int_2 - int_3 * id_x$
	by 4 \Rightarrow	T + T	$int_2 - int_3 * id_x$
	by 7 \Rightarrow	F + T	$int_2 - int_3 * id_x$
	by 9 \Rightarrow	int ₂ + T	$int_2 - int_3 * id_x$
	by 3 \Rightarrow	E - T	$int_2 - int_3 * id_x$
	by 4 \Rightarrow	T - T	$int_2 - int_3 * id_x$
	by 7 \Rightarrow	F - T	$int_2 - int_3 * id_x$
	by 9 \Rightarrow	int ₂ - int₃ * T	$int_2 - int_3 * id_x$
	by 5 \Rightarrow	int ₂ - T * F	$int_2 - int_3 * id_x$

input: $2+3*x$

Top-down for Exp Grammar

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := id$
9	$F := int$

	S	$ int_2 - int_3 * id_x$
	by 1 $\Rightarrow E$	$ int_2 - int_3 * id_x$
by 2 $\Rightarrow E + T$		$ int_2 - int_3 * id_x$
by 4 $\Rightarrow T + T$		$ int_2 - int_3 * id_x$
by 7 $\Rightarrow F + T$		$ int_2 - int_3 * id_x$
by 9 $\Rightarrow int_2 + T$		$int_2 - int_3 * id_x$
by 3 $\Rightarrow E - T$		$ int_2 - int_3 * id_x$
by 4 $\Rightarrow T - T$		$ int_2 - int_3 * id_x$
by 7 $\Rightarrow F - T$		$ int_2 - int_3 * id_x$
by 9 $\Rightarrow int_2 - T$		$int_2 - int_3 * id_x$

What kind of derivation is this parsing? $int_2 - | int_3 * id_x$

input: $2+3*x$

Top-down for Exp Grammar

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := id$
9	$F := int$

S
by 1 $\Rightarrow E$
by 2 $\Rightarrow E + T$
by 2 $\Rightarrow E + E + T$
by 2 $\Rightarrow E + E + E + T$

| $int_2 - int_3 * id_x$
| $int_2 - int_3 * id_x$

Will not terminate! Why?

grammar is left-recursive

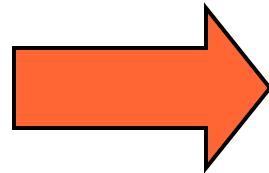
What should we do about it?

Eliminate left-recursion

input: $2+3*x$

Does this work?

```
1  S := E
2  E := E + T
3  E := E - T
4  E := T
5  T := T * F
6  T := T / F
7  T := F
8  F := id
9  F := int
```



```
1  S := E
2  E := T + E
3  E := T - E
4  E := T
5  T := F * T
6  T := F / T
7  T := F
8  F := id
9  F := int
```

It is right recursive, but also right associative!

Eliminating Left-Recursion

- Given 2 productions:

$$A := A \alpha \mid \beta$$

Where neither α nor β start with A

(e.g., For example, $E := E + T \mid T$)

- Make it right-recursive:

$$\begin{array}{l} A := \beta R \\ R := \alpha R \\ \mid \end{array}$$

$\alpha \quad \beta$

R is right recursive

- Extends to general case.

Rewriting Exp Grammar

1	S	$\coloneqq E$
2	E	$\coloneqq E + T$
3	E	$\coloneqq E - T$
4	E	$\coloneqq T$
5	T	$\coloneqq T * F$
6	T	$\coloneqq T / F$
7	T	$\coloneqq F$
8	F	$\coloneqq \text{id}$
9	F	$\coloneqq \text{int}$

1	S	$\coloneqq E$
2'	E'	$\coloneqq + TE'$
3'	E'	$\coloneqq - TE'$
4'	E'	\coloneqq
5'	T'	$\coloneqq * FT$
6'	T'	\coloneqq / FT
7'	T'	\coloneqq
8	F	$\coloneqq \text{id}$
9	F	$\coloneqq \text{int}$

2	E	$\coloneqq TE'$
---	---	-----------------

5	T	$\coloneqq FT$
---	---	----------------

Is this legible?

input: $2+3*x$

Try again

1	$S := E$
2	$E := TE'$
2'	$E' := + TE'$
3'	$E' := - TE'$
4'	$E' :=$
5	$T := FT$
5'	$T := * FT$
6'	$T := / FT$
7'	$T :=$
8	$F := id$
9	$F := int$

S
by 1 $\Rightarrow E$
by 2 $\Rightarrow TE'$
by 5 $\Rightarrow FT'E'$
by 9 $\Rightarrow 2TE'$
by 7' $\Rightarrow 2E'$
by 3' $\Rightarrow 2 - TE'$
by 5 $\Rightarrow 2 - FT'E'$
by 9 $\Rightarrow 2 - 3TE'$
by 5' $\Rightarrow 2 - 3 * FT'E'$
by 3' $\Rightarrow 2 - 3 + TE'$

- $int_2 - int_3 * id_x$
- $int_3 * id_x$
- $int_3 * id_x$
- $int_3 * id_x$

Unlike previous time we tried this, it appears that only one production applies at a time. I.e., no backtracking needed. Why?

Lookahead

- How to pick right production?
- Lookahead in input stream for guidance
- General case: arbitrary lookahead required
- Luckily, many context-free grammars can be parsed with limited lookahead
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define $\text{FIRST}(\alpha)$ as the set of tokens that can be first symbol of α , i.e.,
 $a \in \text{FIRST}(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ

Lookahead

skip

- How to pick right production?
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define $\text{FIRST}(\alpha)$ as the set of tokens that can be first symbol of α , i.e.,
$$a \in \text{FIRST}(\alpha) \text{ iff } \alpha \rightarrow^* a\gamma \text{ for some } \gamma$$
- If $A \rightarrow \alpha \mid \beta$ we want:
$$\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$$
- If that is always true, we can build a predictive parser.

FIRST sets

- We use next k characters in input stream to guide the selection of the proper production.
- Given: $A := \alpha \mid \beta$ we want next input character to decide between α and β .
- $\text{FIRST}(\alpha) =$ set of terminals that can begin any string derived from α .
- IOW: $a \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* a\gamma$ for some γ
- $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset \rightarrow$ no backtracking needed

Computing FIRST(α)

- Given $X := A B C$, $\text{FIRST}(X) = \text{FIRST}(A B C)$
- Can we ignore B or C?
- Consider:

$A := a$

|

$B := b$

| A

$C := c$

Computing FIRST(α)

- Given $X := A B C$, $\text{FIRST}(X) = \text{FIRST}(A B C)$
- Can we ignore B or C?
- Consider:

$A := a$

|

$B := b$

| A

$C := c$

- $\text{FIRST}(X)$ must also include $\text{FIRST}(C)$
- IOW:
 - Must keep track of NTs that are nullable
 - For nullable NTs, determine $\text{FOLLOW}(NT)$

nullable(A)

- $\text{nullable}(A)$ is true if A can derive the empty string
- For example:

$B := X Y b$

$X := x$

 | $Y Y$

$Y :=$

In this case, $\text{nullable}(X) = \text{nullable}(Y) = \text{true}$

$\text{nullable}(B) = \text{false}$

FOLLOW(A)

- FOLLOW(A) is the set of terminals that can immediately follow A in a sentential form.
- I.e.,
 $a \in \text{FOLLOW}(A)$ iff $S \Rightarrow^* \alpha A a \beta$ for some α and β

Building a Predictive Parser

- We want to know for each non-terminal which production to choose based on the next input character.
- Build a table with rows labeled by non-terminals, A , and columns labeled by terminals, a . We will put the production, $A := \alpha$, in (A, a) iff
 - $\text{FIRST}(\alpha)$ contains a or
 - $\text{nullable}(\alpha)$ and $\text{FOLLOW}(A)$ contains a

skip

The table for the robot

S := B S F
|
B := b
F := f

	FIRST	FOLLOW	nullable
S	b	\$	yes
B	b	b,f	no
F	f	f,\$	no

	b	f	\$
S			
B			
F			

The table for the robot

S := B S F

|

B := b

F **FIRST(BSF) = b**

	FIRST	FOLLOW	nullable
S	b	\$	yes
B	b	b,f	no
F	f	f,\$	no

	b	f	\$
S	S:=BSF		S:=
B	B:=b		
F		F:=f	

nullable(ϵ)=true
and
FOLLOW(S) = \$

Table 1

1	$S := E$
2	$E := TE'$
2'	$E' := + TE'$
3'	$E' := - TE'$
4'	$E' :=$
5	$T := FT$
5'	$T := *FT$
6'	$T := /FT$
7'	$T :=$
8	$F := id$
9	$F := int$

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
E'	+, -	\$	yes
T	id, int	+,-,\$	
T'	/, *	+,-,\$	yes
F	id, int	/, *, \$	

	+	-	*	/	id	int	\$
S							
E							
E'							
T							
T'							
F							

Table 1

1	$S := E$
2	$E := TE'$
2'	$E' := + TE'$
3'	$E' := - TE'$
4'	$E' :=$
5	$T := FT$
5'	$T := * FT$
6'	$T := / FT$
7'	$T :=$
8	$F := id$
9	$F := int$

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
E'	+, -	\$	yes
T	id, int	+,-,\$	
T'	/, *	+,-,\$	yes
F	id, int	/, *, \$	

	+	-	*	/	id	int	\$
S					$:= E$	$:= E$	
E					$:= TE'$	$:= TE'$	
E'	$:= + TE'$	$:= - TE'$					$:=$
T					$:= FT'$	$:= FT'$	
T'	$:=$	$:=$	$:= * FT'$	$:= / FT'$			$:=$
F					$:= id$	$:= int$	

Using the Table

- Each row in the table becomes a function
- For each input token with an entry:
Create a series of invocations that implement the production, where
 - a non-terminal is eaten
 - a terminal becomes a recursive call
- For the blank cells implement errors

Example function

	+	-	*	/	id	int	\$
S					:=E	:=E	
E					:=TE'	:=TE'	
E'	:=+TE'	:= -TE'			:=TE'	:=TE'	:=
T							
T	:=	:=	:= *FT				
F					:=id	:=int	

How to handle errors?

```

Eprime() {
    switch (token) {
        case PLUS:      eat(PLUS); T(); Eprime(); break;
        case MINUS:     eat(MINUS); T(); Eprime(); break;
        case ID:         T(); Eprime();
        case INT:        T(); Eprime();
        default:
    }
}

```

Left-Factoring

- Predictive parsers need to make a choice based on the next terminal.
- Consider:

$$S := \underline{\text{if } E \text{ then } S} \quad \underline{\text{else } S}$$
$$| \quad \underline{\text{if } E \text{ then } S}$$

- When looking at **if**, can't decide
- so **left-factor** the grammar

$$S := \underline{\text{if } E \text{ then } S} \quad X$$
$$X := \underline{\text{else } S}$$
$$|$$

Top-Down Parsing

- Can be constructed by hand
- $LL(k)$ grammars can be parsed
 - Left-to-right
 - Leftmost-derivation
 - with k symbols lookahead
- Often requires
 - left-factoring
 - Elimination of left-recursion

$LL(1)$

Bottom-up parsers

- What is the inherent restriction of top-down parsing, e.g., with LL(k) grammars?

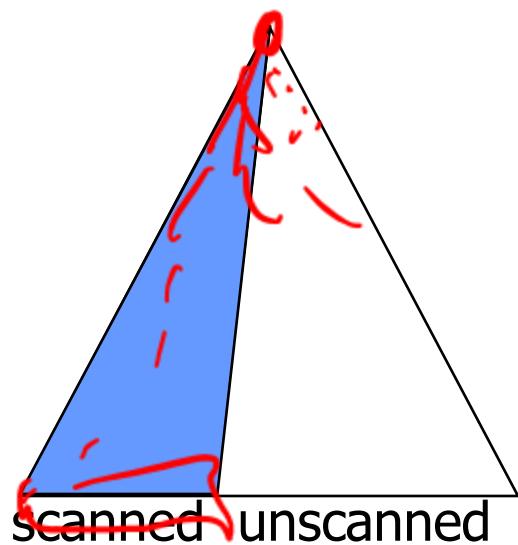
Bottom-up parsers

- What is the inherent restriction of top-down parsing, e.g., with LL(k) grammars?
- Bottom-up parsers use the entire right-hand side of the production
- LR(k):
 - Left-to-right parse,
 - Rightmost derivation (in reverse),
 - k look ahead tokens

(LR(k))

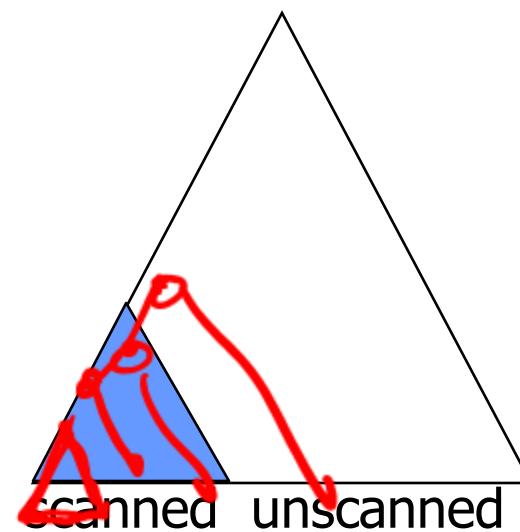
Top-down vs. Bottom-up

LL(k), recursive descent



Top-down

LR(k), shift-reduce



Bottom-up

Example - Top-down

$S := X$

$X := \begin{cases} Xa \\ b \end{cases}$

Is this grammar LL(k)?

How can we make it LL(k)?

$S := X$

$X := bR$

$R := aR$

|

What about a bottom up parse?

Example - Bottom-up

$S := X$

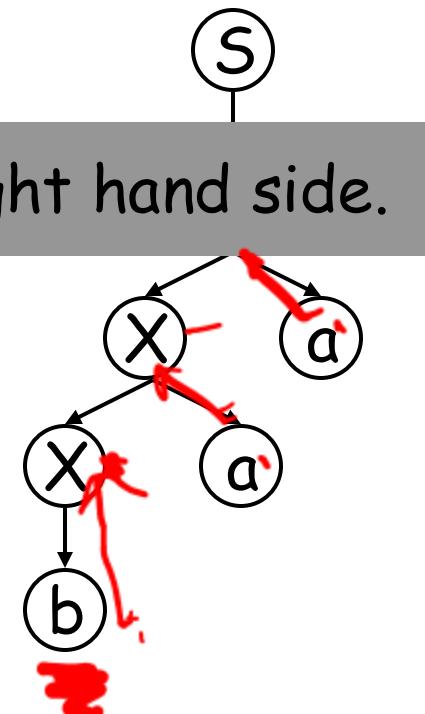
$X := \cancel{X a}$
| b

right-most derivation:

LR parser gets to look at an entire right hand side.

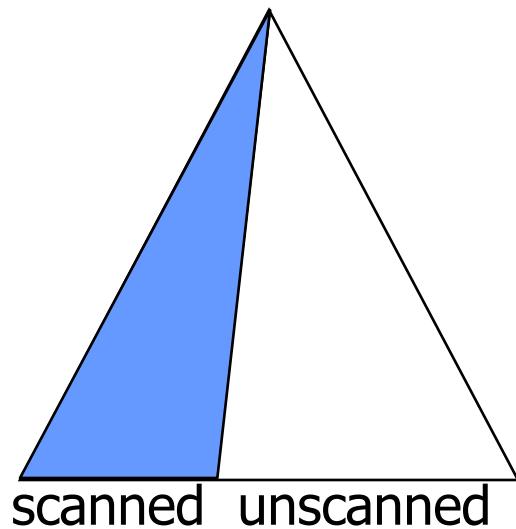
Left-to-Right, Rightmost in reverse

baa
Xaa
Xa
X
S



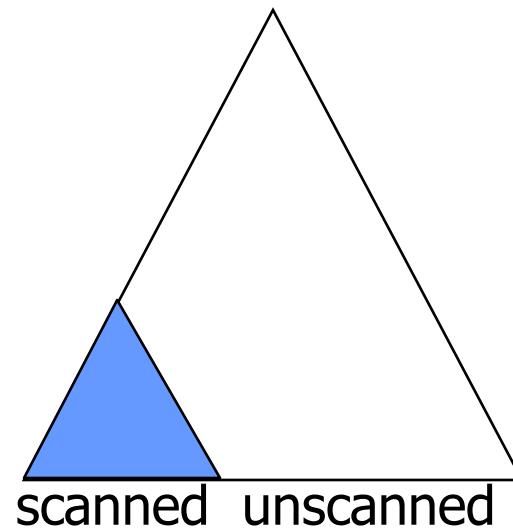
Top-down vs. Bottom-up

LL(k), recursive descent



Top-down

LR(k), shift-reduce



Bottom-up

A Rightmost Derivation

1	S	\coloneqq Exp	
2	Exp	\coloneqq Exp + Term	by 1 \Rightarrow Exp
3	Exp	\coloneqq Exp - Term	by 2 \Rightarrow Exp + Term
4	Exp	\coloneqq Term	by 5 \Rightarrow Exp + Term * Factor
5	Term	\coloneqq Term * Factor	by 8 \Rightarrow Exp + Term * id _x
6	Term	\coloneqq Term / Factor	by 7 \Rightarrow Exp + Factor * id _x
7	Term	\coloneqq Factor	by 9 \Rightarrow Exp + int ₃ * id _x
8	Factor	\coloneqq id	by 4 \Rightarrow Term + int ₃ * id _x
9	Factor	\coloneqq int	by 7 \Rightarrow Factor + int ₃ * id _x
			by 9 \Rightarrow int ₂ + int ₃ * id _x

input: 2+3*x

A Rightmost Derivation In Reverse

$\underline{\text{int}_2} + \text{int}_3 * \text{id}_x$

Factor + $\text{int}_3 * \text{id}_x$

Term + $\text{int}_3 * \text{id}_x$

Exp + Lets keep track of where we are in the input.

Exp + Factor * id_x

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x$

Factor + $\text{int}_3 * \text{id}_x$

Term + $\text{int}_3 * \text{id}_x$

Exp + $\text{int}_3 * \text{id}_x$

Exp + Factor * id_x

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

$\text{int}_2 \bullet + \text{int}_3 * \text{id}_x$

Factor $\bullet + \text{int}_3 * \text{id}_x$

Term $\bullet + \text{int}_3 * \text{id}_x$

Exp + $\text{int}_3 \bullet * \text{id}_x$

Exp + Factor $\bullet * \text{id}_x$

Exp + Term * $\text{id}_x \bullet$

Exp + Term * Factor \bullet

Exp + Term \bullet

Exp \bullet

S \bullet

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x$

Factor + $\text{int}_3 * \text{id}_x$

Term + $\text{int}_3 * \text{id}_x$

Exp + $\text{int}_3 * \text{id}_x$

Exp + Factor * id_x

Exp + Term * id_x

Exp + Term *

Exp + Term

Exp

S

$\text{int}_2 \bullet + \text{int}_3 * \text{id}_x$

Factor $\bullet + \text{int}_3 * \text{id}_x$

Term $\bullet + \text{int}_3 * \text{id}_x$

Exp + $\text{int}_3 \bullet * \text{id}_x$

Exp + Factor $\bullet * \text{id}_x$

Exp + Term * $\text{id}_x \bullet$

Factor \bullet

Lets format this differently,
<prefix of sentential form> input

Exp \bullet

S \bullet

A Rightmost Derivation In Reverse

int

Factor

Term

Exp

Exp +

Exp + **int**₃

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * **id**_x

Exp + Term * Factor

Exp + Term

Exp

int₂ + **int**₃ * **id**_x \$

int₃ * **id**_x \$

* **id**_x \$

* **id**_x \$

* **id**_x \$

id_x \$

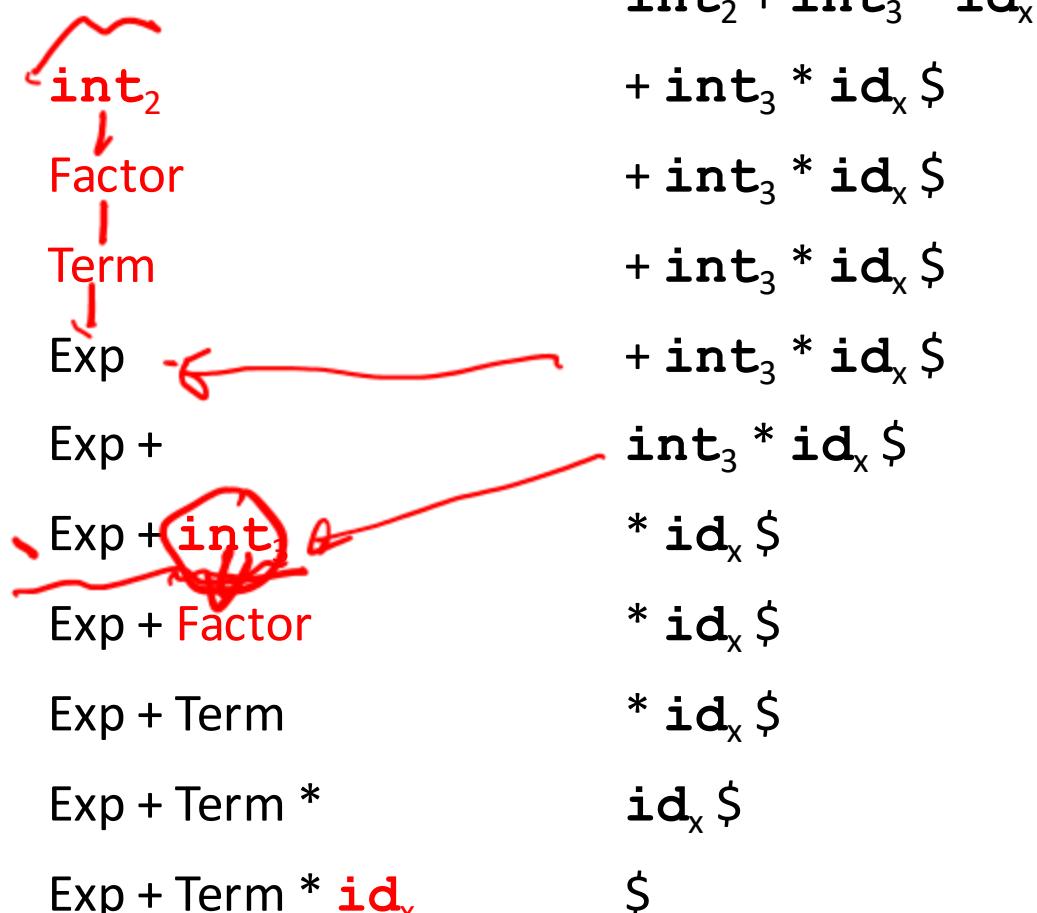
\$

\$

\$

\$

A Rightmost Derivation In Reverse



LR-Parser either:

1. shifts a terminal or
2. reduces by a production.

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$

Factor $+ \text{int}_3 * \text{id}_x \$$

Term $+ \text{int}_3 * \text{id}_x \$$

Exp $+ \text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + int_3 $* \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

Exp + Term * $\text{id}_x \$$

Exp + Term * id_x $\$$

Exp + Term * Factor $\$$

Exp + Term $\$$

Exp $\$$

S $\$$

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$

Factor

Term

Exp

Exp +

Exp + int_3

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

S

When we reduce by a production: $A \rightarrow \beta$,
 β is on right side of sentential form.

E.g., here β is 'int' and production is $F \rightarrow \text{int}$

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

Factor $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow F$

Term $+ \text{int}_3 * \text{id}_x \$$

Exp $+ \text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + int_3 $* \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

Exp + Term * $\text{id}_x \$$

Exp + Term * id_x $\$$

Exp + Term * Factor $\$$

Exp + Term $\$$

Exp $\$$

S $\$$

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

Factor $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow F$

Term $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow E$

Exp $+ \text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + int_3 $* \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

Exp + Term * $\text{id}_x \$$

Exp + Term * id_x $\$$

Exp + Term * Factor $\$$

Exp + Term $\$$

Exp $\$$

S $\$$

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
<u>Exp</u>	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	
Exp + int_3	$* \text{id}_x \$$	
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	reduce by $F \rightarrow \text{id}$
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	reduce by $F \rightarrow \text{id}$
Exp + Term * Factor	$\$$	reduce by $T \rightarrow T * F$
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	reduce by $F \rightarrow \text{id}$
Exp + Term * Factor	$\$$	reduce by $T \rightarrow T * F$
Exp + Term	$\$$	reduce by $E \rightarrow E + T$
Exp	$\$$	
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by F \rightarrow int
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by T \rightarrow F
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by T \rightarrow E
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by F \rightarrow int
Exp + Factor	$* \text{id}_x \$$	reduce by F \rightarrow T
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	reduce by F \rightarrow id
Exp + Term * Factor	$\$$	reduce by T \rightarrow T * F
Exp + Term	$\$$	reduce by E \rightarrow E + T
Exp	$\$$	reduce by S \rightarrow E
S	$\$$	

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	reduce by $F \rightarrow T$
Exp + Term	$* \text{id}_x \$$	shift *
Exp + Term *	$\text{id}_x \$$	shift x
Exp + Term * id_x	$\$$	reduce by $F \rightarrow \text{id}$
Exp + Term * Factor	$\$$	reduce by $T \rightarrow T * F$
Exp + Term	$\$$	reduce by $E \rightarrow E + T$
Exp	$\$$	reduce by $S \rightarrow E$
S	$\$$	accept!

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$

Factor $+ \text{int}_3 * \text{id}_x \$$

Term $+ \text{int}_3 * \text{id}_x \$$

Exp $+ \text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + int_3 $* \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

Exp + Term * $\text{id}_x \$$

Exp + Term * id_x $\$$

Exp + Term * Factor $\$$

Exp + Term $\$$

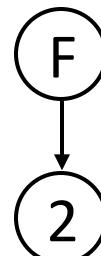
Exp $\$$

S $\$$

2

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	
Term	$+ \text{int}_3 * \text{id}_x \$$	
Exp	$+ \text{int}_3 * \text{id}_x \$$	
Exp +	$\text{int}_3 * \text{id}_x \$$	
Exp + int_3	$* \text{id}_x \$$	
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	



A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

Factor $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow F$

Term $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow E$

Exp $+ \text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

Exp + Term * $\text{id}_x \$$

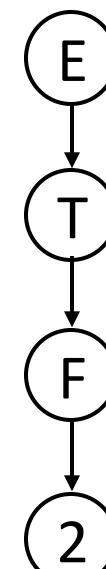
Exp + Term * $\text{id}_x \$$

Exp + Term * Factor $\$$

Exp + Term $\$$

Exp $\$$

S $\$$



A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

int_2 $+ \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

Factor $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow F$

Term $+ \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow E$

Exp $+ \text{int}_3 * \text{id}_x \$$ shift +

Exp + $\text{int}_3 * \text{id}_x \$$

Exp + int_3 $* \text{id}_x \$$

Exp + Factor $* \text{id}_x \$$

Exp + Term $* \text{id}_x \$$

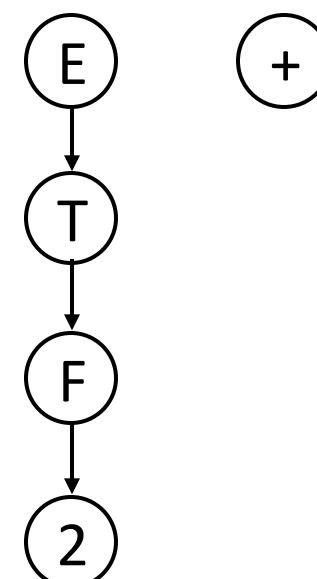
Exp + Term * $\text{id}_x \$$

Exp + Term * id_x \$

Exp + Term * Factor \$

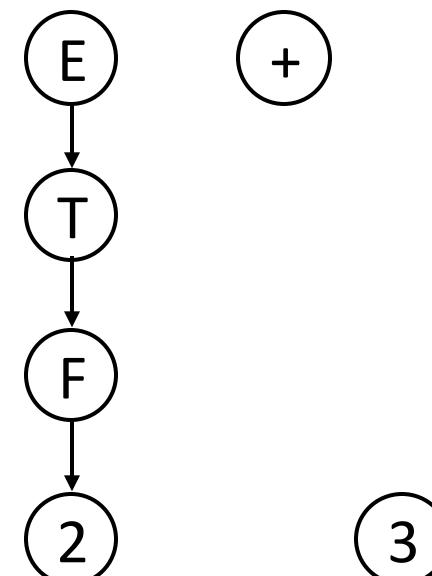
Exp + Term \$

Exp \$



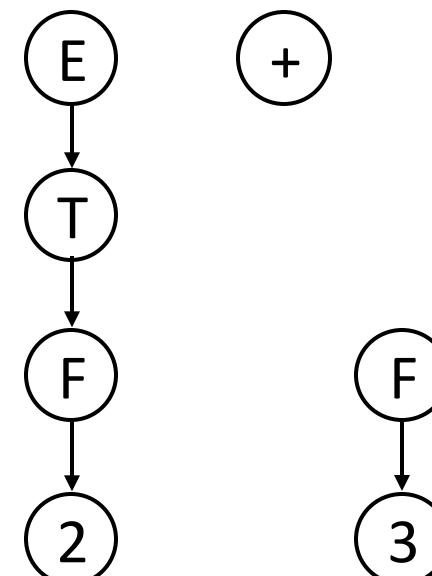
A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	



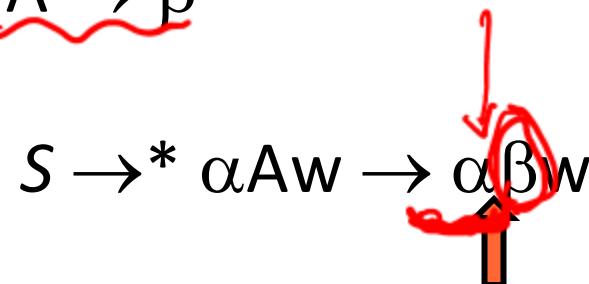
A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	



Handles

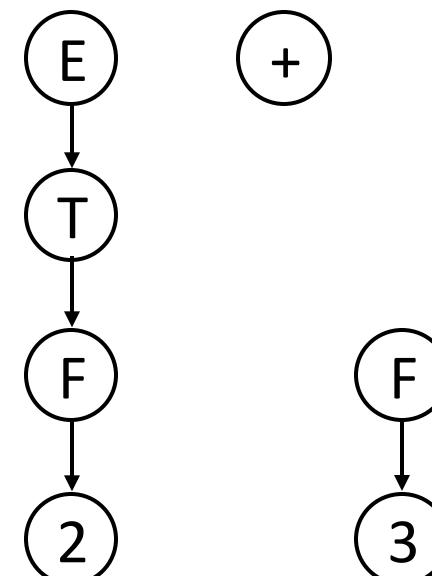
- LR parsing is handle pruning
- LR parsing finds a rightmost derivation (in reverse)
- A handle in γ , a right-hand sentential form, is
 - a position in γ matching β
 - a production $A \rightarrow \beta$



- if a grammar is unambiguous, then every γ has exactly 1 handle

A Rightmost Derivation In Reverse

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	
Exp + Term	$* \text{id}_x \$$	
Exp + Term *	$\text{id}_x \$$	
Exp + Term * id_x	$\$$	
Exp + Term * Factor	$\$$	
Exp + Term	$\$$	
Exp	$\$$	
S	$\$$	



A Rightmost Derivation In Reverse

Where is next handle?

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ shift 2

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

$\text{Factor} + \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow F$

$\text{Term} + \text{int}_3 * \text{id}_x \$$ reduce by $T \rightarrow E$

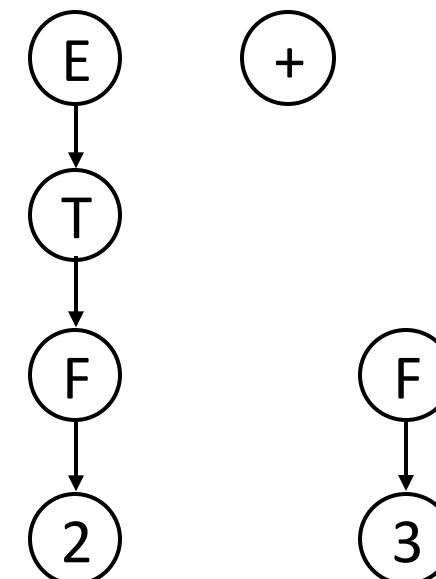
$\text{Exp} + \text{int}_3 * \text{id}_x \$$ shift +

$\text{Exp} +$ $\text{int}_3 * \text{id}_x \$$ shift 3

$\text{Exp} + \text{int}_3 * \text{id}_x \$$ reduce by $F \rightarrow \text{int}$

$\text{Exp} + \text{Factor} * \text{id}_x \$$

$\text{Exp} + \text{Term} * \text{id}_x \$$

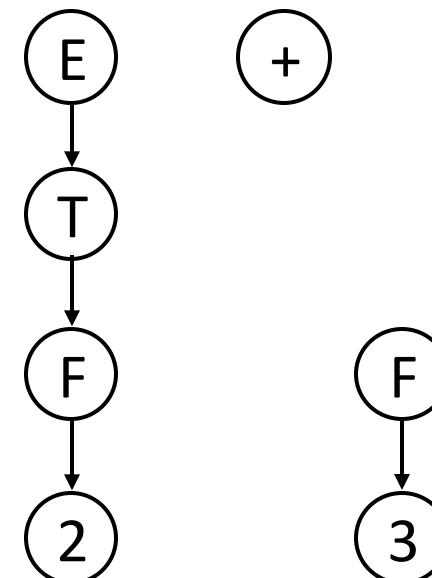


A Rightmost Derivation In Reverse

Where is next handle?

	$\text{int}_2 + \text{int}_3 * \text{id}_x \$$	shift 2
int_2	$+ \text{int}_3 * \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Factor	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow F$
Term	$+ \text{int}_3 * \text{id}_x \$$	reduce by $T \rightarrow E$
Exp	$+ \text{int}_3 * \text{id}_x \$$	shift +
Exp +	$\text{int}_3 * \text{id}_x \$$	shift 3
Exp + int_3	$* \text{id}_x \$$	reduce by $F \rightarrow \text{int}$
Exp + Factor	$* \text{id}_x \$$	

```
1  S := E
2  E := E + T
3  E := E - T
4  E := T
5  T := T * F
6  T := T / F
7  T := F
8  F := id
9  F := int
```

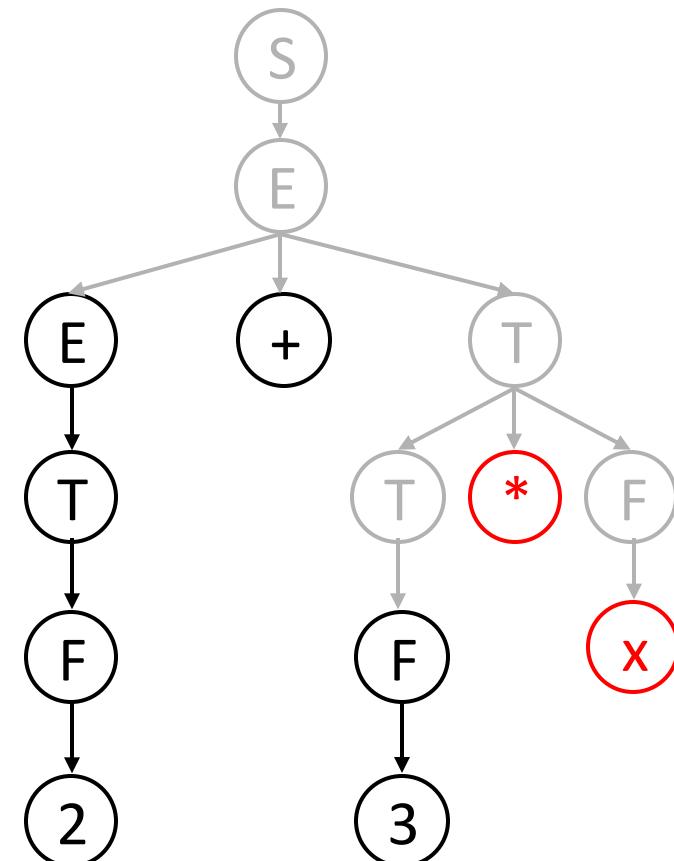


A Rightmost Derivation In Reverse

Where is next handle?

int₂ + int₃ * id_x \$

int_2	$+ \text{int}_3 * \text{id}_x \$$
Factor	$+ \text{int}_3 * \text{id}_x \$$
Term	$+ \text{int}_3 * \text{id}_x \$$
Exp	$+ \text{int}_3 * \text{id}_x \$$
Exp +	$\text{int}_3 * \text{id}_x \$$
Exp + int_3	$* \text{id}_x \$$
Exp + Factor	$* \text{id}_x \$$



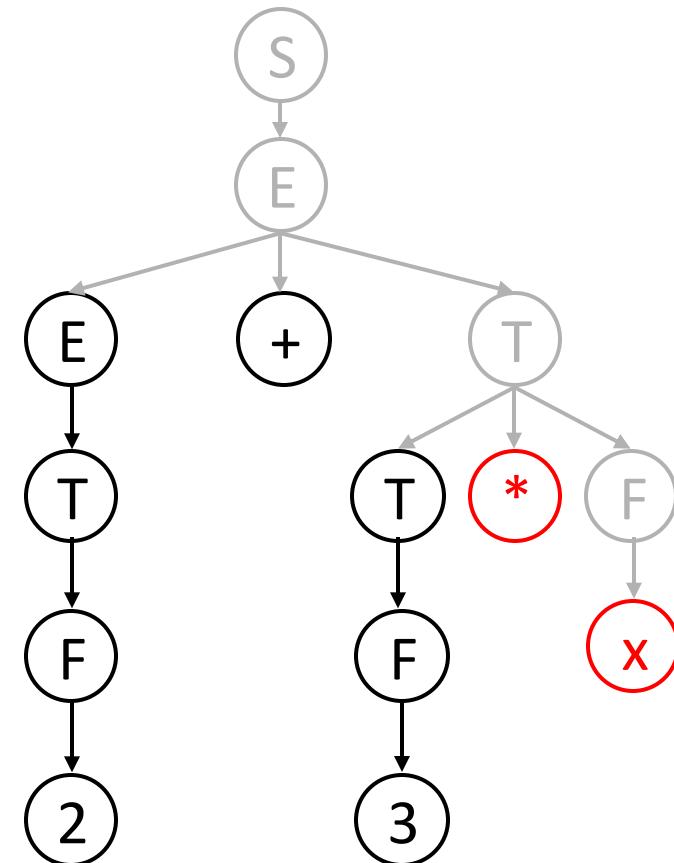
```
1 S := E
2 E := E + T
3 E := E - T
4 E := T
5 T := T * F
6 T := T / F
7 T := F
8 F := id
9 F := int
```

A Rightmost Derivation In Reverse

Where is next handle? $E+F^*x$ and $T \rightarrow F \ x \ \$$

int_2	$+ \text{int}_3 * \text{id}_x \$$
Factor	$+ \text{int}_3 * \text{id}_x \$$
Term	$+ \text{int}_3 * \text{id}_x \$$
Exp	$+ \text{int}_3 * \text{id}_x \$$
Exp +	$\text{int}_3 * \text{id}_x \$$
Exp + int_3	$* \text{id}_x \$$
Exp + Factor	$* \text{id}_x \$$
Exp + Term	$* \text{id}_x \$$

1	$S := E$
2	$E := E + T$
3	$E := E - T$
4	$E := T$
5	$T := T * F$
6	$T := T / F$
7	$T := F$
8	$F := \text{id}$
9	$F := \text{int}$



Handle Pruning

- LR parsing consists of
 - shifting til there is a handle on the top of the stack
 - reducing handle
- Key is handle is always on top of stack, i.e., if β is a handle with $A \rightarrow \beta$, then β can be found on top of stack.

A Rightmost Derivation In Reverse

$\text{int}_2 + \text{int}_3 * \text{id}_x \$$

int_2

$+ \text{int}_3 * \text{id}_x \$$

Factor

$+ \text{int}_3 * \text{id}_x \$$

Term

$+ \text{int}_3 * \text{id}_x \$$

Exp

$+ \text{int}_3 * \text{id}_x \$$

Exp +

$\text{int}_3 * \text{id}_x \$$

Exp + int_3

$* \text{id}_x \$$

Exp + Factor

$* \text{id}_x \$$

Exp + Term

$* \text{id}_x \$$

Exp + Term *

$\text{id}_x \$$

Exp + Term * id_x

$\$$

Exp + Term * Factor

$\$$

Exp + Term

$\$$

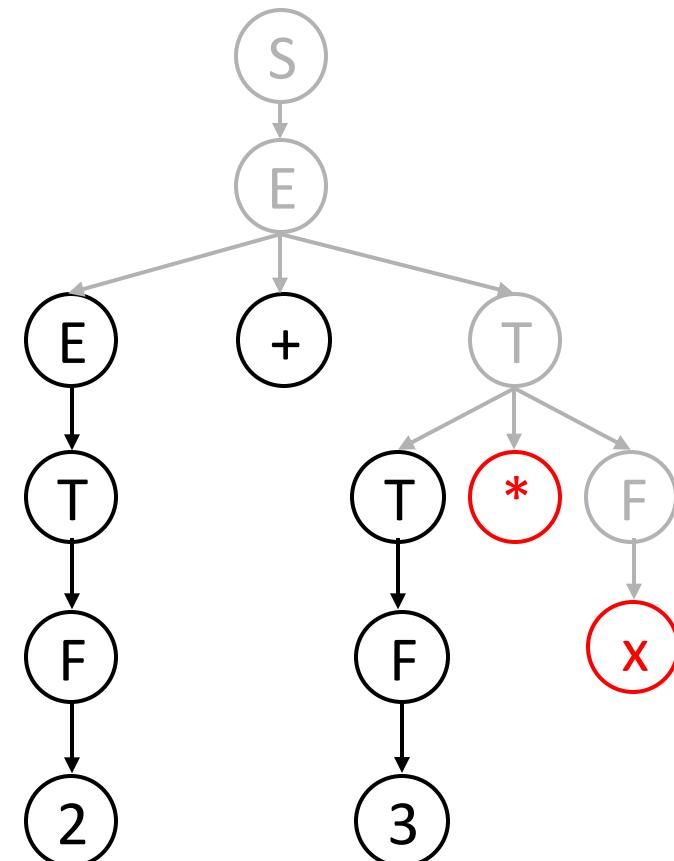
Exp

$\$$

S

$\$$

top of stack does
not have a handle,
so must shift.



A Rightmost Derivation In Reverse

int₂ + int₃ * id_x \$

int₂ + **int₃** * **id_x** \$

Factor + $\text{int}_3 * \text{id}_x \$$

Term + int₃ * id_x \$

Exp + int₃ * id_x \$

Exp + $\text{int}_3^* \text{id}_x \$$

Exp + int₃ * id_x \$

Exp + Factor * **id** \$

Exp + Term * id_x \$

Exp + Term * **id_x**

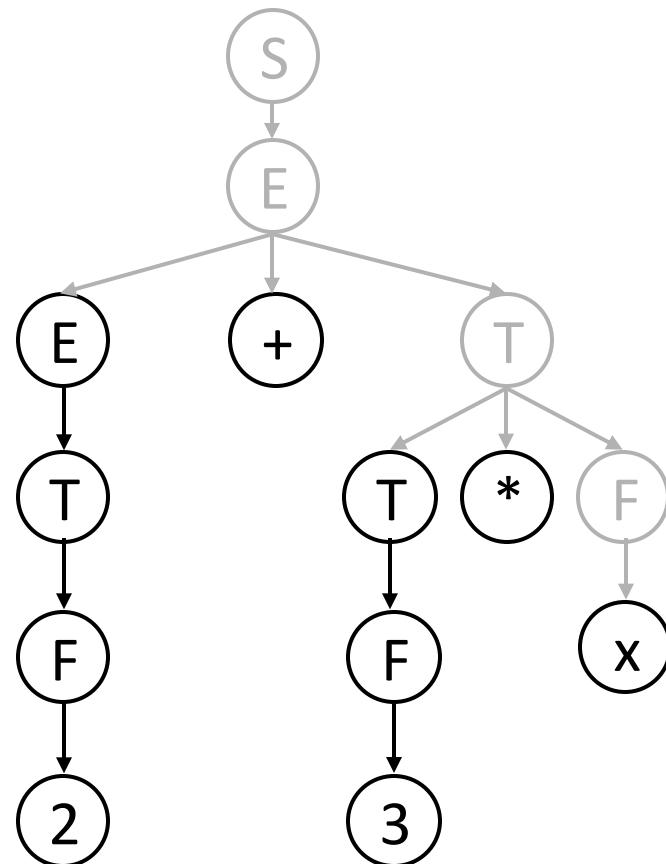
Exp + Term * Factor

Exp + Term

Exp \$

S \$

Now, x is a handle.

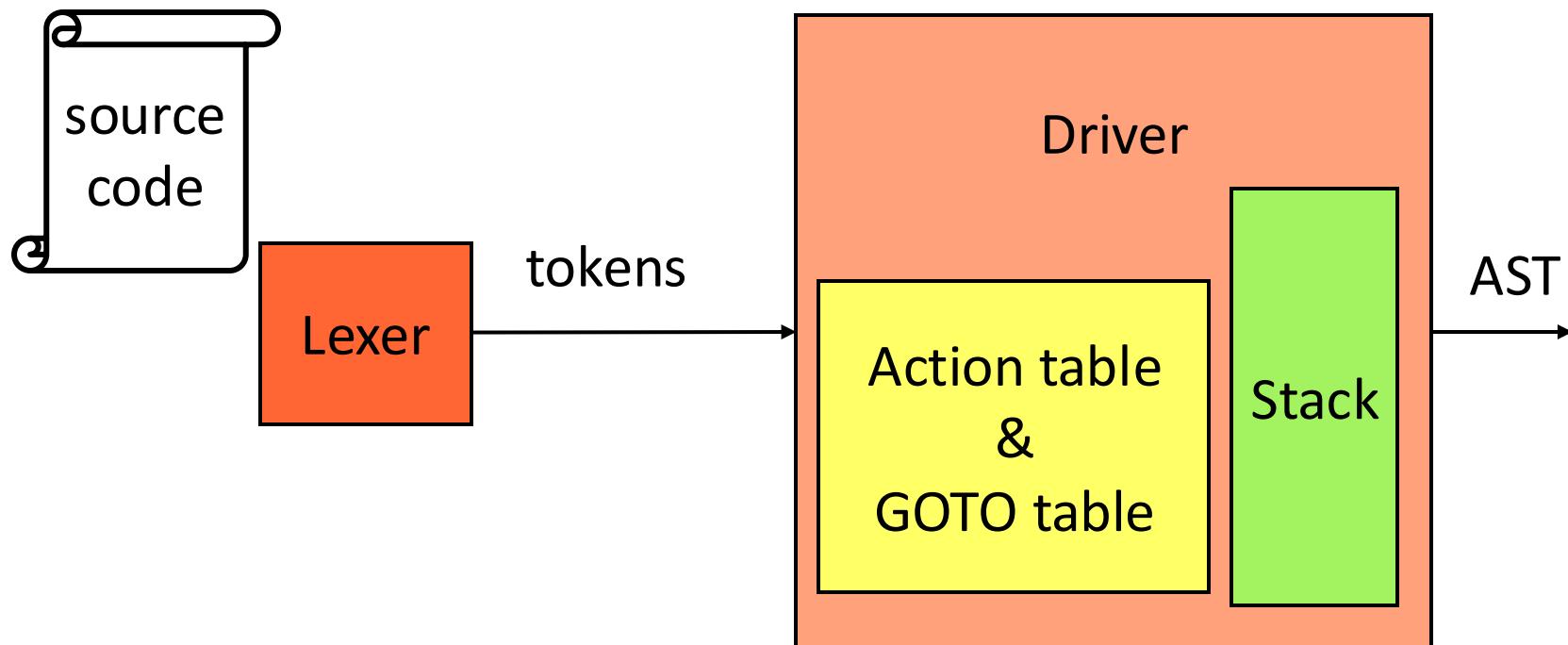


A Shift-Reduce Parser

- Stack holds the viable prefixes.
- input stream holds remaining source
- Four actions:
 - shift: push token from input stream onto stack
 - reduce: right-end of a handle (β of $A \rightarrow \beta$) is at top of stack, pop handle (β), push A
 - accept: success
 - error: syntax error discovered

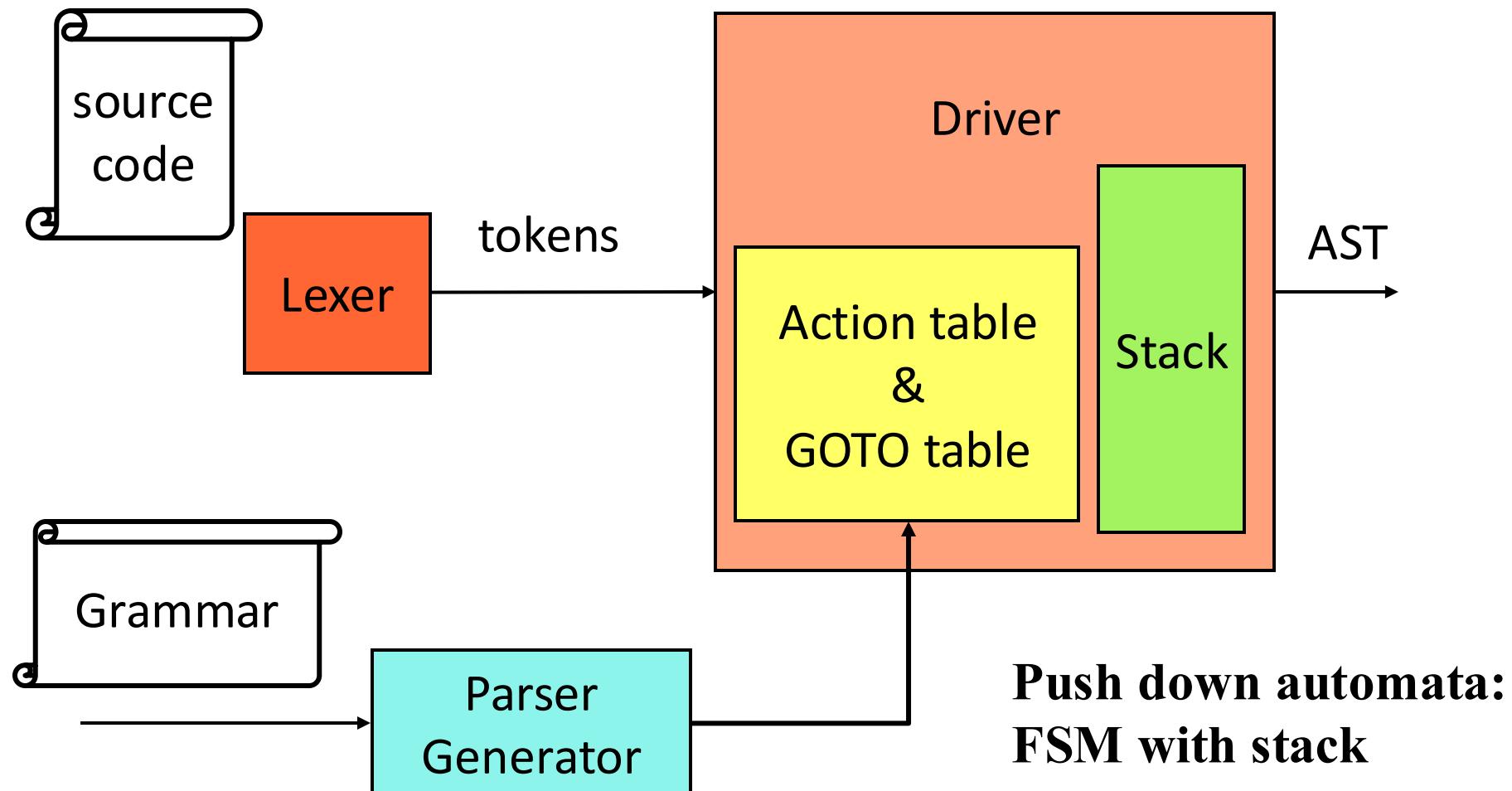
Key is recognizing handles efficiently

Table-driven LR(k) parsers



**Push down automata:
FSM with stack**

Table-driven LR(k) parsers



Parser Loop

Driver

- Same code regardless of grammar
 - only tables change
- (Very) General Algorithm:
 - Based on table contents, top of stack, and current input character either
 - **shift**: pushes onto stack, reads next token
 - **reduce**: manipulate stack to simplify representation of already scanned input
 - **accept**: successfully scanned entire input
 - **error**: input not in language

Stack

- Represents the scanned input
- Contents?
 - Reduced nonterminals not enough
 - Must store previously seen *states*
 - the context of the current position
 - In fact, nonterminals unnecessary
 - include for readability

Stack

$x + y^\bullet + z$

T
+
T

Parser Tables

Action table
&
GOTO table

Action table

- given state s and **terminal** a tells parser loop what action (shift, reduce, accept, reject) to perform

Goto table

- used when performing reduction; given a state s and **nonterminal** X says what state to transition to

Parser Tables

Action table
&
GOTO table

sN push state N onto stack

rR reduce by rule R

gN goto state N

a accept

error

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Parser Loop Revisited

Driver

```
while(true)
  s = state on top of stack
  a = current input token
  if(action[s][a] == sN)           shift
    push N
    read next input token
  else if(action[s][a] == rR)       reduce
    pop rhs of rule R from stack
    X = lhs of rule R
    N = state on top of stack
    push goto[N][X]
  else if(action[s][a] == a)        accept
    return success
  else                            error
    return failure
```

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **x**
 State on top of the stack = **0**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(0,S)

Stack

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +
 State on top of the stack = 3

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(3,x)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +

State on top of the stack = 3

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$

3 $T \rightarrow \text{identifier}$

(3,x)
(0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +
 State on top of the stack = 3

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(3,x)

(0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +
 State on top of the stack = 0

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(3,x)

(0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +
 State on top of the stack = 2

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = +
 State on top of the stack = 2

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **y**
 State on top of the stack = **4**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(4, +)
 (2, T)
 (0, S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **y**
 State on top of the stack = **4**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(4, +)
 (2, T)
 (0, S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **3**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(3,y)
 (4,+)
 (2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

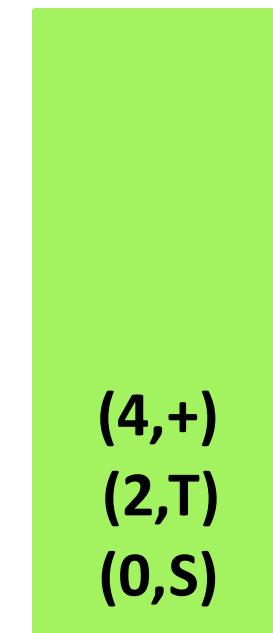
Current input token = **\$**
 State on top of the stack = **3**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(?,T)

(4,+)
 (2,T)
 (0,S)



Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **2**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(2,T)
 (4,+)
 (2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **2**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(2,T)
 (4,+)
 (2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

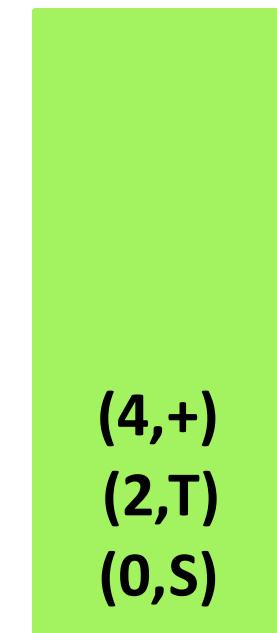
Current input token = **\$**
 State on top of the stack = **2**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(?,E)

(4,+)
 (2,T)
 (0,S)



Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **5**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(5,E)
 (4,+)
 (2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **5**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(5,E)
 (4,+)
 (2,T)
 (0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **5**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(5,E)
 (4,+)
 (2,T)

(0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = **\$**
 State on top of the stack = **1**

x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(1,E)

(0,S)

Example

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1				a	
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Accept!

Current input token = **\$**
 State on top of the stack = **1**

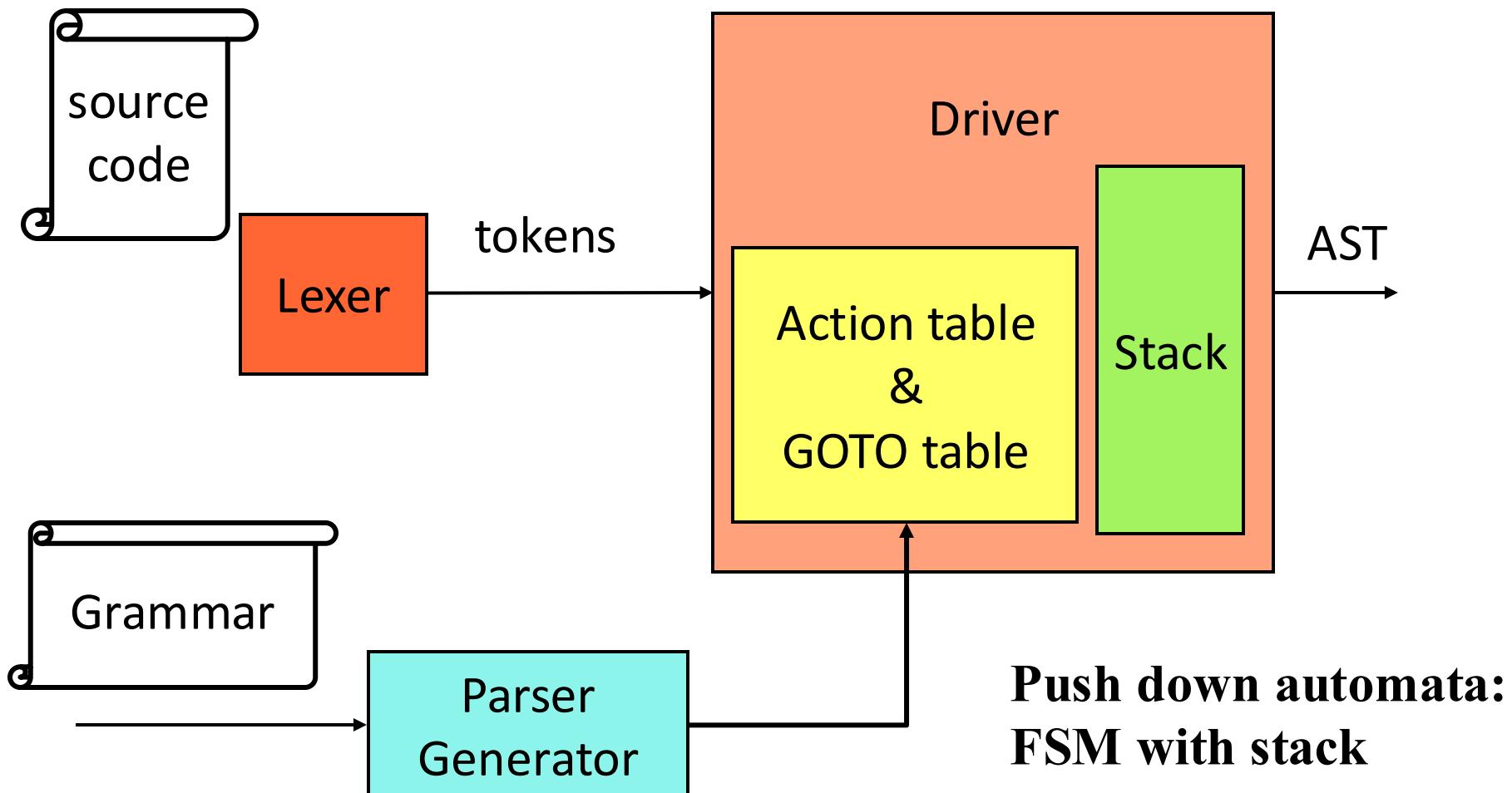
x + y\$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

(1,E)

(0,S)

Table-driven LR(k) parsers



The parser generator

Parser
Generator

- Finds handles
- Creates the **action** and **GOTO** tables.
- Creates the states
 - Each state indicates how much of a handle we have seen
 - each state is a set of *items*

Items

- Items are used to identify handles.
- LR(k) items have the form:
[production-with-dot, lookahead]
- For example, $A \rightarrow a X b$ has 4 LR(0) items
 - $[A \rightarrow \bullet a X b]$
 - $[A \rightarrow a \bullet X b]$
 - $[A \rightarrow a X \bullet b]$
 - $[A \rightarrow a X b \bullet]$

The \bullet indicates how much of the handle we have recognized.

What LR(0) Items Mean

- $[X \rightarrow \bullet \alpha \beta \gamma]$
input is consistent with $X \rightarrow \alpha \beta \gamma$
- $[X \rightarrow \alpha \bullet \beta \gamma]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized α
- $[X \rightarrow \alpha \beta \bullet \gamma]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized $\alpha \beta$
- $[X \rightarrow \alpha \beta \gamma \bullet]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and we can reduce to X

Generating the States

- Start with start production.
- In this case, “ $S \rightarrow E\$$ ”

$S \rightarrow \bullet E\$$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

- Each state is consistent with what we have already shifted from the input and what is possible to reduce. So, what other items should be in this state?

Completing a state

- For each item in a state, add in all other consistent items.

$$S \rightarrow \bullet E\$$$
$$E \rightarrow \bullet T + E$$
$$E \rightarrow \bullet T$$
$$T \rightarrow \bullet identifier$$

0 $S \rightarrow E\$$

1 $E \rightarrow T + E$

2 $E \rightarrow T$

3 $T \rightarrow identifier$

- This is called, taking the closure of the state.

Closure*

```
closure(state)
repeat
    foreach item  $A \rightarrow a \cdot X b$  in state
        foreach production  $X \rightarrow w$ 
            state.add( $X \rightarrow \cdot w$ )
    until state does not change
return state
```

Intuitively:

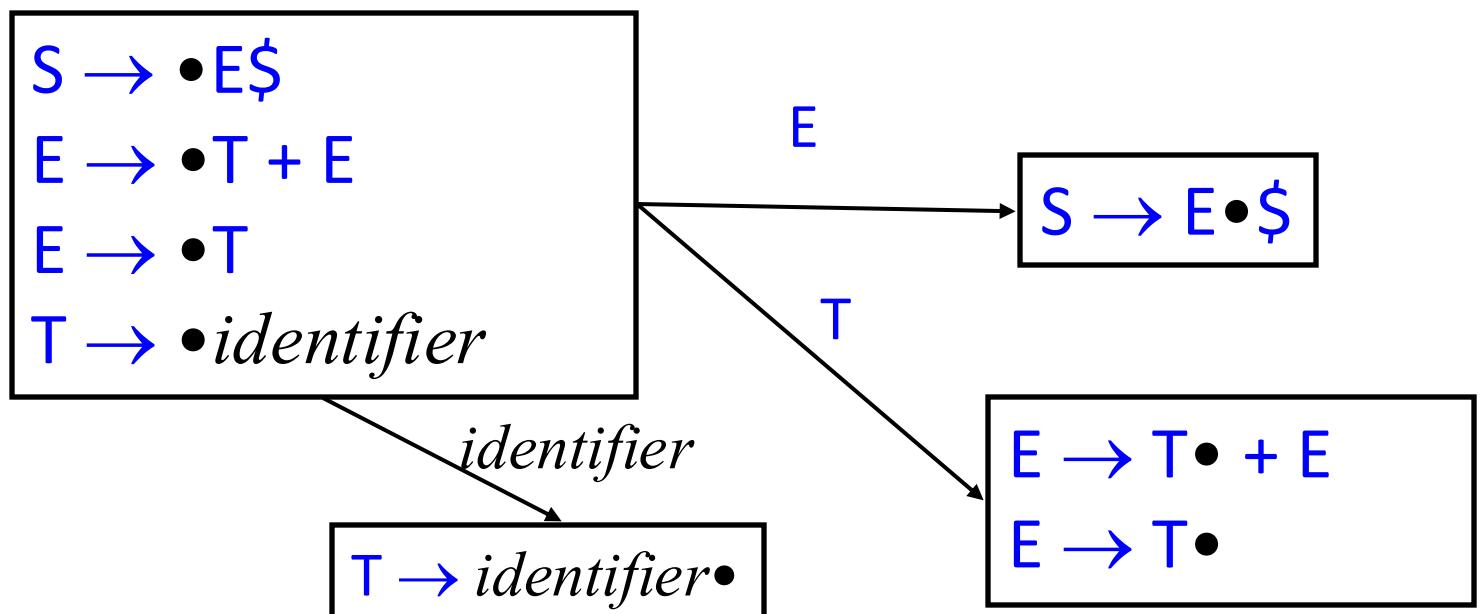
Given a set of items, add all production rules that could produce the nonterminal(s) at the current position in each item

*: for LR(0) items

What about the other states?

- How do we decide what the other states are?
- How do we decide what the transitions between states are?

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$



Next(state, sym)

- Next function determines what state to goto based on current state and symbol being recognized.
- For Non-terminal, this is used to determine the GOTO table.
- For terminal, this is used to determine the shift action.

Constructing states

```
initial_state = closure({start production})
state_set.add(initial_state)
state_queue.push(initial_state)
```

```
while (!state_queue.empty())
    s = state_queue.pop()
    foreach item A → a•xb in s
        n = closure(next(s, X))
        if (!state_set.contains(n))
            state_set.add(n)
            state_queue.push(n)
```

*A state is a set of
LR(0) items*

get “next” state

Closure*

$\text{closure}(\{S \rightarrow \bullet E\$ \}) =$

$S \rightarrow \bullet E\$$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

*: for LR(0) items

Closure*

$\text{closure}(\{S \rightarrow \bullet E\$ \}) =$

$S \rightarrow \bullet E\$$

$E \rightarrow \bullet T + E$

$E \rightarrow \bullet T$

$T \rightarrow \bullet \text{identifier}$

0 $S \rightarrow E\$$

1 $E \rightarrow T + E$

2 $E \rightarrow T$

3 $T \rightarrow \text{identifier}$

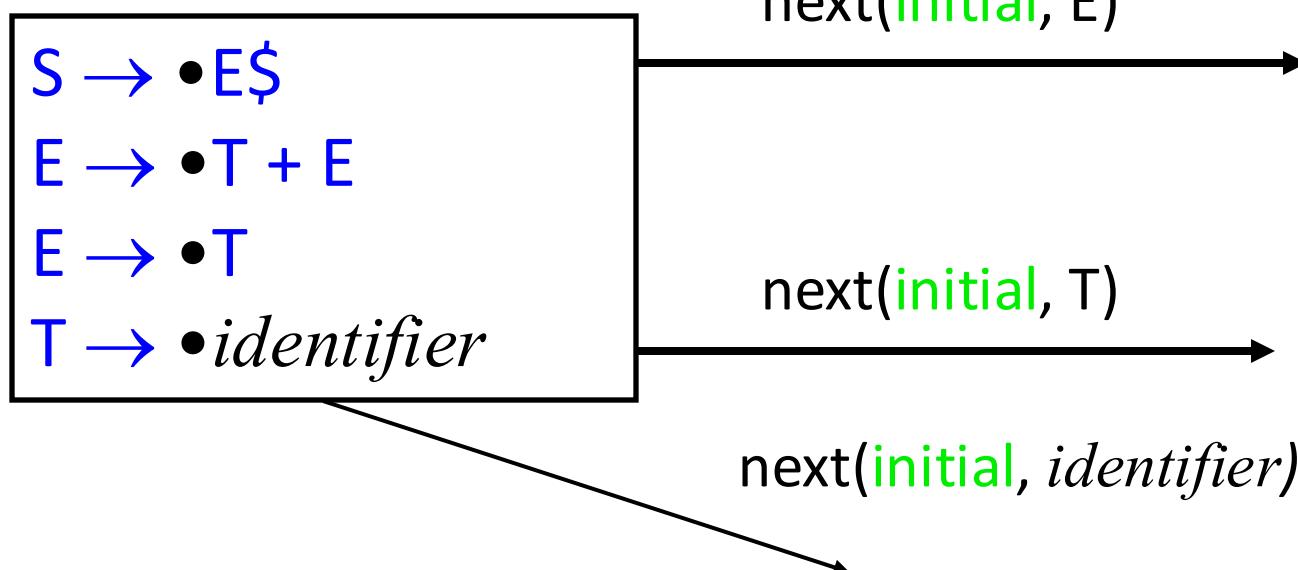
*: for LR(0) items

Next

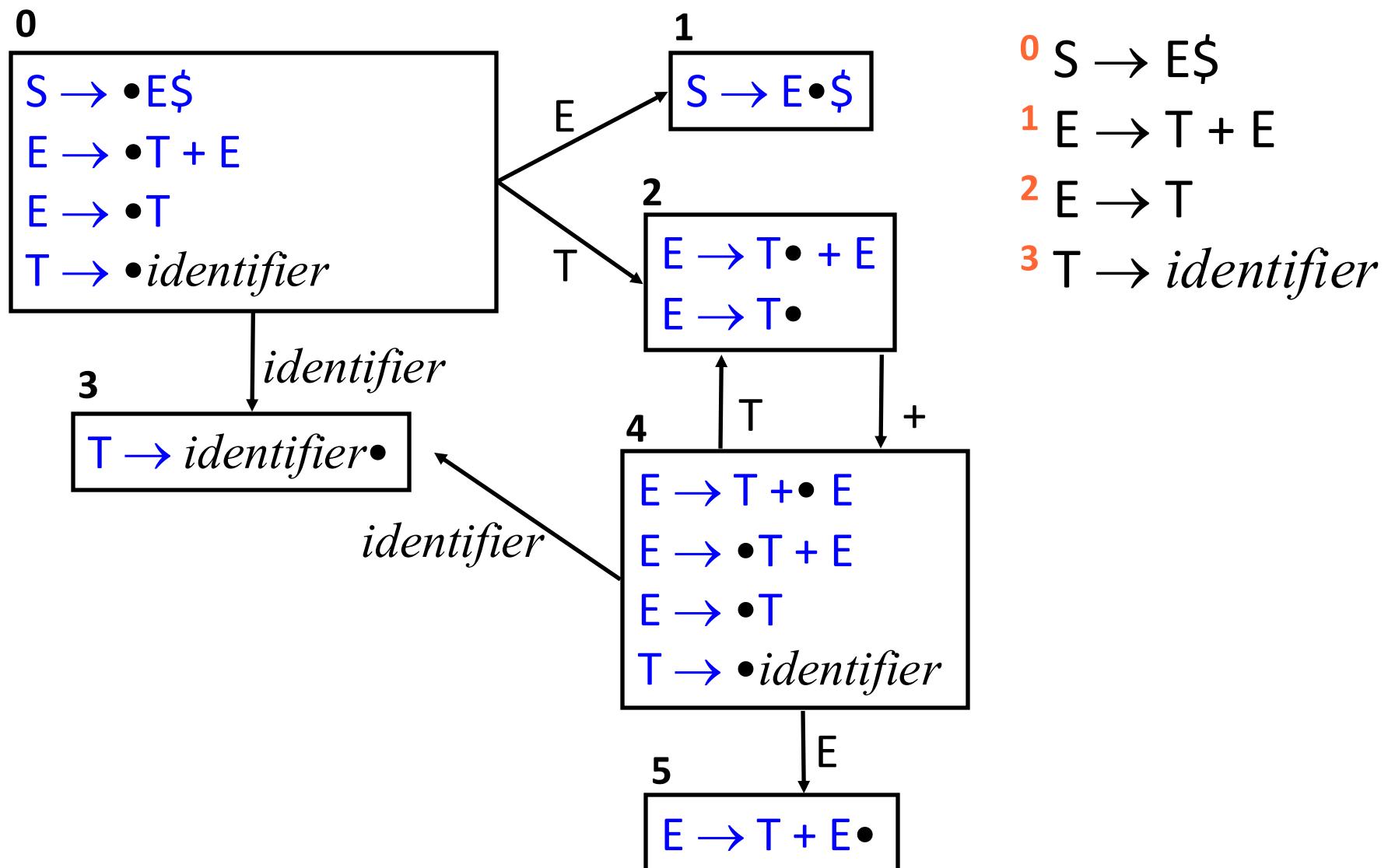
```
next(state, x)
    ret = empty
    foreach item A → a•xb in state
        ret.add(A → aX•b)
    return ret
```

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

initial:



Example



Parse Tables for LR(0) parser

What can we fill out?

state	action			goto	
	<i>ident</i>	+	\$	E	T
0					
1					
2					
3					
4					
5					

0
 $S \rightarrow \bullet E \$$
 $E \rightarrow \bullet T + E$
 $E \rightarrow \bullet T$
 $T \rightarrow \bullet \text{identifier}$

1
 $S \rightarrow E \bullet \$$

2
 $E \rightarrow T \bullet + E$
 $E \rightarrow T \bullet$

3
 $T \rightarrow \text{identifier} \bullet$

4
 $E \rightarrow T + \bullet E$
 $E \rightarrow \bullet T + E$
 $E \rightarrow \bullet T$
 $T \rightarrow \bullet \text{identifier}$

5
 $E \rightarrow T + E \bullet$

6
 $E \rightarrow T + E$

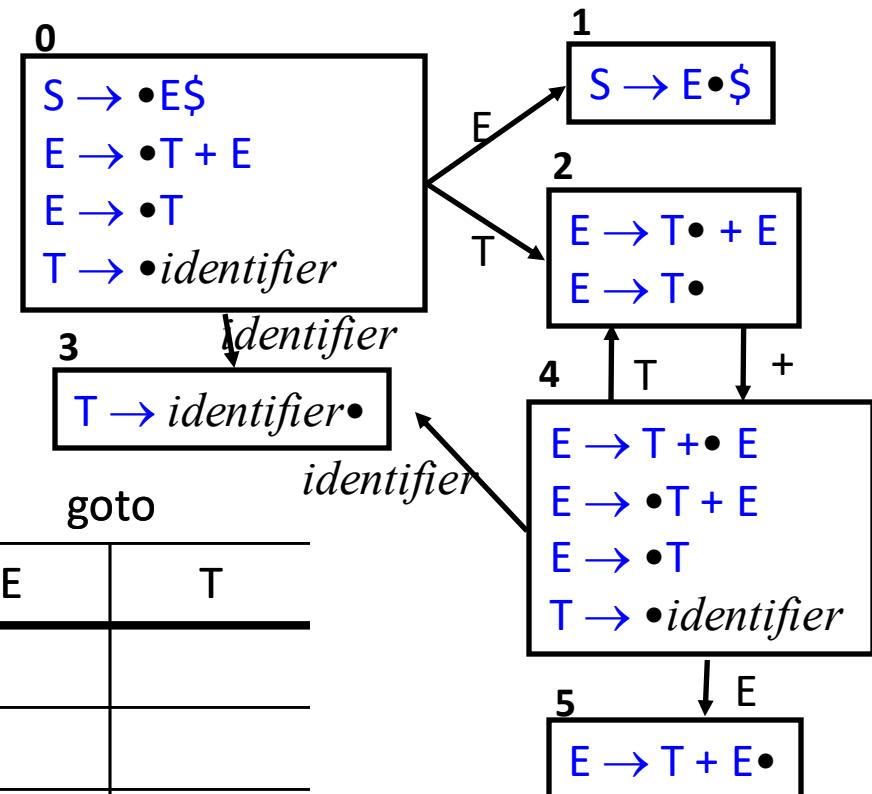
0 $S \rightarrow E \$$
 1 $E \rightarrow T + E$
 2 $E \rightarrow T$
 3 $T \rightarrow \text{identifier}$

Parse Tables for LR(0) parser

shift

transition on terminal

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3				
1					
2		s4			
3					
4	s3				
5					



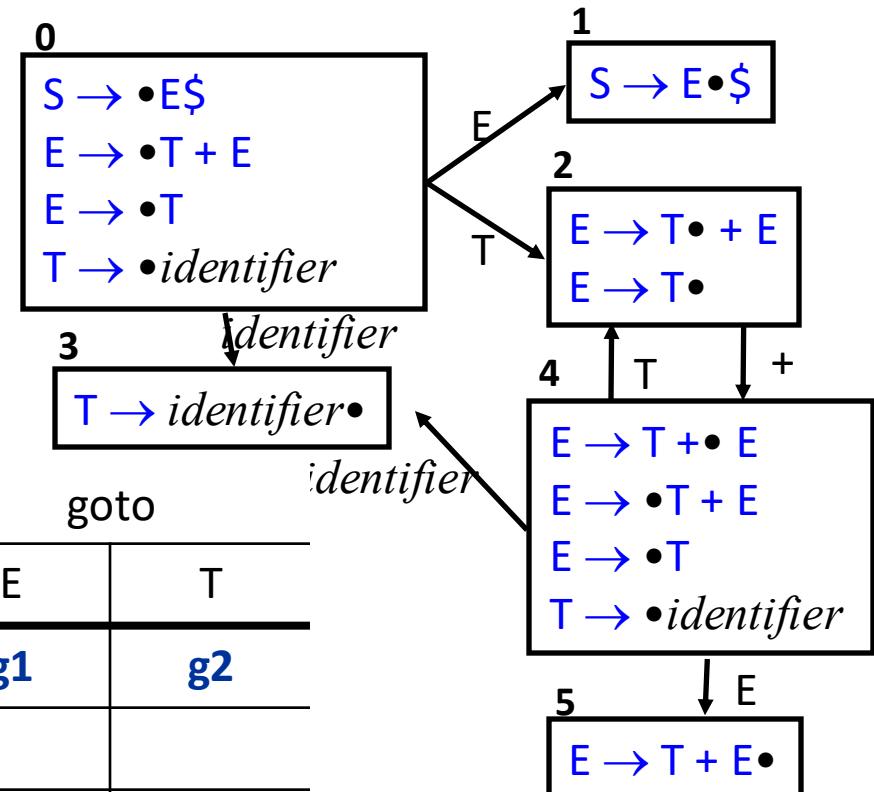
- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

Parse Tables for LR(0) parser

goto

transition on nonterminal

state	action				
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1					
2		s4			
3					
4	s3			g5	g2
5					

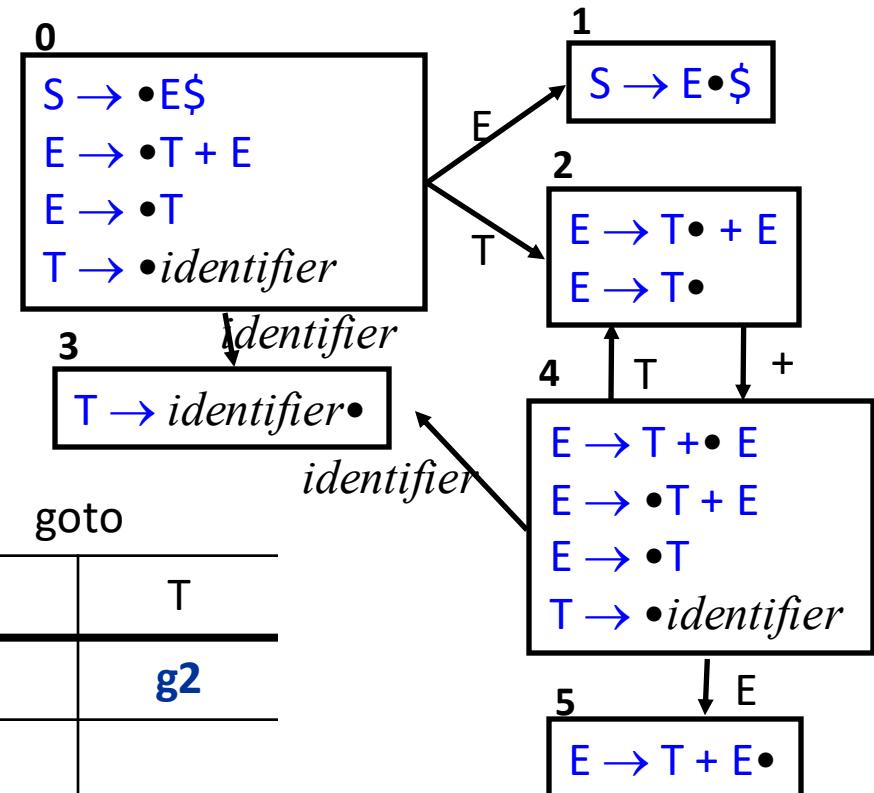


- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

Parse Tables for LR(0) parser

accept
about to shift \$

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4			
3					
4	s3			g5	g2
5					



- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

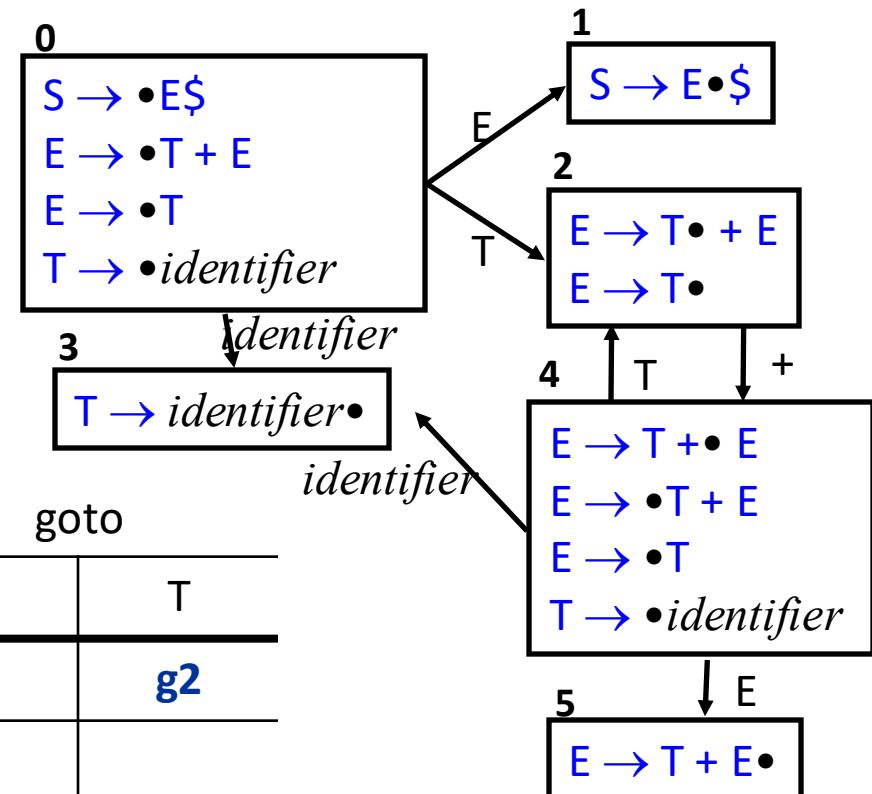
Parse Tables for LR(0) parser

reduce

item has dot at end

$A \rightarrow w \bullet$

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4			
3					
4	s3			g5	g2
5					

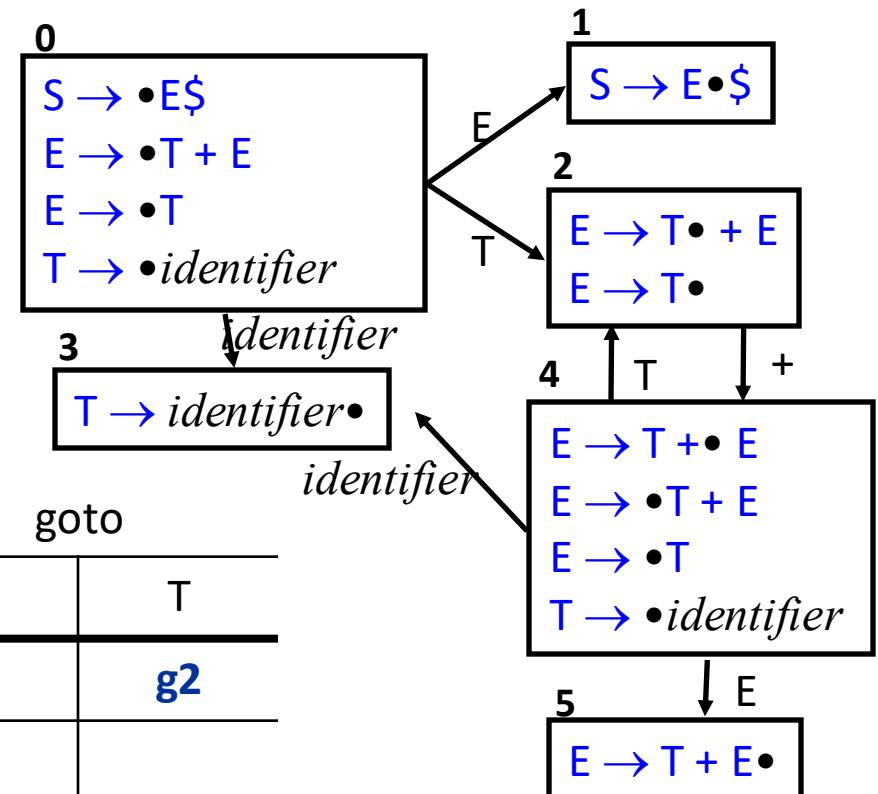


- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

LR(0)

No lookahead
reduce state for *all* nonterminals

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1				a	
2	r2	r2/s4	r2		
3	r3	r3	r3		
4	s3			g5	g2
5	r1	r1	r1		



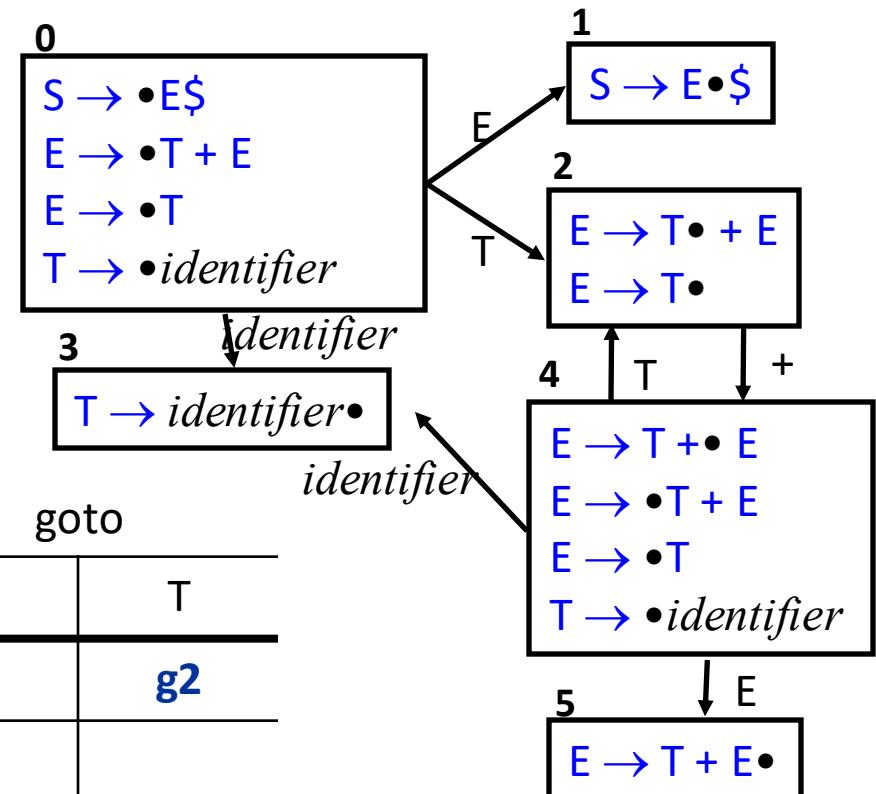
- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

LR(0)

shift/reduce conflict

need to be pickier about when we reduce

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1				a	
2	r2	r2/s4	r2		
3	r3	r3	r3		
4	s3			g5	g2
5	r1	r1	r1		

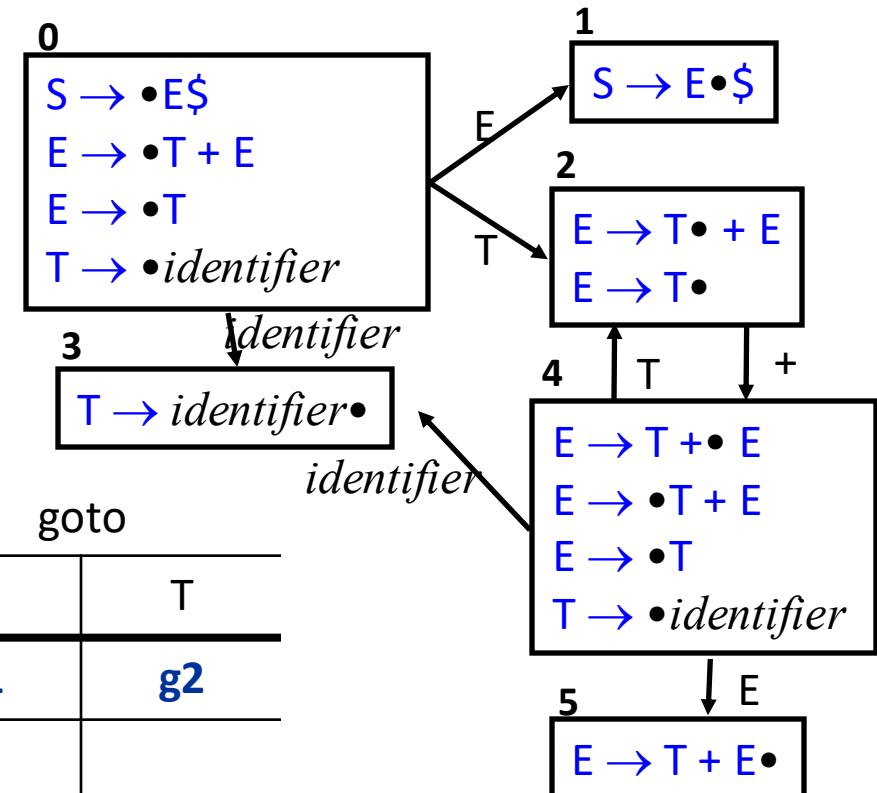


- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

SLR - Simple LR

Only reduce in position (s, a) by rule $R: A \rightarrow w$ if a is in the *follow set* of A

state	action			goto	
	<i>ident</i>	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4			
3					
4	s3			g5	g2
5					



- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

Reminder: Follow sets

follow(X)

set of terminals that can appear immediately after the nonterminal X in some sentential form

I.e., $t \in \text{FOLLOW}(X)$ iff $S \Rightarrow^* \alpha X t \beta$ for some α and β

follow(E) = {\\$}

follow(T) = {+, \$}

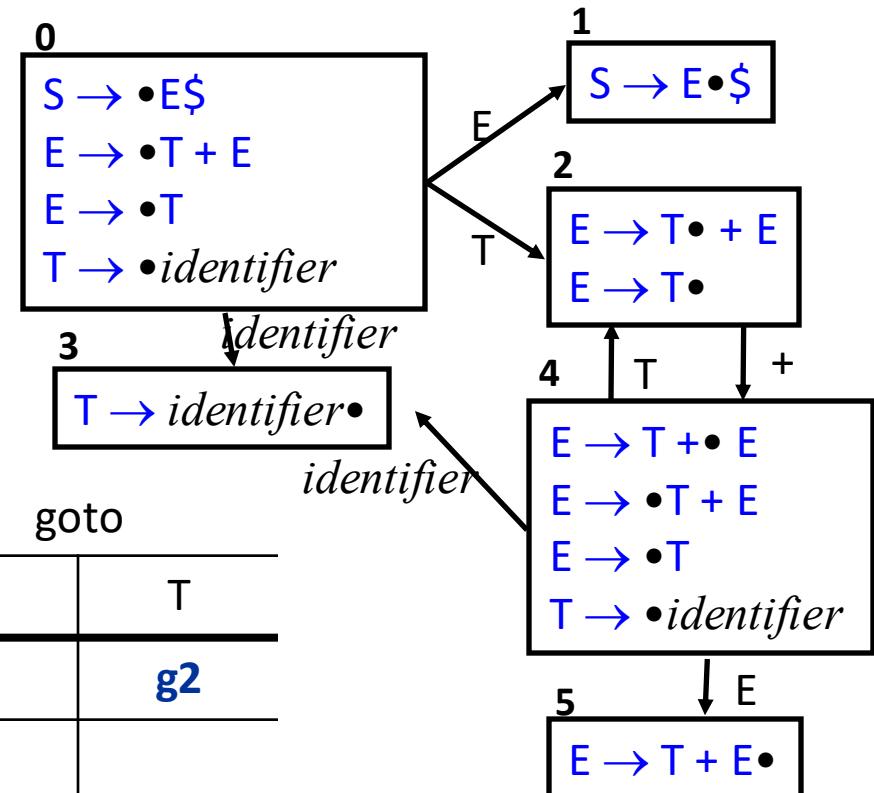
- 0 $S \rightarrow E \$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

SLR - Reduce using follow sets

$$\text{follow}(E) = \{\$\}$$

$$\text{follow}(T) = \{+, \$\}$$

state	action			goto	
	ident	+	\$	E	T
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		



- 0 $S \rightarrow E\$$
- 1 $E \rightarrow T + E$
- 2 $E \rightarrow T$
- 3 $T \rightarrow \text{identifier}$

SLR Limitations

- SLR uses LR(0) item sets
- Can remove some (but not all) shift/reduce conflicts using follow set
- Consider

0 $S \rightarrow E\$$

1 $E \rightarrow L = R$

2 $E \rightarrow R$

3 $L \rightarrow id$

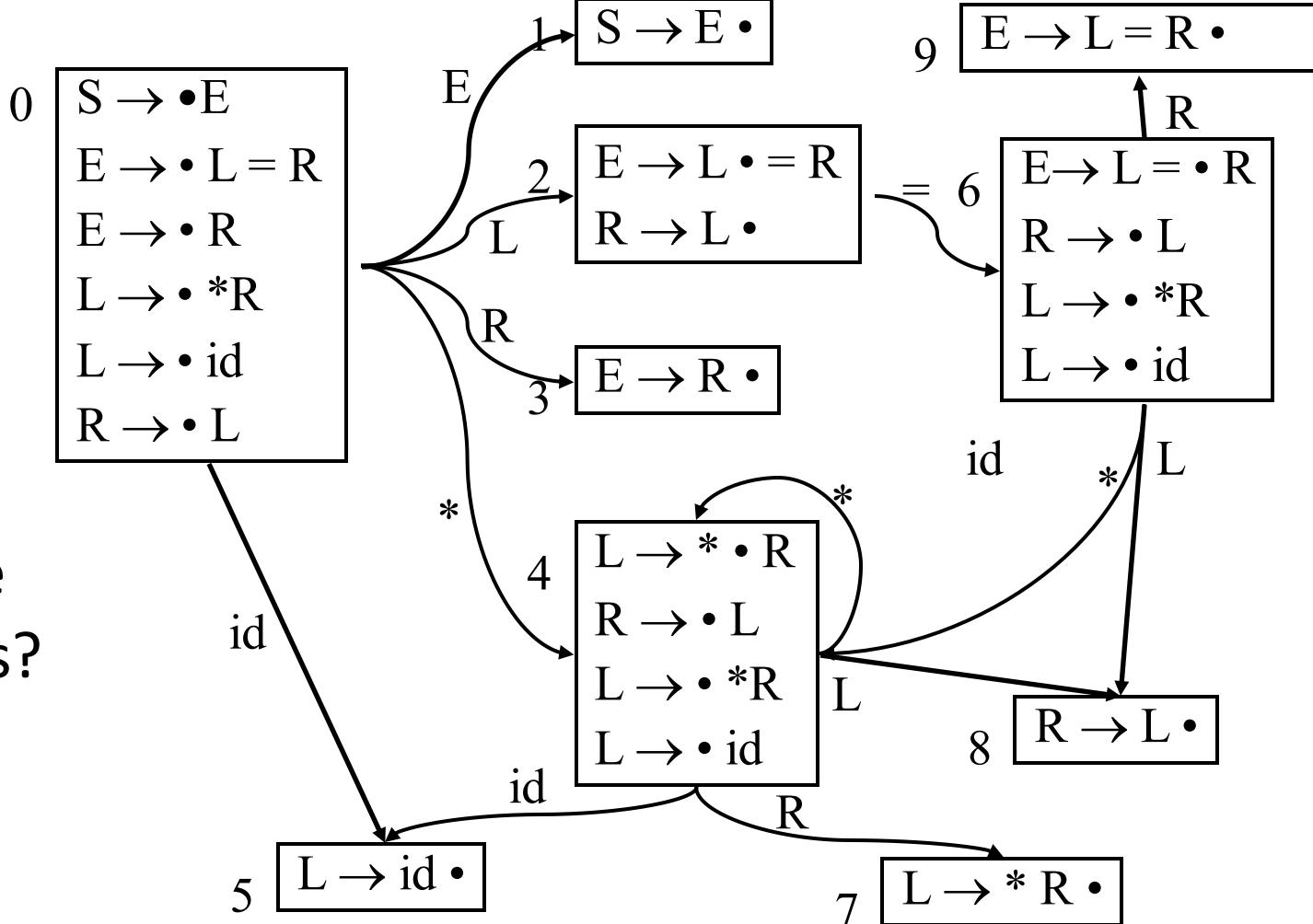
4 $L \rightarrow *R$

5 $R \rightarrow L$

Example

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

What are the reduce states?



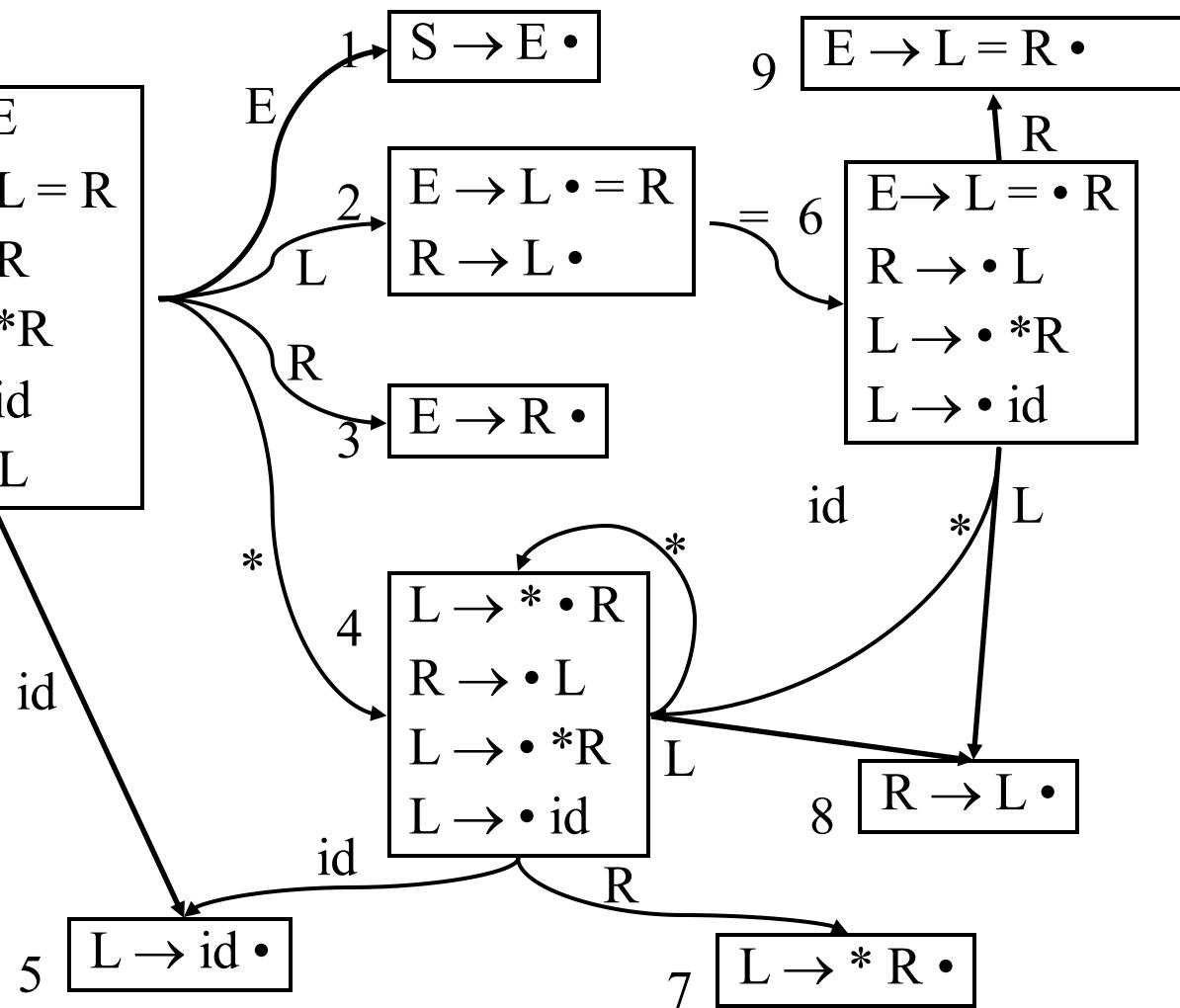
Example

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

What are the reduce states?

1,2,3,5,7,8,9

0 $S \rightarrow \bullet E$
 $E \rightarrow \bullet L = R$
 $E \rightarrow \bullet R$
 $L \rightarrow \bullet id$
 $L \rightarrow \bullet *R$
 $L \rightarrow \bullet id$
 $R \rightarrow \bullet L$



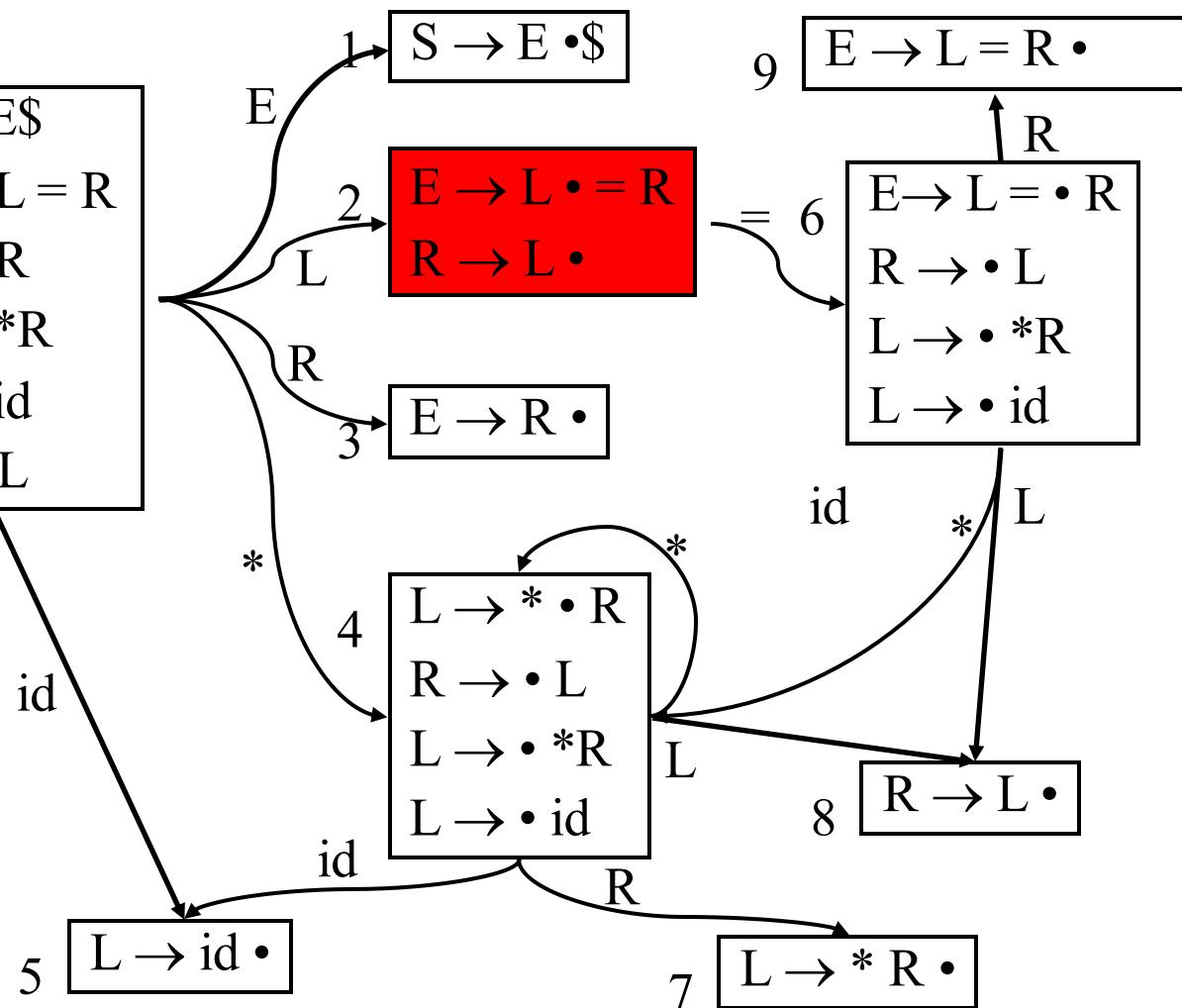
Example

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

**shift/reduce
conflict**

$\text{follow}(R) = \{=, \$\}$

0 $S \rightarrow \bullet E\$$
 $E \rightarrow \bullet L = R$
 $E \rightarrow \bullet R$
 $L \rightarrow \bullet id$
 $L \rightarrow \bullet *R$
 $L \rightarrow \bullet id$
 $R \rightarrow \bullet L$



Problem with SLR

- Reduce on ALL terminals in FOLLOW set

S	→	L = R
		R
L	→	* R
		id
R	→	L

2

S → L • = R
R → L •

- $\text{FOLLOW}(R) = \text{FOLLOW}(L)$
- But, we should never reduce $R \rightarrow L$ on '='
i.e., $R=...$ is not a viable prefix for a right sentential form
- Thus, there should be no reduction in state 2
- How can we solve this?

LR(1) Items

- An LR(1) item is an LR(0) item combined with a single terminal (the *lookahead*)
- $[X \rightarrow \alpha \bullet \beta, a]$ Means
 - α is at top of stack
 - Input string is derivable from βa
- In other words, when we reduce $X \rightarrow \alpha\beta$, a had better be the look ahead symbol.
- Or, Only put 'reduce by $X \rightarrow \alpha\beta$ ' in **action [s,a]**
- Can construct states as before, but have to modify closure

What LR(1) Items Mean

- $[X \rightarrow \bullet \alpha \beta \gamma, a]$
input is consistent with $X \rightarrow \alpha \beta \gamma$
- $[X \rightarrow \alpha \bullet \beta \gamma, a]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized α
- $[X \rightarrow \alpha \beta \bullet \gamma, a]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized $\alpha \beta$
- $[X \rightarrow \alpha \beta \gamma \bullet, a]$
input is consistent with $X \rightarrow \alpha \beta \gamma$ and if lookahead symbol is a, then we can reduce to X

LR(1) Closure

```
closure(state)
repeat
    foreach item  $A \rightarrow a \cdot Xb$ ,  $t$  in state
        foreach production  $X \rightarrow w$ 
            and each terminal  $t'$  in FIRST( $bt$ )
                state.add( $X \rightarrow \cdot w, t'$ )
until state does not change
return state
```

Closure

$\text{closure}(\{S \rightarrow \bullet E\$, ?\}) =$

$S \rightarrow \bullet E\$, \quad ?$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

Closure

$\text{closure}(\{S \rightarrow \bullet E\$, ?\}) =$

$S \rightarrow \bullet E\$, \quad ?$
 $E \rightarrow \bullet L = R, \quad \$$
 $E \rightarrow \bullet R, \quad \$$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

Closure

$\text{closure}(\{S \rightarrow \bullet E\$, ?\}) =$

$S \rightarrow \bullet E\$,$?
$E \rightarrow \bullet L = R,$	$\$$
$E \rightarrow \bullet R,$	$\$$
$L \rightarrow \bullet id,$	$=$
$L \rightarrow \bullet *R,$	$=$

- $0 \ S \rightarrow E\$$
- $1 \ E \rightarrow L = R$
- $2 \ E \rightarrow R$
- $3 \ L \rightarrow id$
- $4 \ L \rightarrow *R$
- $5 \ R \rightarrow L$

Closure

$\text{closure}(\{S \rightarrow \bullet E\$, ?\}) =$

$S \rightarrow \bullet E\$,$?
$E \rightarrow \bullet L = R,$	$\$$
$E \rightarrow \bullet R,$	$\$$
$L \rightarrow \bullet id,$	$=$
$L \rightarrow \bullet *R,$	$=$
$R \rightarrow \bullet L,$	$\$$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

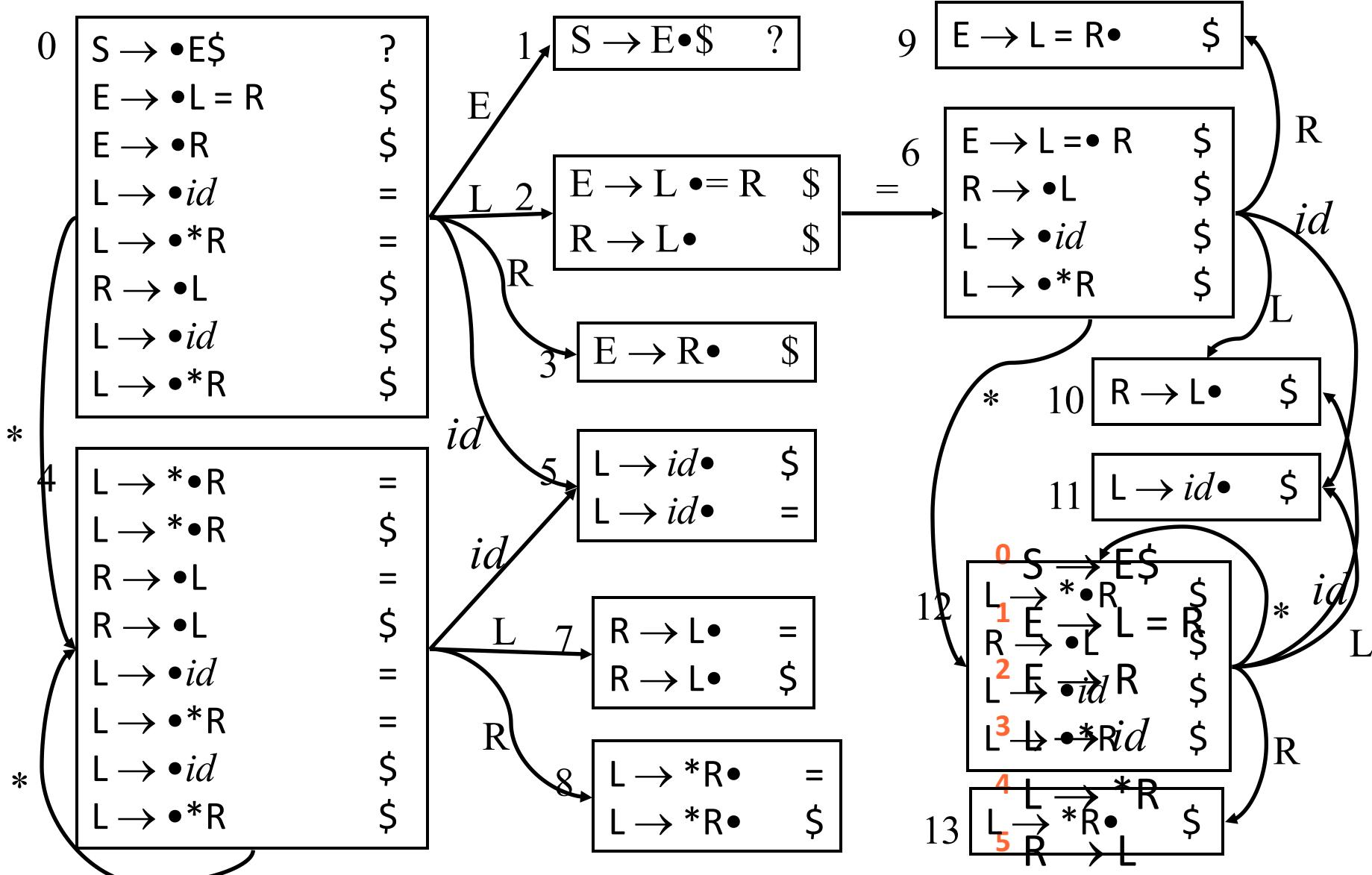
Closure

$\text{closure}(\{S \rightarrow \bullet E\$, ?\}) =$

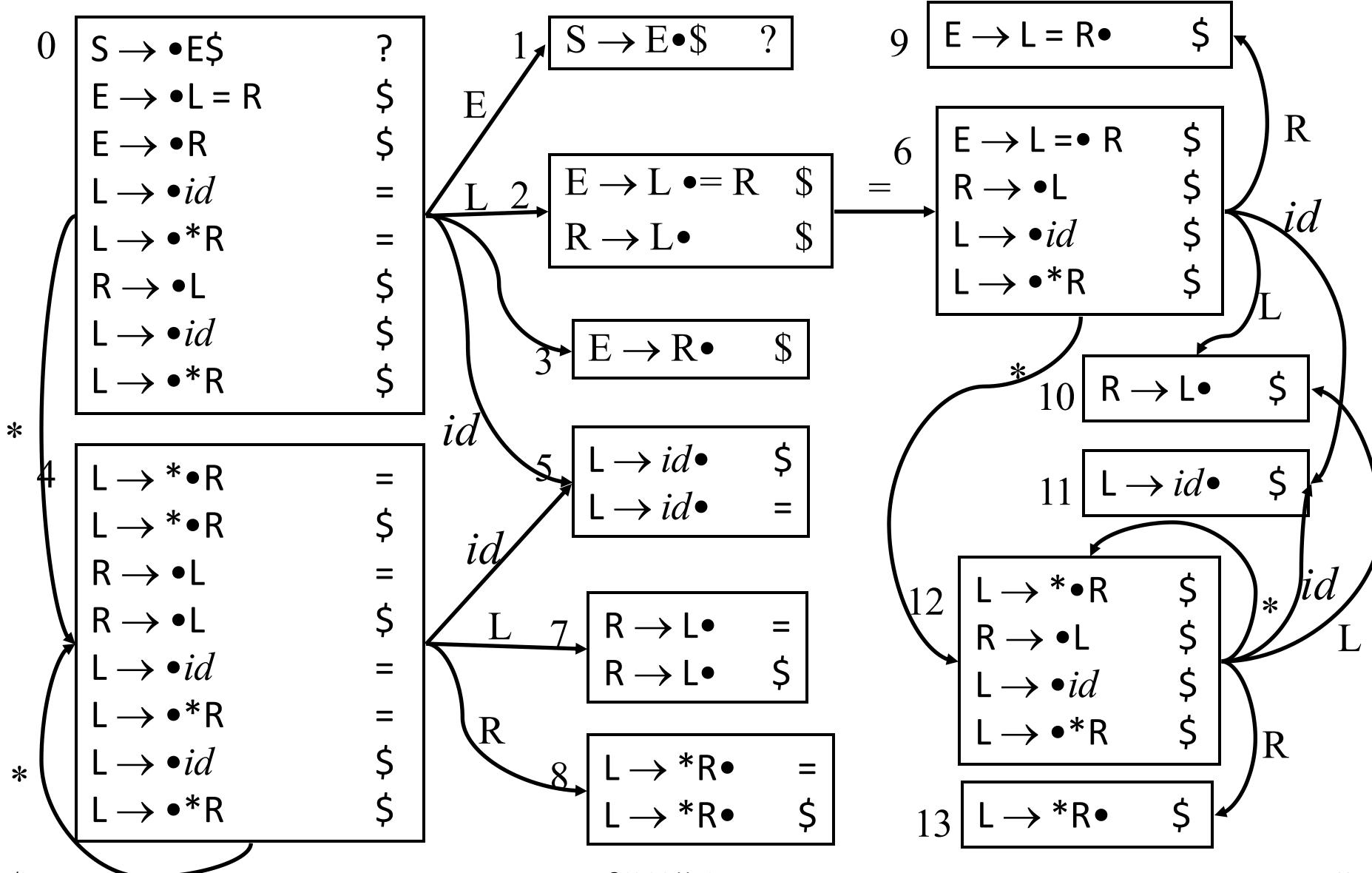
$S \rightarrow \bullet E\$,$?
$E \rightarrow \bullet L = R,$	$\$$
$E \rightarrow \bullet R,$	$\$$
$L \rightarrow \bullet id,$	$=$
$L \rightarrow \bullet *R,$	$=$
$R \rightarrow \bullet L,$	$\$$
$L \rightarrow \bullet id,$	$\$$
$L \rightarrow \bullet *R,$	$\$$

- 0 $S \rightarrow E\$$
- 1 $E \rightarrow L = R$
- 2 $E \rightarrow R$
- 3 $L \rightarrow id$
- 4 $L \rightarrow *R$
- 5 $R \rightarrow L$

LR(1) Example



LR(1) Example



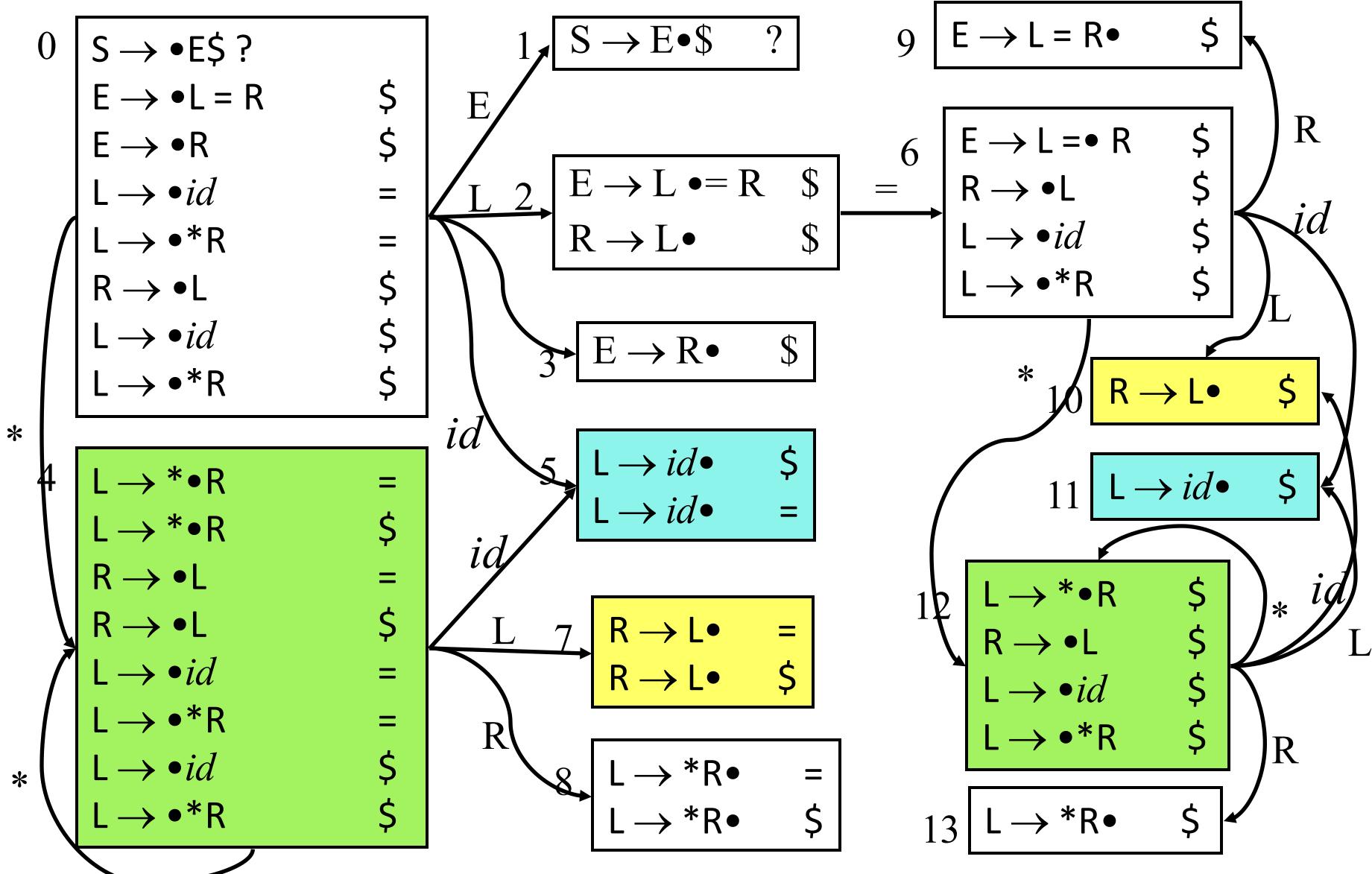
Parsing Table

- 14 states versus 10 LR(0) states
- In general, the number of states (and therefore size of the parsing table) is much larger with LR(1) items

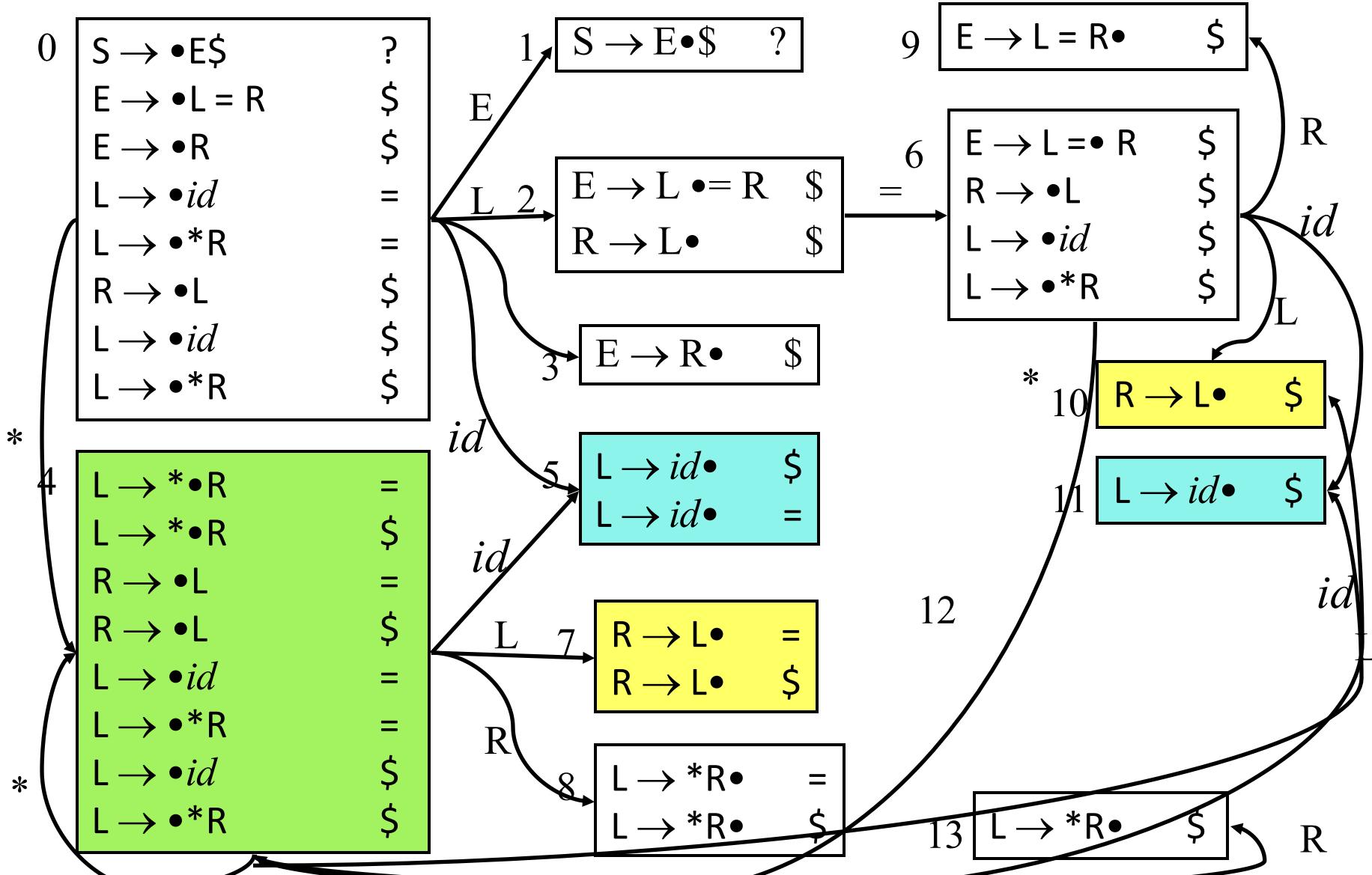
LALR: Lookahead LR

- More powerful than SLR
- Given LR(1) states, merge states that are identical except for lookaheads
- End up with same size table as SLR
- Can this introduce conflicts?

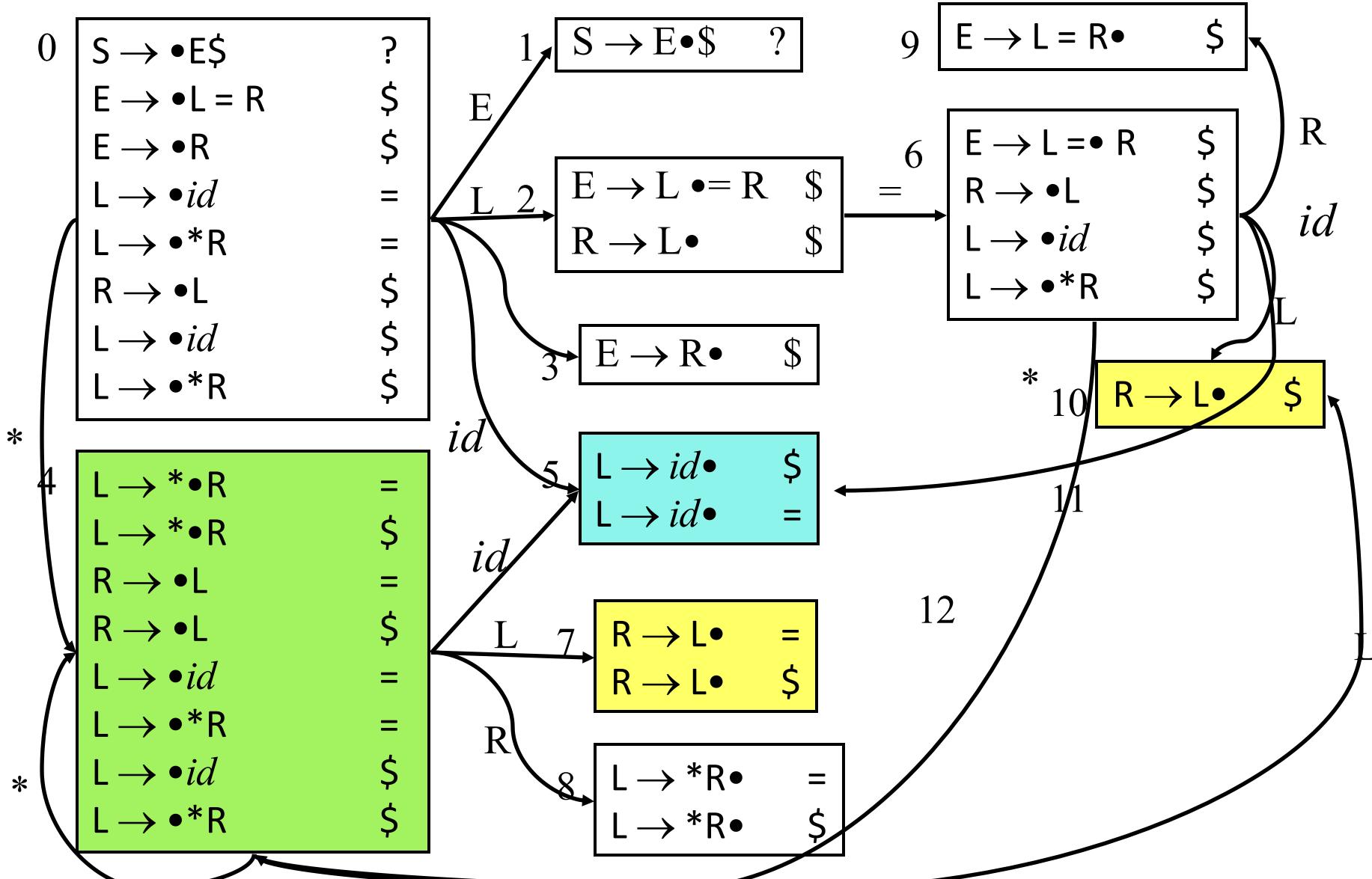
Merge-able states



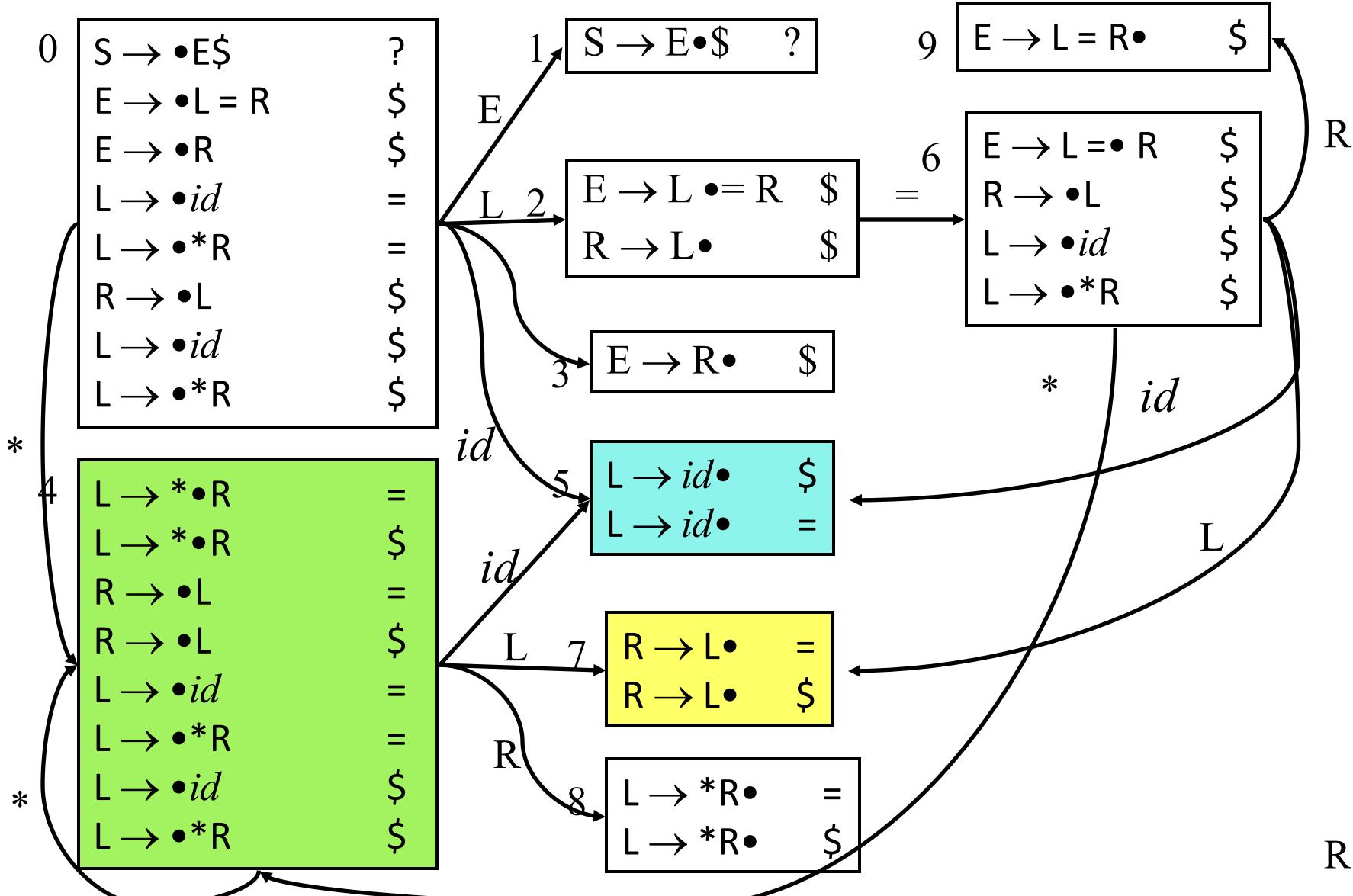
Merge-able states



Merge-able states



Merge-able states



LALR

- Can generate parse table without constructing LR(1) item sets
 - construct LR(0) item sets
 - compute *lookahead* sets
 - more precise than follow sets
- LALR is used by most parser generators (e.g., bison)

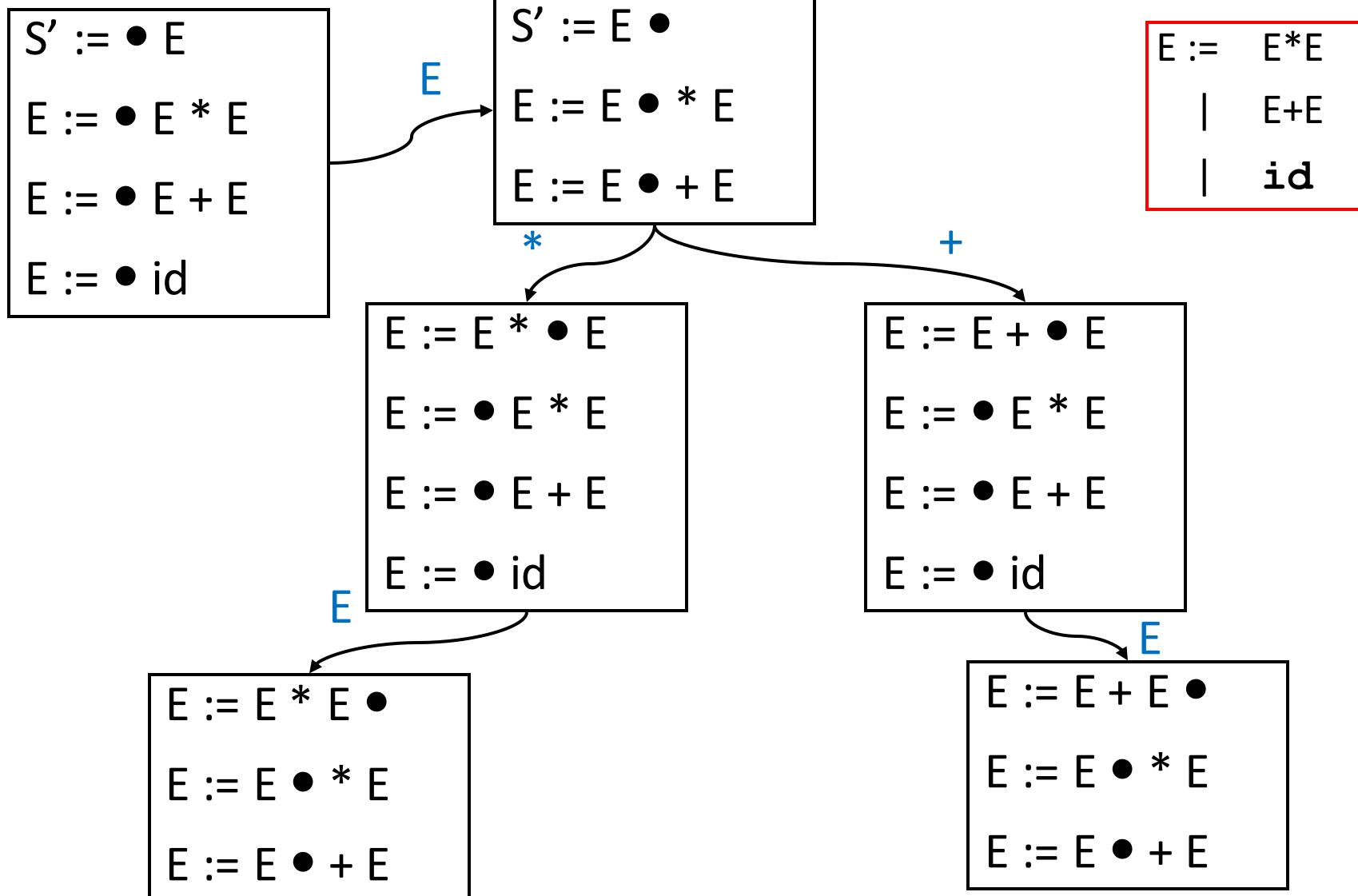
Recap

- LR(0) not very useful
- SLR uses follow sets to reduce
- LALR uses lookahead sets
- LR(1) uses full lookahead context

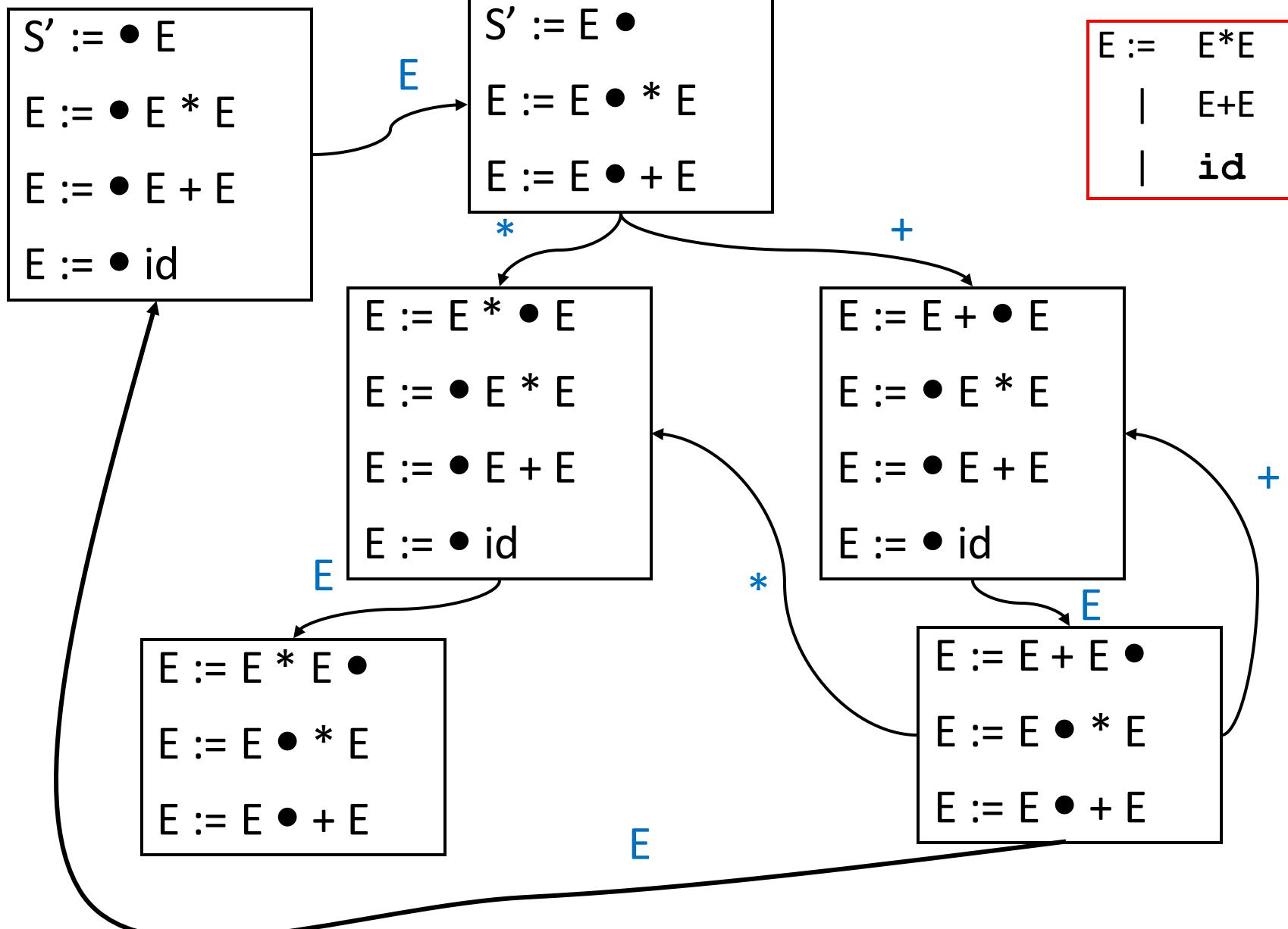
Power of shift-reduce parsers

- There are unambiguous grammars which cannot be parsed with shift-reduce parsers.
- Such grammars can have
 - shift/reduce conflicts
 - reduce/reduce conflicts
- There grammars are not $LR(k)$
- But, we can often choose shift or reduce to recognize what want.

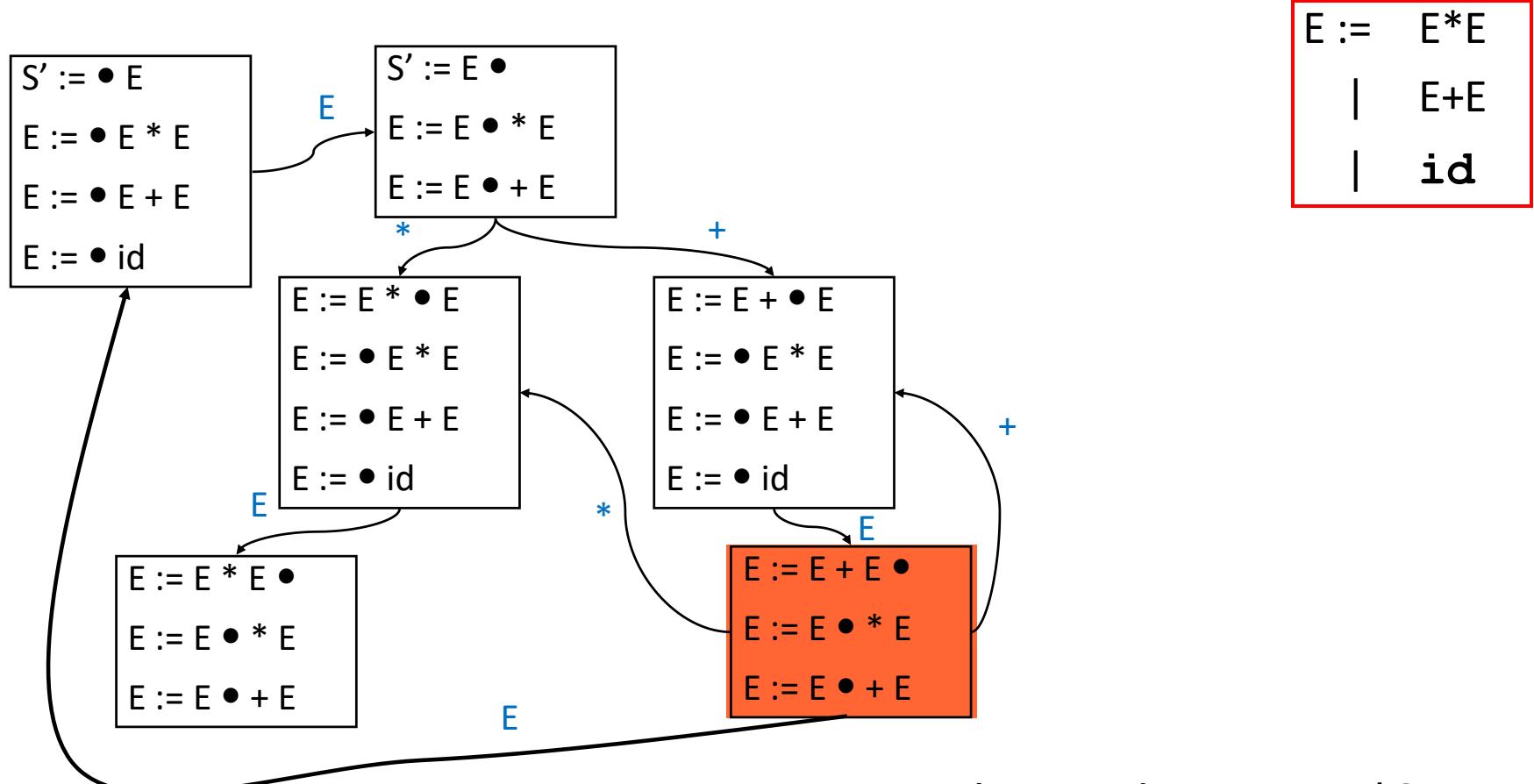
Expression Grammars & Precedence



Expression Grammars & Precedence



Handling Ambiguity



What to do on $+$ or $*$?

- shift
- reduce by $E \rightarrow E+E?$

Bison

- Precedence and Associativity declarations
- Precedence derived from order of directives: from lowest to highest
- Associativity from %left, %right, %nonassoc
- Can be attached to rules as well (This can solve the dangling if-else problem)

Dangling Else

```
S := if E then S
  | if E then S else
  | other
```

We will see a clean way to deal with this in a shift-reduce parser.

- We can be in the following state:

... **if E then S** **else** ... \$

- What do we do?
 - shift the **else** (hoping to reduce by second rule)
 - reduce by first rule

Next Time

- From words to sentences.
- From regular languages to context free languages.
- Parsing