
15-411/15-611 Compiler Design

Seth Copen Goldstein

Lexical Analysis

Parsing

15-411/611 © 2019 Goldstein 1

February 5, 2026

Reminders

• Office Hours are a valuable resource!

• Please name your tests properly, e.g.,
 <team>-<file>.l2

• Please make sure partners are on
submissions.

15-411/611 © 2019 Goldstein 2

Your TAs are nicer than I am.

Mislabeled tests and lack of partner on
submission will lead to lower score.

Today

• Lexing

• Parsing

15-411/611 © 2019 Goldstein 3

Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE → NFA

• NFA → DFA

• DFA → Minimized DFA

• Limits of Regular Languages

15-411/611 © 2019 Goldstein 4

Compiler Phases

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019 Goldstein 6

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

The Lexer

• Turn stream of characters into a stream of
tokens

– Strips out “unnecessary characters”

• comments

• whitespace

– Classify tokens by type

• keywords

• numbers

• punctuation

• identifiers

– Track location

– Associate with syntactic information
15-411/611 © 2019 Goldstein 7

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019 Goldstein 8

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019 Goldstein 9

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123

The Lexer

• Turn stream of characters into a stream of
tokens

– More concise

– Easier to parse

15-411/611 © 2019 Goldstein 10

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123

Lexical Analyzers

• Input: stream of characters

• Output: stream of tokens (with information)

• How to build?

– By hand is tedious

– Use Lexical Analyzer Generator, e.g., flex

• Define tokens with regular expressions

• Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.

15-411/611 © 2019 Goldstein 11

FLEX

• Define tokens

• Generate scanner code

• Main interface: yylex() which reads
from yyin and returns tokens til EOF

15-411/611 © 2019 Goldstein 12

2. Flex Program Format

• A flex program has three sections:

Definitions
%%
RE rules & actions
%%

User code

13

wc As a Flex Program

%{

 int charCount=0, wordCount=0, lineCount=0;

%}

word [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

. {charCount++;}

%%

int main(void) {

 yylex();

 printf(“Chars %d, Words: %d, Lines: %d\n”,

 charCount, wordCount, lineCount);

 return 0;

}

14

A Flex Program

%{

 int charCount=0, wordCount=0, lineCount=0;

%}

word [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

. {charCount++;}

%%

int main(void) {

 yylex();

 printf(“Chars %d, Words: %d, Lines: %d\n”,

 charCount, wordCount, lineCount);

 return 0;

}

15

1) Definitions

2) Rules & Actions

3) User Code

skip

skip

Section 1: RE Definitions

• Format:
 name RE

• Examples:
digit [0-9]

letter [A-Za-z]

id {letter} ({letter}|{digit})*

word [^ \t\n]+

16

Regular Expressions in Flex

17

x match the char x
\. match the char .
"string" match contents of string of chars
. match any char except \n
^ match beginning of a line
$ match the end of a line
[xyz] match one char x, y, or z
[^xyz] match any char except x, y, and z
[a-z] match one of a to z

r* closure (match 0 or more r's)
r+ positive closure (match 1 or more r's)
r? optional (match 0 or 1 r)
r1 r2 match r1 then r2 (concatenation)
r1 | r2 match r1 or r2 (union)
(r) grouping
r1 \ r2 match r1 when followed by r2
{ name } match the RE defined by name

18

Regular Expressions in Flex (cont)

Some number REs

19

[0-9] A single digit.

[0-9]+ An integer.

[0-9]+ (\.[0-9]+)? An integer or fp number.

[+-]? [0-9]+ (\.[0-9]+)? ([eE][+-]?[0-9]+)?

 Integer, fp, or scientific notation.

Section 2: RE/Action Rule

• A rule has the form:
 name { action }

 re { action }

– the name must be defined in section 1

– the action is any C code

• If the named RE matches* an input
character sequence, then the C code is
executed.

20

* Some caveats here

Rule Matching

• Longest match rule.

 “int” { return INT; }

 “integer” { return INTEGER; }

• If rules can match same length input,
first rule takes priority.

 “int” { return INT; }

 [a-z]+ { return ID; }

 [0-9]+ { return NUM; }

15-411/611 © 2019 Goldstein 21

Section 3: C Functions

• Added to end of the lexical analyzer

22

Removing Whitespace

whitespace [\t\n]

%%

{whitespace} ;

. { ECHO; }

%%

int main(void)

{

 yylex();

 return 0;

}

23

empty action

ECHO macro

name

RE

Printing Line Numbers
%{

 int lineno = 1;

%}

%%

^(.*)\n { printf("%4d\t%s", lineno, yytext);
 lineno++;}

%%

int main(int argc, char *argv[])

{

 // appropriate arg processing & error

handling, …

 yyin = fopen(argv[1], "r");

 yylex();

 return 0;

}

24

the matched text

Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE → NFA

• NFA → DFA

• DFA → Minimized DFA

• Limits of Regular Languages

15-411/611 © 2019 Goldstein 25

Under The Covers

• How to go from REs to a working scanner?

15-411/611 © 2019 Goldstein 26

Regular
Expressions

NFA
w/-moves

Minimal
DFA

DFA

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

Regular Languages

• Finite Alphabet, , of symbols.

• word (or string), a finite sequence of symbols
from .

• Language over  is a set of words from .

• Regular Expressions describe Regular Languages.

– easy to write down, but hard to use directly

• The languages accepted by Finite Automata are
also Regular.

15-411/611 © 2019 Goldstein 27

8/29/00 15-411 Fall '00 © Seth Copen Goldstein 2000 28

Regular Expressions defined

• Base Cases:

– A single character a

– The empty string 

• Recursive Rules:
If R1 and R2 are regular expressions

– Concatenation R1R2

– Union R1|R2

– Closure R1*

– Grouping (R1)

•REs describe Regular Languages.

RE Examples

• even a’s

• odd b’s

• even a’s or odd b’s

• even a’s followed by odd b’s

15-411/611 © 2019 Goldstein 29

RE Examples

• even a’s
 b* (a b* a b*)*

• odd b’s
 a* b a* (b a* b a*)*

• even a’s or odd b’s

• even a’s followed by odd b’s

15-411/611 © 2019 Goldstein 30

RE Examples

• even a’s
 RA = b* (a b* a b*)*

• odd b’s
 RB = a* b a* (b a* b a*)*

• even a’s or odd b’s
 RA | RB

• even a’s followed by odd b’s
 RA RB

15-411/611 © 2019 Goldstein 31

Regular Languages

• Regular Expressions are great

– concise notation

– automatic scanner generation

– lots of useful languages

• But, …

– Not all languages are regular

• Context Free Languages

• Context Sensitive Languages

– Even simple things like balanced parenthesis,
e.g., L = { AkBk } (or nested comments!)

– RL can’t count

15-411/611 © 2019 Goldstein 80

Not all Scanning is easy

•Language design should start with lexemes

– My favorite example from PL/I
if then then then = else; else else = then

•blanks not important in Fortran

•nested comments in C

•limited identifier lengths in Fortran

15-411/611 © 2019 Goldstein 81

Today – part 2

• Languages and Grammars

• Context Free Grammars

• Derivations & Parse Trees

• Ambiguity

• Top-down parsers

• FIRST, FOLLOW, and NULLABLE

• Bottom-up parsers

15-411/611 © 2019 Goldstein 82

Compiler Phases

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens

15-411/611 © 2019 Goldstein 83

Languages

• Compiler translates from sequence of
characters to an executable.

• A series of language transformations

• lexing: characters → tokens

• parsing: tokens → “sentences”

15-411/611 © 2019 Goldstein 84

Languages

• Compiler translates from sequence of
characters to an executable.

• A series of language transformations

• lexing: characters → tokens

• parsing: tokens → parse trees

15-411/611 © 2019 Goldstein 85

Grammers and Languages

• A grammer, G, recognizes a language, L(G)

–  set of terminal symbols

– A set of non-terminals

– S the start symbol, a non-terminal

– P a set of productions

• Usually,

– , , , … strings of terminals and/or non-terminals

– A, B, C, … are non-terminals

– a, b, c, … are terminals

• General form of a production is:  → 

15-411/611 © 2019 Goldstein 87

Derivation

• A sequence of applying productions starting with
S and ending with w

 S → 1 →  2 … →  n-1 → w

 S →* w

• L(G) are all the w that can be derived from S

15-411/611 © 2019 Goldstein 88

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G.,
 S → aA
 A → Sb
 S → ε

• An example derivation of aab:

15-411/611 © 2019 Goldstein 89

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• An example derivation of aabc:

 S → aS

15-411/611 © 2019 Goldstein 90

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• An example derivation of aabc:

 S → aS→ aaS

15-411/611 © 2019 Goldstein 91

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA

15-411/611 © 2019 Goldstein 92

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA→ aabcA

15-411/611 © 2019 Goldstein 93

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA→ aabcA → aabc

15-411/611 © 2019 Goldstein 94

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• E.G., a*bc*
 S → aS
 S → bA
 A → ε
 A → cA

• Above is a right-regular grammar

• All rules are of form: A → a
 A → aB
 A → ε
 15-411/611 © 2019 Goldstein 95

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Regular Grammar (NFA)

• Regular expressions and NFAs can be
described by a regular grammar

• right regular grammar: A → a
 A → aB
 A → ε

• left regular grammar: A → a
 A → Ba
 A → ε

• Regular grammars are either right-regular
or left-regular.

15-411/611 © 2019 Goldstein 96

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε

Expressiveness

• Restrictions on production rules limit
expressiveness of grammars.

• No restrictions allow a grammar to
recognize all recursively enumerable
languages

• A bit too expressive for our uses ☺

• Regular grammars cannot recognize anbn

• We need something more expressive

15-411/611 © 2019 Goldstein 97

Chomsky Hierarchy

15-411/611 © 2019 Goldstein 98

Class Language Automaton Form
“word”

problem Example

0
Recursively
Enumerable

Turing
Machine

any undecidable
Post’s

Corresp.
problem

1
Context

Sensitive
Linear-

Bounded TM
A→

PSPACE-
complete

anbncn

2 Context Free
Pushdown
Automata

A→ cubic anbn

3 Regular NFA
A→a

A→aB
linear a*b*

Today – part 2

• Languages and Grammars

• Context Free Grammars

• Derivations & Parse Trees

• Ambiguity

• Top-down parsers

• FIRST, FOLLOW, and NULLABLE

• Bottom-up parsers

15-411/611 © 2019 Goldstein 99

Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals (which are just the set of
possible tokens from the lexer)
e.g., if, then, while, id, int, string, …

– A, a set of non-terminals.
Non-terminals are syntactic variables which
define sets of strings in the language
e.g., stmt, expr, term, factor, vardecl, …

– S

– P

15-411/611 © 2019 Goldstein 100

15-411/611 © 2019 Goldstein 101

Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals …

– A, a set of non-terminals.

– S, S  A, the start symbol
The set of strings derived from S are the valid
string in the language.

– P, set of productions that specify how
terminals and non-terminals combine to form
strings in the language
a production, p, has the form: A→ 

15-411/611 © 2019 Goldstein 102

Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals …

– A, a set of non-terminals.

– S, S  A, the start symbol

– P, set of productions …
a production, p, has the form: : A→ 

– E.g.,: S := E
 S := print E

 E := E + T
 T := F terminals

non-terminals

15-411/611 © 2019 Goldstein 103

What makes a grammar CF?

• Only one NT on left-hand side → context-free

• What makes a grammar context-sensitive?

• A→ where

–  or  may be empty,

– but  is not-empty

• Are context-sensitive grammars useful for
compiler writers?

15-411/611 © 2019 Goldstein 105

Simple Grammar of Expressions

S := Exp

Exp := Exp + Exp

Exp := Exp - Exp

Exp := Exp * Exp

Exp := Exp / Exp

Exp := id

Exp := int

Describes a language of expressions. e.g.: 2+3*x

15-411/611 106

Derivation

• A derivation is a chosen sequence of
productions (expansions)

• S → Exp → Exp + Exp → id + Exp → id + int

• A successful sequence of expansions that
match the input constitute a parse

– Connecting the expansions in each successive
step produces a parse tree

– Parse tree is a form of abstract syntax tree

– Building a correct AST is the whole point

15-411/611 © 2019 Goldstein 107

Derivations

• A sequence of steps in which a non-terminal is
replaced by its right-hand side.

S

by 1  Exp

by 4  Exp * Exp

by 6  Exp * idx

by 2  Exp + Exp * idx

by 7  int2 + Exp * idx

by 7  int2 + int3 * idx

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

There are possibly many derivations
determined by the NT chosen to

expand.

input: 2+3*x

15-411/611 © 2019 Goldstein 108

Leftmost Derivations

• Leftmost derivation: leftmost NT always chosen

S

by 1  Exp

by 4  Exp * Exp

by 2  Exp + Exp * Exp

by 7  int2 + Exp * Exp

by 7  int2 + int3 * Exp

by 6  int2 + int3 * idx

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

input: 2+3*x

15-411/611 © 2019 Goldstein 109

Rightmost Derivations

• Rightmost derivation: rightmost NT always
chosen

S

by 1  Exp

by 4  Exp * Exp

by 6  Exp * idx

by 2  Exp + Exp * idx

by 7  Exp + int3 * idx

by 7  int2 + int3 * idx

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

input: 2+3*x

15-411/611 © 2019 Goldstein 110

Parse Trees

• symbols in rhs are children of NT being
rewritten

S

by 1  Exp

by 4  Exp * Exp

by 2  Exp + Exp * Exp

by 7  int2 + Exp * Exp

by 7  int2 + int3 * Exp

by 6  int2 + int3 * idx

S

E

EE *

EE + x

2 3

input: 2+3*x

15-411/611 © 2019 Goldstein 111

Parse Trees

• parse tree for rightmost derivation

S

E

EE *

EE + x

2 3

S

by 1  Exp

by 4  Exp * Exp

by 6  Exp * idx

by 2  Exp + Exp * idx

by 7  Exp + int3 * idx

by 7  int2 + int3 * idx

Different derivations can
lead to the same parse tree.

What about different parse trees for same sentence?

15-411/611 © 2019 Goldstein 112

Ambiguous Grammars

• A grammar is ambiguous if it can derive a
sentence with >1 parse trees. or,

• If grammer has >1 leftmost (rightmost)
derivations it is ambiguous

What does ambiguity point out?

S

E

EE *

EE + x

2 3

S

E

EE +

x

2

3

EE *

15-411/611 113

Resolving Ambiguity

• Ambiguity is a problem with the grammar

• One possible fix:
 Add precedence with more non-terminals

• In this example, one for each level of precedence:

– (+, -) exp

– (*, /) term

– (id, int) factor

– Make sure parse derives sentences that respect the
precedence

– Make sure that extra levels of precedence can be
bypassed, i.e., “x” is still legal

15-411/611 © 2019 Goldstein 115

A Better Exp Grammar

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

S

by 1  Exp

by 2  Exp + Term

by 4  Term + Term

by 7  Factor + Term

by 9  int2 + Term

by 5  int2 + Term * Factor

by 7  int2 + Factor * Factor

by 9  int2 + int3 * Factor

by 8  int2 + int3 * idx

What is the parse tree?

input: 2+3*x

15-411/611 © 2019 Goldstein 116

A Better Exp Grammar

15-411/611 © 2019 Goldstein 117

Another Ambiguous Grammer

S := if E then S

 | if E then S else S

 | other

• What is the parse tree for:
 if E then if E then S else S?

• What is the language designers intention?

• Is there a context-free solution?

15-411/611 © 2019 Goldstein 118

Dangling Else Grammar

S := matchedS

 | unmatchedS

unmatchedS := if E then S

 | if E then matchedS else unmatchedS

matchedS := if E then matchedS else matchedS

 | other

• Is this clearer?

• What is parse tree for: if E then if E then S else S?

Parser generators provide a better way

15-411/611 © 2019 Goldstein 119

A primitive robot

Swing := Back Swing Forward

 |

Back := back-1-inch

Forward := forward-2-inchs

• What is L(Swing)?

15-411/611 © 2019 Goldstein 120

A primitive robot

S := B S F

 |

B := b

F := f

• What is L(Swing)?

• What is the parse tree for “bbff”

Parsing a CFG

• Top-Down

– start at root of parse-tree

– pick a production and expand to match input

– may require backtracking

– if no backtracking required, predictive

• Bottom-up

– start at leaves of tree

– recognize valid prefixes of productions

– consume input and change state to match

– use stack to track state

15-411/611 © 2019 Goldstein 121

15-411/611 © 2019 Goldstein 122

Top-down Parsers

• Starts at root of parse tree and recursively
expands children that match the input

• In general case, may require backtracking

• Such a parser uses recursive descent.

• When a grammar does not require
backtracking a predictive parser can be
built.

15-411/611 © 2019 Goldstein 123

A Predictive Parser

S := B S F
 |
B := b
F := f S() {

 if match(‘b’) -> B(); S(); F();

 else return;

}

B() { mustMatch(‘b’); return; }

F() { mustMatch(‘f’); return; }

action();

action(); return;}

action(); return;}

Idea is for parser to do something
besides recognize legal sentences.

Top-Down parsing

• Start with root of tree, i.e., S

• Repeat until entire input matched:

– pick a non-terminal, A, and pick a production
A→ that can match input, and expand tree

– if no such rule applies, backtrack

• Key is obviously selecting the right
production

15-411/611 © 2019 Goldstein 124

15-411/611 © 2019 Goldstein 125

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

S int2 - int3 * idx

by 1  E int2 - int3 * idx

by 2  E + T int2 - int3 * idx

by 4  T + T int2 - int3 * idx

by 7  F + T int2 - int3 * idx

by 9  int2 + T int2 - int3 * idx

by 3  E - T int2 - int3 * idx

by 4  T - T int2 - int3 * idx

by 7  F - T int2 - int3 * idx

by 9  int2 - T int2 - int3 * idx

by 5  int2 – T * F int2 - int3 * idx

input: 2+3*x

15-411/611 © 2019 Goldstein 126

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

S int2 - int3 * idx

by 1  E int2 - int3 * idx

by 2  E + T int2 - int3 * idx

by 4  T + T int2 - int3 * idx

by 7  F + T int2 - int3 * idx

by 9  int2 + T int2 - int3 * idx

by 3  E - T int2 - int3 * idx

by 4  T - T int2 - int3 * idx

by 7  F - T int2 - int3 * idx

by 9  int2 - T int2 - int3 * idx

by 5  int2 – T * F int2 - int3 * idx

Must backtrack here!

input: 2+3*x

15-411/611 © 2019 Goldstein 127

S int2 - int3 * idx

by 1  E int2 - int3 * idx

by 2  E + T int2 - int3 * idx

by 4  T + T int2 - int3 * idx

by 7  F + T int2 - int3 * idx

by 9  int2 + T int2 - int3 * idx

by 3  E - T int2 - int3 * idx

by 4  T - T int2 - int3 * idx

by 7  F - T int2 - int3 * idx

by 9  int2 - T int2 - int3 * idx

by 5  int2 – T * F int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

input: 2+3*x

input: 2+3*x

15-411/611 © 2019 Goldstein 128

S int2 - int3 * idx

by 1  E int2 - int3 * idx

by 2  E + T int2 - int3 * idx

by 4  T + T int2 - int3 * idx

by 7  F + T int2 - int3 * idx

by 9  int2 + T int2 - int3 * idx

by 3  E - T int2 - int3 * idx

by 4  T - T int2 - int3 * idx

by 7  F - T int2 - int3 * idx

by 9  int2 - T int2 - int3 * idx

by 5  int2 – T * F int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

What kind of derivation is this parsing?

15-411/611 © 2019 Goldstein 129

S int2 - int3 * idx

by 1  E int2 - int3 * idx

by 2  E + T int2 - int3 * idx

by 2  E + E + T int2 - int3 * idx

by 2  E + E + E + T int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int
Will not terminate! Why?

What should we do about it?

grammar is left-recursive

Eliminate left-recursion

input: 2+3*x

15-411/611 © 2019 Goldstein 130

Does this work?

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

1 S := E

2 E := T + E

3 E := T - E

4 E := T

5 T := F * T

6 T := F / T

7 T := F

8 F := id

9 F := int

It is right recursive, but also right associative!

15-411/611 © 2019 Goldstein 131

Eliminating Left-Recursion

• Given 2 productions:
 A := A  | 
Where neither  nor  start with A
 (e.g., For example, E := E + T | T)

• Make it right-recursive:
 A :=  R
 R :=  R
 |

• Extends to general case.

R is right recursive

 

15-411/611 © 2019 Goldstein 132

Rewriting Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

1 S := E

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ :=

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ :=

8 F := id

9 F := int

2 E := T E’

5 T := F T’

Is this legible?

15-411/611 © 2019 Goldstein 133

Try again

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ :=

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ :=

8 F := id

9 F := int

S ⚫int2 - int3 * idx

by 1  E ⚫int2 - int3 * idx

by 2  T E’ ⚫int2 - int3 * idx

by 5  F T’ E’ ⚫int2 - int3 * idx

by 9  2 T’ E’ int2 ⚫- int3 * idx

by 7’  2 E’ int2 ⚫- int3 * idx

by 3’  2 – T E’ int2 - ⚫int3 * idx

by 5  2 – F T’ E’ int2 - ⚫int3 * idx

by 9  2 – 3 T’ E’ int2 - int3 ⚫* idx

by 5’  2 – 3 * F T’ E’ int2 - int3 * ⚫idx

by 8  2 – 3 * x T’ E’ int2 - int3 * idx⚫

by 7  2 – 3 * x E’ int2 - int3 * idx⚫

by 4  2 – 3 * x int2 - int3 * idx⚫

Unlike previous time we tried this, it
appears that only one production applies at
a time. I.e., no backtracking needed. Why?

input: 2+3*x

Lookahead

• How to pick right production?

• Lookahead in input stream for guidance

• General case: arbitrary lookahead required

• Luckily, many context-free grammars can be
parsed with limited lookahead

• If we have A → | , then we want to
correctly choose either A → or A → 

• define FIRST() as the set of tokens that can be
first symbol of , i.e.,

a  FIRST() iff  →* a for some 

15-411/611 134

Lookahead

• How to pick right production?

• If we have A → | , then we want to
correctly choose either A → or A →

• define FIRST() as the set of tokens that can be
first symbol of , i.e.,

a  FIRST() iff  →* a for some 

• If A → |  we want:
FIRST()  FIRST() = 

• If that is always true, we can build a predictive
parser.

15-411/611 135

skip

skip

15-411/611 © 2019 Goldstein 138

FIRST sets

• We use next k characters in input stream to guide
the selection of the proper production.

• Given: A :=  |  we want next input character to
decide between  and .

• FIRST() = set of terminals that can begin
 any string derived from .

• IOW: a  FIRST() iff  * a for some 

• FIRST()  FIRST() =  → no backtracking needed

15-411/611 © 2019 Goldstein 139

Computing FIRST()

• Given X := A B C, FIRST(X) = FIRST(A B C)

• Can we ignore B or C?

• Consider:
 A := a
 |
 B := b
 | A
 C := c

15-411/611 © 2019 Goldstein 140

Computing FIRST()

• Given X := A B C, FIRST(X) = FIRST(A B C)

• Can we ignore B or C?

• Consider:
 A := a
 |
 B := b
 | A
 C := c

• FIRST(X) must also include FIRST(C)

• IOW:
– Must keep track of NTs that are nullable

– For nullable NTs, determine FOLLOWS(NT)

15-411/611 © 2019 Goldstein 141

nullable(A)

• nullable(A) is true if A can derive the empty
string

• For example:

 B := X Y b

 X := x

 | Y Y

 Y :=

In this case, nullable(X) = nullable(Y) = true

 nullable(B) = false

15-411/611 © 2019 Goldstein 142

FOLLOW(A)

• FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

• I.e.,
a  FOLLOW(A) iff S * Aa for some  and 

15-411/611 © 2019 Goldstein 143

Building a Predictive Parser

• We want to know for each non-terminal which
production to choose based on the next input
character.

• Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A :=  , in (A, a) iff

– FIRST() contains a or

– nullable() and FOLLOW(A) contains a

skip

skip

15-411/611 © 2019 Goldstein 144

The table for the robot

S := B S F

 |

B := b

F := f

b f $

S

B

F

FIRST FOLLOW nullable

S b $ yes

B b b,f no

F f f,$ no

15-411/611 © 2019 Goldstein 145

The table for the robot

S := B S F

 |

B := b

F := f

b f $

S S:=BSF S:=

B B:=b

F F:=f

FIRST FOLLOW nullable

S b $ yes

B b b,f no

F f f,$ no

nullable()=true
and

FOLLOW(S) = $

FIRST(BSF) = b

15-411/611 © 2019 Goldstein 146

Table for exp grammar

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ :=

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ :=

8 F := id

9 F := int

FIRST FOLLOW nullable

S id, int $

E id, int $

E’ +, - $ yes

T id, int +,-,$

T’ /, * +,-,$ yes

F id, int /, *,$

+ - * / id int $

S

E

E’

T

T’

F

15-411/611 © 2019 Goldstein 147

Table for exp grammar

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ :=

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ :=

8 F := id

9 F := int

FIRST FOLLOW nullable

S id, int $

E id, int $

E’ +, - $ yes

T id, int +,-,$

T’ /, * +,-,$ yes

F id, int /, *,$

+ - * / id int $

S :=E :=E

E :=TE’ :=TE’

E’
:=+TE’ :=-TE’ :=

T :=FT’ :=FT’

T’ := := :=*FT’ :=/FT’ :=

F :=id :=int

15-411/611 © 2019 Goldstein 148

Using the Table

• Each row in the table becomes a function

• For each input token with an entry:
Create a series of invocations that
implement the production, where

– a non-terminal is eaten

– a terminal becomes a recursive call

• For the blank cells implement errors

15-411/611 © 2019 Goldstein 149

Example function
+ - * / id int $

S :=E :=E

E :=TE’ :=TE’

E’ :=+TE’ :=-TE’ :=TE’ :=TE’ :=

T :=FT’ :=FT’

T’ := := :=*FT’ :=/FT’ :=

F :=id :=int
Eprime() {

 switch (token) {

 case PLUS: eat(PLUS); T(); Eprime(); break;

 case MINUS: eat(MINUS); T(); Eprime(); break;

 case ID: T(); Eprime();

 case INT: T(); Eprime();

 default: error();

}

How to handle errors?

15-411/611 © 2019 Goldstein 150

Left-Factoring

• Predictive parsers need to make a choice
based on the next terminal.

• Consider:
 S := if E then S else S
 | if E then S

• When looking at if, can’t decide

• so left-factor the grammar

 S := if E then S X
 X := else S

 |

15-411/611 © 2019 Goldstein 151

Top-Down Parsing

• Can be constructed by hand

• LL(k) grammars can be parsed

– Left-to-right

– Leftmost-derivation

– with k symbols lookahead

• Often requires

– left-factoring

– Elimination of left-recursion

15-411/611 © 2019 Goldstein 152

Bottom-up parsers

• What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

15-411/611 © 2019 Goldstein 153

Bottom-up parsers

• What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

• Bottom-up parsers use the entire right-
hand side of the production

• LR(k):

– Left-to-right parse,

– Rightmost derivation (in reverse),

– k look ahead tokens

15-411/611 © 2019 Goldstein 154

Top-down vs. Bottom-up

scanned unscanned scanned unscanned

Top-down Bottom-up

LL(k), recursive descent LR(k), shift-reduce

15-411/611 © 2019 Goldstein 155

Example - Top-down

S := X
X := X a
 | b

Is this grammar LL(k)?

How can we make it LL(k)?

S := X
X := b R
R := a R
 |

What about a bottom up parse?

15-411/611 © 2019 Goldstein 156

Example - Bottom-up

S := X
X := X a
 | b

right-most derivation:
 S  X  Xa  Xaa  baa

Left-to-Right, Rightmost in reverse
 baa
 Xaa
 Xa
 X
 S

X

aX

S

aX

b

LR parser gets to look at an entire right hand side.

15-411/611 © 2019 Goldstein 157

Top-down vs. Bottom-up

scanned unscanned scanned unscanned

Top-down Bottom-up

LL(k), recursive descent LR(k), shift-reduce

15-411/611 © 2019 Goldstein 158

A Rightmost Derivation

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

S

by 1  Exp

by 2  Exp + Term

by 5  Exp + Term * Factor

by 8  Exp + Term * idx

by 7  Exp + Factor * idx

by 9  Exp + int3 * idx

by 4  Term + int3 * idx

by 7  Factor + int3 * idx

by 9  int2 + int3 * idx
input: 2+3*x

15-411/611 © 2019 Goldstein 159

A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S

Lets keep track of where we are in the input.

15-411/611 © 2019 Goldstein 160

A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S

int2 ⚫ + int3 * idx

Factor ⚫ + int3 * idx

Term ⚫ + int3 * idx

Exp + int3 ⚫ * idx

Exp + Factor ⚫ * idx

Exp + Term * idx ⚫

Exp + Term * Factor ⚫

Exp + Term ⚫

Exp ⚫

S ⚫

15-411/611 © 2019 Goldstein 161

A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S

int2 ⚫ + int3 * idx

Factor ⚫ + int3 * idx

Term ⚫ + int3 * idx

Exp + int3 ⚫ * idx

Exp + Factor ⚫ * idx

Exp + Term * idx ⚫

Exp + Term * Factor ⚫

Exp + Term ⚫

Exp ⚫

S ⚫

Lets format this differently,
<prefix of sentential form> input

int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!15-411/611 © 2019 Goldstein 162

A Rightmost Derivation In Reverse

int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!15-411/611 © 2019 Goldstein 163

A Rightmost Derivation In Reverse

LR-Parser either:
1. shifts a terminal or
2. reduces by a production.

15-411/611 © 2019 Goldstein 164

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 165

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

When we reduce by a production: A → ,
 is on right side of sentential form.

E.g., here  is ‘int’ and production is F → int

15-411/611 © 2019 Goldstein 166

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 167

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 168

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 169

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 170

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 171

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 172

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 173

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 174

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 175

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 176

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 177

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 178

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

15-411/611 © 2019 Goldstein 179

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

15-411/611 © 2019 Goldstein 180

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept! 180

2

F

15-411/611 © 2019 Goldstein 181

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

15-411/611 © 2019 Goldstein 182

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept! 182

2

F

E

T

+

15-411/611 © 2019 Goldstein 183

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

15-411/611 © 2019 Goldstein 184

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

Handles

• LR parsing is handle pruning

• LR parsing finds a rightmost derivation (in
reverse)

• A handle in , a right-hand sentential form, is

– a position in  matching 

– a production A → 

 S →* Aw → w

• if a grammar is unambiguous, then every  has
exactly 1 handle

15-411/611 © 2019 Goldstein 185

15-411/611 © 2019 Goldstein 186

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

15-411/611 © 2019 Goldstein 187

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

Where is next handle?

15-411/611 © 2019 Goldstein 188

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

Where is next handle?

15-411/611 © 2019 Goldstein 189

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Where is next handle?

15-411/611 © 2019 Goldstein 190

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Where is next handle? E+F*x and T→ F

Handle Pruning

• LR parsing consists of

– shifting til there is a handle on the top of the
stack

– reducing handle

• Key is handle is always on top of stack, i.e.,
if  is a handle with A → , then  can be
found on top of stack.

15-411/611 © 2019 Goldstein 191

15-411/611 © 2019 Goldstein 192

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

top of stack does
not have a handle,
so must shift.

15-411/611 © 2019 Goldstein 193

A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $ reduce by F → id

Exp + Term * Factor $ reduce by T → T * F

Exp + Term $ reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Now, x is a handle.

15-411/611 © 2019 Goldstein 194

A Shift-Reduce Parser

• Stack holds the viable prefixes.

• input stream holds remaining source

• Four actions:

– shift: push token from input stream onto stack

– reduce: right-end of a handle ( of A → ) is at top of
stack, pop handle (), push A

– accept: success

– error: syntax error discovered

Key is recognizing handles efficiently

Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Push down automata:

FSM with stack

source
code

15-411/611 © 2019 Goldstein 195

Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Parser
Generator

Push down automata:

FSM with stack

source
code

Grammar

15-411/611 © 2019 Goldstein 196

Parser Loop

• Same code regardless of grammar
– only tables change

• (Very) General Algorithm:
– Based on table contents, top of stack, and current

input character either
• shift: pushes onto stack, reads next token
• reduce: manipulate stack to simplify representation of

already scanned input
• accept: successfully scanned entire input
• error: input not in language

Driver

15-411/611 © 2019 Goldstein 197

Stack

• Represents the scanned input

• Contents?

– Reduced nonterminals not enough

– Must store previously seen states

• the context of the current position

– In fact, nonterminals unnecessary

• include for readability

Stack

x + y• + z

T

+

T
15-411/611 © 2019 Goldstein 198

Parser Tables

Action table

• given state s and terminal a tells parser
loop what action (shift, reduce, accept,
reject) to perform

Goto table

• used when performing reduction; given a
state s and nonterminal X says what state
to transition to

Action table
&

GOTO table

15-411/611 © 2019 Goldstein 199

Parser Tables Action table
&

GOTO table

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

sN push state N onto stack
rR reduce by rule R
gN goto state N
a accept
 error

15-411/611 © 2019 Goldstein 200

DriverParser Loop Revisited

while(true)

 s = state on top of stack

 a = current input token

 if(action[s][a] == sN) shift
 push N

 read next input token

 else if(action[s][a] == rR) reduce
 pop rhs of rule R from stack

 X = lhs of rule R

 N = state on top of stack

 push goto[N][X]

 else if(action[s][a] == a) accept
 return success

 else error
 return failure
15-411/611 © 2019 Goldstein 201

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ Stack
(0,S)

x

0

15-411/611 © 2019 Goldstein 202

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)

15-411/611 © 2019 Goldstein 203

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)

15-411/611 © 2019 Goldstein 204

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)

15-411/611 © 2019 Goldstein 205

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

0
(3,x)

15-411/611 © 2019 Goldstein 206

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

2
(2,T)

15-411/611 © 2019 Goldstein 207

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

2
(2,T)

15-411/611 © 2019 Goldstein 208

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

y

4
(2,T)

(4,+)

15-411/611 © 2019 Goldstein 209

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

y

4
(2,T)

(4,+)

15-411/611 © 2019 Goldstein 210

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

3
(2,T)

(4,+)
(3,y)

15-411/611 © 2019 Goldstein 211

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

3
(2,T)

(4,+)

(?,T)

15-411/611 © 2019 Goldstein 212

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)
(2,T)

15-411/611 © 2019 Goldstein 213

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)
(2,T)

15-411/611 © 2019 Goldstein 214

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)

(?,E)

15-411/611 © 2019 Goldstein 215

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5
(2,T)

(4,+)
(5,E)

15-411/611 © 2019 Goldstein 216

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5
(2,T)

(4,+)
(5,E)

15-411/611 © 2019 Goldstein 217

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5 (2,T)

(4,+)

(5,E)

15-411/611 © 2019 Goldstein 218

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

1
(1,E)

15-411/611 © 2019 Goldstein 219

Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

1
(1,E)

Accept!

15-411/611 © 2019 Goldstein 220

Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Push down automata:

FSM with stack

source
code

Parser
Generator

Grammar

15-411/611 © 2019 Goldstein 221

The parser generator

• Finds handles

• Creates the action and GOTO tables.

• Creates the states

– Each state indicates how much of a handle we
have seen

– each state is a set of items

Parser
Generator

15-411/611 © 2019 Goldstein 222

15-411/611 © 2019 Goldstein 224

Items

• Items are used to identify handles.

• LR(k) items have the form:
 [production-with-dot, lookahead]

• For example, A → a X b has 4 LR(0) items

– [A →  a X b]

– [A → a  X b]

– [A → a X  b]

– [A → a X b ]

The  indicates how much
of the handle we have

recognized.

15-411/611 © 2019 Goldstein 225

What LR(0) Items Mean

• [X →    ]
input is consistent with X →   

• [X →    ]
input is consistent with X →    and we
have already recognized 

• [X →    ]
input is consistent with X →    and we
have already recognized  

• [X →    ]
input is consistent with X →    and we
can reduce to X

15-411/611 © 2019 Goldstein 226

Generating the States
• Start with start production.

• In this case, “S → E$”

• Each state is consistent with
what we have already shifted
from the input and what is
possible to reduce. So, what
other items should be in this
state?

0 S → E$
1 E → T + E
2 E → T
3 T → identifierS → •E$

15-411/611 © 2019 Goldstein 227

Completing a state
• For each item in a state, add

in all other consistent items.

• This is called, taking the
closure of the state.

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

S → •E$
E → •T + E
E → •T
T → •identifier

15-411/611 © 2019 Goldstein 228

Closure*

closure(state)

 repeat

 foreach item A → a•Xb in state

 foreach production X → w

 state.add(X → •w)

 until state does not change

 return state

Intuitively:

Given a set of items, add all production rules that
could produce the nonterminal(s) at the current
position in each item

*: for LR(0) items

15-411/611 © 2019 Goldstein 229

What about the other states?

• How do we decide what the
other states are?

• How do we decide what the
transitions between states are?

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

S → •E$
E → •T + E
E → •T
T → •identifier

S → E•$

E → T• + E
E → T•T → identifier•

E

T

identifier

15-411/611 © 2019 Goldstein 230

Next(state, sym)

• Next function determines what state to
goto based on current state and symbol
being recognized.

• For Non-terminal, this is used to determine
the GOTO table.

• For terminal, this is used to determine the
shift action.

15-411/611 © 2019 Goldstein 231

Constructing states

initial_state = closure({start production})

state_set.add(initial_state)

state_queue.push(initial_state)

while(!state_queue.empty())

 s = state_queue.pop()

 foreach item A → a•Xb in s

 n = closure(next(s, X))

 if(!state_set.contains(n))

 state_set.add(n)

 state_queue.push(n)

A state is a set of
LR(0) items

get “next” state

15-411/611 © 2019 Goldstein 232

Closure*

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

closure({S → •E$}) =

S → •E$
E → •T + E
E → •T
T → •identifier

*: for LR(0) items

15-411/611 © 2019 Goldstein 233

Closure*

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

closure({S → •E$}) =

S → •E$
E → •T + E
E → •T
T → •identifier

*: for LR(0) items

15-411/611 © 2019 Goldstein 234

Next

next(state, X)

 ret = empty

 foreach item A → a•Xb in state

 ret.add(A → aX•b)

 return ret

S → •E$
E → •T + E
E → •T
T → •identifier

next(initial, E)
initial:

next(initial, T)

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

next(initial, identifier)

15-411/611 © 2019 Goldstein 235

Example

S → •E$
E → •T + E
E → •T
T → •identifier

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

0

S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•

5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

15-411/611 © 2019 Goldstein 236

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0

1

2

3

4

5

What can we fill out?

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 237

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0

1

2

3

4

5

shift
transition on terminal

action goto

state ident + $ E T

0 s3

1

2 s4

3

4 s3

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 238

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0 s3

1

2 s2

3

4 s3

5

goto
transition on nonterminal

action goto

state ident + $ E T

0 s3 g1 g2

1

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 239

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

accept
about to shift $

action goto

state ident + $ E T

0 s3 g1 g2

1

2 s4

3

4 s3 g5 g2

5

a

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 240

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

reduce
item has dot at end
A → w•

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 241

LR(0)

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

No lookahead
reduce state for all
nonterminals

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 r2 r2/s4 r2

3 r3 r3 r3

4 s3 g5 g2

5 r1 r1 r1

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 242

LR(0)

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

shift/reduce conflict
need to be pickier about
when we reduce

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 r2 r2/s4 r2

3 r3 r3 r3

4 s3 g5 g2

5 r1 r1 r1

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 243

SLR - Simple LR

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

Only reduce in position (s,a)
by rule R:A → w if a is in the
follow set of A

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

15-411/611 © 2019 Goldstein 244

follow(X)

set of terminals that can
appear immediately after
the nonterminal X in some
sentential form

I.e., t  FOLLOW(X) iff S * Xt for some  and 

Reminder: Follow sets

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

follow(E) = {$}

follow(T) = {+,$}

15-411/611 © 2019 Goldstein 246

SLR - Reduce using follow sets

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

follow(E) = {$}

follow(T) = {+,$}

r1

r3r3

r2

15-411/611 © 2019 Goldstein 247

SLR Limitations

• SLR uses LR(0) item sets

• Can remove some (but not all) shift/reduce
conflicts using follow set

• Consider

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 248

Example

S → •E

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

What are the
reduce states?

1,2,3,5,7,8,9

15-411/611 © 2019 Goldstein 249

Example

S → •E

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

What are the
reduce states?

1,2,3,5,7,8,9

15-411/611 © 2019 Goldstein 250

Example

S → •E$

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •$1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

shift/reduce
conflict

follow(R) = {=,$}

15-411/611 © 2019 Goldstein 251

Problem with SLR

• Reduce on ALL terminals in FOLLOW set

• FOLLOW(R) = FOLLOW(L)

• But, we should never reduce R → L on ‘=‘
I.e., R=… is not a viable prefix for a right
sentential form

• Thus, there should be no reduction in state 2

• How can we solve this?

S → L = R

 | R

L → * R

 | id

R → L

S → L  = R

R → L 

2

15-411/611 © 2019 Goldstein 252

• An LR(1) item is an LR(0) item combined with a
single terminal (the lookahead)

• [X →   , a] Means

–  is at top of stack

– Input string is derivable from a

• In other words, when we reduce X → , a had
better be the look ahead symbol.

• Or, Only put ‘reduce by X → ’ in action[s,a]
• Can construct states as before, but have to

modify closure

LR(1) Items

15-411/611 © 2019 Goldstein 253

What LR(1) Items Mean

• [X →    , a]
input is consistent with X →   

• [X →    , a]
input is consistent with X →    and we
have already recognized 

• [X →    , a]
input is consistent with X →    and we
have already recognized  

• [X →    , a]
input is consistent with X →    and if
lookahead symbol is a, then we can reduce
to X

15-411/611 © 2019 Goldstein 254

LR(1) Closure

closure(state)

 repeat

 foreach item A → a•Xb, t in state

 foreach production X → w

 and each terminal t’ in FIRST(bt)

 state.add(X → •w, t’)

 until state does not change

 return state

15-411/611 © 2019 Goldstein 255

Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 256

Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 257

Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 258

Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 259

Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

15-411/611 © 2019 Goldstein 260

LR(1) Example

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

R

*

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

L → id• $
L → id• =

5
id

S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

15-411/611 © 2019 Goldstein 261

LR(1) Example

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0 S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R

15-411/611 © 2019 Goldstein 262

Parsing Table

• 14 states versus 10 LR(0) states

• In general, the number of states (and
therefore size of the parsing table) is much
larger with LR(1) items

15-411/611 © 2019 Goldstein 263

LALR: Lookahead LR

• More powerful than SLR

• Given LR(1) states, merge states that are
identical except for lookaheads

• End up with same size table as SLR

• Can this introduce conflicts?

15-411/611 © 2019 Goldstein 264

Merge-able states

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0 S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R

15-411/611 © 2019 Goldstein 265

Merge-able states

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0 S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

12

*

id
L

L → *R• $13 R

15-411/611 © 2019 Goldstein 266

Merge-able states

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0 S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

11

L

id

12

*

L

15-411/611 © 2019 Goldstein 267

Merge-able states

S → •E$?
E → •L = R $
E → •R $
L → •id =
L → •*R =
R → •L $
L → •id $
L → •*R $

0 S → E•$?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R =
L → *•R $
R → •L =
R → •L $
L → •id =
L → •*R =
L → •id $
L → •*R $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

E → L = R• $9

R

L

id*

R

15-411/611 © 2019 Goldstein 268

LALR

• Can generate parse table without
constructing LR(1) item sets

– construct LR(0) item sets

– compute lookahead sets

• more precise than follow sets

• LALR is used by most parser generators
(e.g., bison)

15-411/611 © 2019 Goldstein 269

Recap

• LR(0) not very useful

• SLR uses follow sets to reduce

• LALR uses lookahead sets

• LR(1) uses full lookahead context

15-411/611 © 2019 Goldstein 270

Power of shift-reduce parsers

• There are unambiguous grammars which
which cannot be parsed with shift-reduce
parsers.

• Such grammars can have

– shift/reduce conflicts

– reduce/reduce conflicts

• There grammars are not LR(k)

• But, we can often choose shift or reduce to
recognize what want.

15-411/611 © 2019 Goldstein 272

Expression Grammars & Precedence

E := E*E

 | E+E

 | id

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E

15-411/611 © 2019 Goldstein 273

Expression Grammars & Precedence

E := E*E

 | E+E

 | id

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E*

+

E

Handling Ambiguity

15-411/611 © 2019 Goldstein 274

E := E*E

 | E+E

 | id

What to do on + or *?
- shift
- reduce by E → E+E?

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E*

+

E

Bison

• Precedence and Associativity declarations

• Precedence derived from order of directivies:
from lowest to highest

• Associativity from %left, %right, %nonassoc

• Can be attached to rules as well (This can
solve the dangling if-else problem

15-411/611 © 2019 Goldstein 275

15-411/611 © 2019 Goldstein 280

Dangling Else

S := if E then S

 | if E then S else S

 | other

• We can be in the following state:

 … if E then S else … $

• What do we do?

– shift the else (hoping to reduce by second rule)

– reduce by first rule

We will see a clean way to deal
with this in a shift-reduce parser.

Next Time

• From words to sentences.

• From regular languages to context free
languages.

• Parsing

15-411/611 © 2019 Goldstein 281

	Slide 1
	Slide 2: Reminders
	Slide 3: Today
	Slide 4: Today – part 1
	Slide 5: Compiler Phases
	Slide 6: The Lexer
	Slide 7: The Lexer
	Slide 8: The Lexer
	Slide 9: The Lexer
	Slide 10: The Lexer
	Slide 11: Lexical Analyzers
	Slide 12: FLEX
	Slide 13: 2. Flex Program Format
	Slide 14: wc As a Flex Program
	Slide 15: A Flex Program
	Slide 16: Section 1: RE Definitions
	Slide 17: Regular Expressions in Flex
	Slide 18: Regular Expressions in Flex (cont)
	Slide 19: Some number REs
	Slide 20: Section 2: RE/Action Rule
	Slide 21: Rule Matching
	Slide 22: Section 3: C Functions
	Slide 23: Removing Whitespace
	Slide 24: Printing Line Numbers
	Slide 25: Today – part 1
	Slide 26: Under The Covers
	Slide 27: Regular Languages
	Slide 28: Regular Expressions defined
	Slide 29: RE Examples
	Slide 30: RE Examples
	Slide 31: RE Examples
	Slide 80: Regular Languages
	Slide 81: Not all Scanning is easy
	Slide 82: Today – part 2
	Slide 83: Compiler Phases
	Slide 84: Languages
	Slide 85: Languages
	Slide 87: Grammers and Languages
	Slide 88: Derivation
	Slide 89: Regular Grammar (NFA)
	Slide 90: Regular Grammar (NFA)
	Slide 91: Regular Grammar (NFA)
	Slide 92: Regular Grammar (NFA)
	Slide 93: Regular Grammar (NFA)
	Slide 94: Regular Grammar (NFA)
	Slide 95: Regular Grammar (NFA)
	Slide 96: Regular Grammar (NFA)
	Slide 97: Expressiveness
	Slide 98: Chomsky Hierarchy
	Slide 99: Today – part 2
	Slide 100: Context-Free Grammar
	Slide 101: Context-Free Grammar
	Slide 102: Context-Free Grammar
	Slide 103: What makes a grammar CF?
	Slide 105: Simple Grammar of Expressions
	Slide 106: Derivation
	Slide 107: Derivations
	Slide 108: Leftmost Derivations
	Slide 109: Rightmost Derivations
	Slide 110: Parse Trees
	Slide 111: Parse Trees
	Slide 112: Ambiguous Grammars
	Slide 113: Resolving Ambiguity
	Slide 115: A Better Exp Grammar
	Slide 116: A Better Exp Grammar
	Slide 117: Another Ambiguous Grammer
	Slide 118: Dangling Else Grammar
	Slide 119: A primitive robot
	Slide 120: A primitive robot
	Slide 121: Parsing a CFG
	Slide 122: Top-down Parsers
	Slide 123: A Predictive Parser
	Slide 124: Top-Down parsing
	Slide 125: Top-down for Exp Grammar
	Slide 126: Top-down for Exp Grammar
	Slide 127: Top-down for Exp Grammar
	Slide 128: Top-down for Exp Grammar
	Slide 129: Top-down for Exp Grammar
	Slide 130: Does this work?
	Slide 131: Eliminating Left-Recursion
	Slide 132: Rewriting Exp Grammar
	Slide 133: Try again
	Slide 134: Lookahead
	Slide 135: Lookahead
	Slide 138: FIRST sets
	Slide 139: Computing FIRST()
	Slide 140: Computing FIRST()
	Slide 141: nullable(A)
	Slide 142: FOLLOW(A)
	Slide 143: Building a Predictive Parser
	Slide 144: The table for the robot
	Slide 145: The table for the robot
	Slide 146: Table for exp grammar
	Slide 147: Table for exp grammar
	Slide 148: Using the Table
	Slide 149: Example function
	Slide 150: Left-Factoring
	Slide 151: Top-Down Parsing
	Slide 152: Bottom-up parsers
	Slide 153: Bottom-up parsers
	Slide 154: Top-down vs. Bottom-up
	Slide 155: Example - Top-down
	Slide 156: Example - Bottom-up
	Slide 157: Top-down vs. Bottom-up
	Slide 158: A Rightmost Derivation
	Slide 159: A Rightmost Derivation In Reverse
	Slide 160: A Rightmost Derivation In Reverse
	Slide 161: A Rightmost Derivation In Reverse
	Slide 162: A Rightmost Derivation In Reverse
	Slide 163: A Rightmost Derivation In Reverse
	Slide 164: A Rightmost Derivation In Reverse
	Slide 165: A Rightmost Derivation In Reverse
	Slide 166: A Rightmost Derivation In Reverse
	Slide 167: A Rightmost Derivation In Reverse
	Slide 168: A Rightmost Derivation In Reverse
	Slide 169: A Rightmost Derivation In Reverse
	Slide 170: A Rightmost Derivation In Reverse
	Slide 171: A Rightmost Derivation In Reverse
	Slide 172: A Rightmost Derivation In Reverse
	Slide 173: A Rightmost Derivation In Reverse
	Slide 174: A Rightmost Derivation In Reverse
	Slide 175: A Rightmost Derivation In Reverse
	Slide 176: A Rightmost Derivation In Reverse
	Slide 177: A Rightmost Derivation In Reverse
	Slide 178: A Rightmost Derivation In Reverse
	Slide 179: A Rightmost Derivation In Reverse
	Slide 180: A Rightmost Derivation In Reverse
	Slide 181: A Rightmost Derivation In Reverse
	Slide 182: A Rightmost Derivation In Reverse
	Slide 183: A Rightmost Derivation In Reverse
	Slide 184: A Rightmost Derivation In Reverse
	Slide 185: Handles
	Slide 186: A Rightmost Derivation In Reverse
	Slide 187: A Rightmost Derivation In Reverse
	Slide 188: A Rightmost Derivation In Reverse
	Slide 189: A Rightmost Derivation In Reverse
	Slide 190: A Rightmost Derivation In Reverse
	Slide 191: Handle Pruning
	Slide 192: A Rightmost Derivation In Reverse
	Slide 193: A Rightmost Derivation In Reverse
	Slide 194: A Shift-Reduce Parser
	Slide 195: Table-driven LR(k) parsers
	Slide 196: Table-driven LR(k) parsers
	Slide 197: Parser Loop
	Slide 198: Stack
	Slide 199: Parser Tables
	Slide 200: Parser Tables
	Slide 201: Parser Loop Revisited
	Slide 202: Example
	Slide 203: Example
	Slide 204: Example
	Slide 205: Example
	Slide 206: Example
	Slide 207: Example
	Slide 208: Example
	Slide 209: Example
	Slide 210: Example
	Slide 211: Example
	Slide 212: Example
	Slide 213: Example
	Slide 214: Example
	Slide 215: Example
	Slide 216: Example
	Slide 217: Example
	Slide 218: Example
	Slide 219: Example
	Slide 220: Example
	Slide 221: Table-driven LR(k) parsers
	Slide 222: The parser generator
	Slide 224: Items
	Slide 225: What LR(0) Items Mean
	Slide 226: Generating the States
	Slide 227: Completing a state
	Slide 228: Closure*
	Slide 229: What about the other states?
	Slide 230: Next(state, sym)
	Slide 231: Constructing states
	Slide 232: Closure*
	Slide 233: Closure*
	Slide 234: Next
	Slide 235: Example
	Slide 236: Parse Tables for LR(0) parser
	Slide 237: Parse Tables for LR(0) parser
	Slide 238: Parse Tables for LR(0) parser
	Slide 239: Parse Tables for LR(0) parser
	Slide 240: Parse Tables for LR(0) parser
	Slide 241: LR(0)
	Slide 242: LR(0)
	Slide 243: SLR - Simple LR
	Slide 244: Reminder: Follow sets
	Slide 246: SLR - Reduce using follow sets
	Slide 247: SLR Limitations
	Slide 248: Example
	Slide 249: Example
	Slide 250: Example
	Slide 251: Problem with SLR
	Slide 252: LR(1) Items
	Slide 253: What LR(1) Items Mean
	Slide 254: LR(1) Closure
	Slide 255: Closure
	Slide 256: Closure
	Slide 257: Closure
	Slide 258: Closure
	Slide 259: Closure
	Slide 260: LR(1) Example
	Slide 261: LR(1) Example
	Slide 262: Parsing Table
	Slide 263: LALR: Lookahead LR
	Slide 264: Merge-able states
	Slide 265: Merge-able states
	Slide 266: Merge-able states
	Slide 267: Merge-able states
	Slide 268: LALR
	Slide 269: Recap
	Slide 270: Power of shift-reduce parsers
	Slide 272: Expression Grammars & Precedence
	Slide 273: Expression Grammars & Precedence
	Slide 274: Handling Ambiguity
	Slide 275: Bison
	Slide 280: Dangling Else
	Slide 281: Next Time

