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Reminders

e Office Hours are a valuable resource!

e Please name your tests properly, e.g.,
<team>-<file>.|2

e Please make sure partners are on
submissions.

Your TAs are nicer than | am.

Mislabeled tests and lack of partner on
submission will lead to lower score.
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Today

e Lexing
e Parsing
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Today — part 1

_exing

-lex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages




Compiler Phases




The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..
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The Lexer

e Turn stream of characters into a stream of
tokens

— Strips out “unnecessary characters”

e comments
e whitespace
— Classify tokens by type
e keywords
e numbers
e punctuation
e identifiers

— Track location
— Associate with syntactic information
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The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..
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The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char¥*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{

static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..
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The Lexer

e Turn stream of characters into a stream of
tokens

— More concise
— Easier to parse

’

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..
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Lexical Analyzers

e Input: stream of characters
e Qutput: stream of tokens (with information)

e How to build?
— By hand is tedious
— Use Lexical Analyzer Generator, e.g., flex

e Define tokens with regular expressions

e Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.
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FLEX

e Define tokens
e Generate scanner code

e Main interface: yylex () which reads
from yyin and returns tokens til EOF

Sequence
of

tokens
Lex.| file

Or lex
Source program

Input Stream

© 2019 Goldstein
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2. Flex Program Format

* A flex program has three sections:

Definitions
RE rules & actions

User code



wc As a Flex Program

3 {
int charCount=0, wordCount=0, lineCount=0;
%}
word [~ \t\n]+
%%
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
{charCount++;}
%%
int main (void) {
yylex();
printf (“Chars %d, Words: %d, Lines: %d\n”,
charCount, wordCount, lineCount);
return O;

14



A Flex Program

int charCount=0, wordCount=0, lineCount=0; I)I)efhlﬁﬂJHS

word [~ \t\n]+

{word} {wordCount++; charCount += yyleng;
'|S n] = {charCount++; lineCount++;} 2) Rules & Actions

{charCoygnt++;}

o
int mgip (void) {
—mbyylex () ;
printf (“Chars %d, Words: %d, Lines: %d\n”, 3) User Code

charCount, wordCount, 1lineCount)

return 0 ; —

15



Section 1: RE Definitions

* Format:
name RE
* Examples:
digit [0-9]
letter [A-Za-Zz]
id {letter} ({letter}|{digit})*

word [~ \t\n]+



Regular Expressions in Flex

X matc
\. matc
"string" matc

matc
matc
matc
(xyz] matc
(Axyz] matc
a-2z] matc

n the char x

n the char.

n contents of string of chars
n any char except \n

n beginning of a line

n the end of a line

n one char x,y, orz

N any char except x, y, and z

noneofatoz



Regular Expressions in Flex (cont)

r*

r+

r"?

rl r2
rl | r2
(r)

rl \ r2
{ name }

closure (match O or more r's)
positive closure (match 1 or more r's)
optional (match O or 1)

match rl then r2 (concatenation)
match rl or r2 (union)

grouping

match r1 when followed by r2

match the RE defined by name



Some number RESs

[0-9] A single digit.
[0-9]+ An integer.
[0-9]+ (\.[0-9]+)? Aninteger orfp number.

[+-1? [0-9]+ (\.[0-9]+)? ([eE][+-]1?[0-9]+)>
Integer, fp, or scientific notation.



Section 2: RE/Action Rule

e Arule has the form:

name { action }
re { action }

— the name must be defined in section 1
— the action is any C code

* |f the named RE matches™ an input

character sequence, then the C code is

executed. * Some caveats here



Rule Matching

e Longest match rule.

“int” { return INT; }
“integer” { return INTEGER; }

e If rules can match same length input,
first rule takes priority.

“int” { return INT, }
[a-z]+ { return ID; }
[0-9]+ { return NUM; }
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Section 3: C Functions

* Added to end of the lexical analyzer



Removing Whitespace

whitespace
%%
name -

{whitespace}

RE —

%%

int main(void)
{

yylex();
return O;

[ \t\n]

/ empty action

14

{ ECHO; }

T

ECHO macro

23



, Printing Line Numbers
°o{

int lineno =1; the matched text
%} /
%%
A(.*)\n { printf("%$4d\t%s", lineno, yytext);
lineno++;}

%%
int main(int argc, char *argvi])
{

// appropriate arg processing & error
handling,

yyin = fopen(argv[l], "r");
yylex();
return 0;

24



Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages



Under The Covers

e How to go from REs to a working scanner?

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

15-411/611 © 2019 Goldstein
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Regular Languages

e Finite Alphabet, X, of symbols.

T
e word (or string), a finite sequence of symbols
from 2.

e Language over X is a set of words from 2.
— e ———

e Regular Expressions describe Regular Languages.

— easy to write down, but hard to use directly

e The languages accepted by Finite Automata are
also Regular.



8/2

9/00

Regular Expressions defined

e Base Cases:
— A single character a r’
— The empty string g &
e Recursive Rules:
If R, and R, are regular expressions

—Concatenation RR,
—Union B:IR,
—Closure R.*
—Grouping (R;)



RE Examples

even a’s
odd b’s

even a’s or odd b’s
even a’s followed by odd b’s



RE Examples 2 7 Jeny 6

e even a’s /é/—\-V\

e 0dd b’s \ML\I 11

a*ba*(ba*ba*)* )
e even a’s or odd b’gb\/\/-w

e even a’s followed by odd b’s




RE Examples

even a’s

RA=Db*(ab*ab*)*
odd b’s

RE=a*ba*(ba*ba*)*
even a’s or odd b’s

RA | RB
even a’s followed by odd b’s

RA RB
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Regular Languages

e Regular Expressions are great
— concise notation
— automatic scanner generation

— |lots of useful languages
e But, ...

— Not all languages are regular
—am® Context Free Languages
e Context Sensitive Languages

— Even simple things like balanced parenthesis,
ﬁ
e.g., L={ A*Bk} (or nested comments!)

— RL can’t count

© 2019 Goldstein
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Not all Scanning is easy

e Language design should start with lexemes

— My favorite example from PL/I
1f (th h = elseg; 1 = th
@en r__e_’n then els ee.\fsié t ei
e blanks not important in Fortran

e nested comments in C

e |imited identifier lengths in Fortran



Today — part 2

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers



Compiler Phases

Abstract syntax tree

=

© 2019 Goldstein



Languages

e Compiler translates from sequence of
characters to an executable.

e Aseries of language transformations

e |exing: characters — tokens

e parsing: tokens — “sentences”

@ | threw | vegetables
%
trash

%
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Languages
Compiler translates from sequence of
characters to an executable.

A series of language transformations
lexing: characters — tokens

parsing: tokens — parse trees

,,kid'éfﬂl threw | vegetables

© 2019 Goldstein
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Grammers and Languages

e A grammer, G, recognizes a language, L(G)

-2 set of terminal symbols
- A set of non-terminals
- S the start symbol, a non-terminal
- P a set of productions
e Usually,

T, E: Y, ..{ strings of terminals and/or non-terminals
— A, B, C, ... are non-terminals

—a, b, c, .. areterminals

N
e General form of a productionis: oo — 3

- o~V
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Derivation

e A sequence of applying productions starting with
S and ending with w

S—=>Y7 =2V, . D>V >W
S >*w
., L(Gﬂ are all the w that can be derived from S



Regular Grammar (NFA)

e Regular expressions and NFAs can be

described by a regular grammar L
S o Al

e £.G, %éf
g:ﬁ A 24l
A= Sb =
S>¢

e An example derivation of aab; - Gb




Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—> aS
S = bA

A— e
A - cA

e An example derivation of aabc:
S—>as



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—> aS
S = bA

A— €
A - cA

e An example derivation of aabc:
S > aS-> ads!



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>asS
S = bA

A— €
A - cA

e An example derivation of aabc:
S > aS-> aaS> aabA



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>aS
S = bA
A-e
A —> cA

e An example derivation of aabc:
S - aS—> aaS—> aabA— aabcA



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,, a*bc*
S—>asS
S = bA

A— €
A - cA

e An example derivation of aabc:
S = aS—> aaS—> aabA-> aabcA - aabc



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e £.G, a*bc* i}
S—>as
S = bA
A— €
A - cA
e Above is a right-regular grammar
e All rules are of form: A—a
A - aB

A— €



Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e right regular grammar: A—a

A - 4B}

A— €
e |eft regular grammar: A—a

A >E

A— €

e Regular grammars are either right-regular
or left-regular.
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Expressiveness

Restrictions on production rules limit
expressiveness of grammars.

No restrictions allow a grammar to
recognize all recursively enumerable

— N\ — -~
languages

A bit too expressive for our uses ©
Regular grammars cannot recognize a”b”]
We need something more expressive

© 2019 Goldstein
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Chomsky Hierarchy

“word”
Class Language Automaton problem

Recursively Turing HEHES
0 Enumerable Machine any undecidable  Corresp.
\_'_\_) J— problem
1 Context Linear- oc;A‘: - PSPACE- Jnpnen
\ Sensitive 7 Bounded TM T v complete
Pushdown
2 Context Free A—a C a"b"
Automata
e - \J
3 Regular NFA a'b’

A—a )
hnear!
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Today — part 2

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers



Context-Free Grammar

e A context-free grammar, G, is described by:

— 2, a set of terminals (which are just the set of
. _

possible tokens from the lexer)

e.g.,,1f, then,while, 1d, 1nt, string, ...
— A, a set of non-terminals.

e ———————

Non-terminals are syntactic variables which

define sets of strings in the language

e.g., stmt, expr, term, factor, vardec|, ...

~S
—Pp

© 2019 Goldstein



Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.

-5, S @he start symbol
The set of strings derived from S are the valid
string in the language.

— P, set of productions that specify how
terminals and non-terminals combine to form
strings in the language
a production, p, has the form: A— o

—



Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.
—S,S € A, the start symbol

— P, set of productions ...
a production, p, has the form:: A—> o

S:=E
Naks

terminals



What makes a grammar CFE?

e Only one NT on left-hand side — context-free
e \What makes a grammar context-sensitive?

. ocAE_\—my?) where
|8
— QL or may be empty,
— but y is not-empty

e Are context-sensitive grammars useful for
compiler writers?



Simple Grammar of Expressions

© =B

Exp = Exp + Exp
Exp = Exp - Exp
Exp .= Exp * Exp
Exp .= Exp / Exp
Exp =1d

Xp :=1int

Describes a language of expressions. e.g.: 2+3*x I



Derivation 3
e A derivation is a chosen sequence of @

productions (expansions) AN

L+ (.
e S Exg —, Exp + Exp — id; Exp —>‘|—<_:I_‘+J|‘n_t,-('—r

e A successful seéquence of expansions that: % ¢
match the input constitute a parse

— Connecting the expansions in each successive
step produces a parse tree

— Parse tree is a form of abstract syntax tree
— Building a correct AST is the whole point
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Derivations Y
e A sequence of steps in which a non-terminal is
replaced by its right-hand side.

1 §S._.-Fwvn >

2 Ex There are possibly mclirr\F derivations

determined by the NT chosen to P
3 Ex expand. .

4 Exp:= Exp ™ Exp
5 Exp:= Exp / Exp
6 Exp:s id by 7 = int, + Exp * id,

7 Expi= int by 7 = int, + int3 * id,

by 2 = Exp + Exp * id,



Leftmost Derivations

e Leftmost derivation: leftmost NT always chosen

—

< [/
¥, 7

S

byl:@
by 4=Exp " Exp

by 2 = Exp/+ Exp * Exp

S = Exp
Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:: int

by 7 = int, + Exp * Exp

o Ol b W N

by 7 = int, + int; * Exp

by 6 — intz + int3 x ldx



Rightmost Derivations

e Rightmost derivation: rightmost NT always

NONO bW NN -

chosen

S = Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:: int

S
by 1= Exp
by 4 = Exp * Expj

by 6 = Exp * id,
by 2 = Exp + Exp * id,
by 7 = Exp + int; * id,

by 7 — intz + int3 x ldx



Parse Trees

e symbols in rhs are children of NT being

rewritten
S

by 1 = Exp

by 4 = Exp * Exp

by 2 = Exp + Exp * Exp
by 7 = int, + Exp * Exp

by 7 = int, + int3 * Exp

by 6 — intz + int3 x ldx

7 Exp:= int



1 S :=Exp
xp:= Exp + Ex
Exp:= Exp - Exp
4) Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Parse Trees

e parse tree for rightmost derivation

by 1 = Exp

by 4 = Exp * Different derivations can
by 6 = Exp’ Iead to the same parse tree.

by 2 = Exp + Exp d)
by 7 = Exp + int; *
by 7 — 1nt2 + :|.nt3
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Ambiguous Grammars

* £812 What does ambiguitypaint out? :
sentence wi parse trees. or,

e |f grammer has >1 leftmost (rightmost)
derivations it is ambiguous

S )




Resolving Ambiguity

e Ambiguity is a problem with the grammar

e One possible fix:
Add precedence with more non-terminals

e In this example, one for each level of precedence:

— (i"i)., exp o
- (*,/) term {—

— (id, int) factor ¢

— Make sure parse derives sentences that respect the
precedence

— Make sure that extra levels of precedence can be
bypassed, i.e., “x” is still legal

15-411/611



A Better Exp Grammar

N sl

1S := Exp

2 Exp := Exp + Term by 1 = Exp

3 Exp  :=Exp-Term by 2 = Exp + Term

4 Exp  :=Term by 4 = Term + Term
- .« — E 3

5 Term :=Term * Factor by 7 — Factor + Term

6 Term :=Term/ Factor by 9 = int, + Term

/ Term :=Factor ~—"

] *
8 Factor :=id by 5 = int, + Term * Factor

9 Factor :=int by 7 = int, + Factor * Factor

J—
by 9 = int, + int; * Factor

by 8 — 1nt2 + 1nt3 x ldx

15-411/611 © 2019 Goldstein “5




A Better Exp Grammar

1S = Exp

2 Exp = Exp + Term

3 Exp = Exp - Term -@
4 Exp :=Term

5 Term :=Term * Factor

6 Term :=Term/Factor

7 Term :=Factor

8 Factor :=id

9 Factor :=int
7
° E/&) |
by 1= Exp
by 2 = Exp + Term
by 4 = Term + Term
by 7 = Factor + Term
by 9 = int, + Term
by 5= int, + Term * Factor
by 7 = int, + Factor * Factor
by 9 = int, + int3 * Factor

by 8 = int, + int3 * id,
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Another Ambiguous Grammer

S = 1f E thenS
- _', ,
| ifEthenSelseS

| othe?

e What s the

e What is the language déesigre

e |s there a context-free solution?
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Dangling Else Grammar

S := matchedS
| unmatchedS
unmatchedS:= if E thenS

| if Ethen matchedS else unmatchedS

matchedS = if E then matchedS else matchedS
| other

e |s this clearer?

e What is parse tree for: :f E then if E thenSelseS?
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A primitive robot

Swing := Back Swing Forward
L )
|
Back = back-1-inch
Forward = forward-2-inchs

e What is L(Swing)?



A primitive robot

S :=BSF S
| /TN
e /5 5 'Ml
5 = b glﬂ\ k

F = f (55?
f

e What is L(Swing)?
e What is the parse tree for “bbff”



Parsing a CFG

e Top-Down
— start at root of parse-tree
— pick a production and expand to match input
— may require backtracking
— if no backtracking required, predictive

e Bottom-up

— start at leaves of tree

— recognize valid prefixes of productions

— consume input and change state to match
— use stack to track state
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Top-down Parsers

* Starts at r@ot of parse tree and recursively
expands children that match the input

— —

* In general case, may require backtracking

e Such a parser uses recursive descent.

e When a grammar does not require
backtracking a predictive parser can be
built.



0]

- W

A Predictive Parser &

w\-v-'
~~

\E

R
~
—’
‘oo NN aa

if match( b) -> B() SQ); F();action();
~ Ya>> S

else r'e’rur'n

mustMatch('b’); action(); return;}
e ————m— P —
mustMatch('f'); action(); return;}

(




Top-Down parsing

e Start with root of tree, i.e.,!S ]

e Repeat until entire input matched:

— pick a non—terminahﬁ?nd pick a production
A—>y that can match input, and expand tree

— if no such rule applies, backtrack

e Key is obviously selecting the right
production



Top-down for Exp Grammar

1 S'_E @ |int2-int3*idx
f_Z’ E::E"'T by1:>E |int2-int3*idx
3 E=E-T S |
\’_4_ E =T

5 T:=T*F

6 T=T/F

7 T.=

8 F :=id

9 F = int

input: 2+3*x
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Top-down for Exp Grammar

{ S-E S lint, - int; * id,
2 E:=E+T byl= E lint, - int3 * id,
3 E=E-T by2::<€}‘r lint, - int; * id,
4 E =T by4:>T:{ |int, - int3; * id,
5 T:=T*F by 7:>?+ T |int; - int3 * id,
3 1 ::/F by 9= int,+ T intJ{ints * id,
9 F :=int

input: 2+3*x
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Top-down for Exp Grammar

1 S = E S I intz - int3 x ldx
2 E::E"'T by1:>E |int2-int3*idx
3 E:=E-T by = E+T 4 lint, - int3 * id,
4 E =T by T |int, - int3 * id,
5 T:=T*F b i€, - intg * id,
6 T = T/ F b 9 - + T L/uf‘( - x d
—— Yy 9 = int, int,l- int3 ™ id,
8 F:-ig by3:3:§:j;) lint, - int; * id,
9 F :=int by4= T1,-T lint, - int; * id,
by7:> E'T |int2—int3*idx
-
by 9= ;_Etz £ intzl-"int3 x ldx
by b= intz -T* F intz -|int3 * ldx

input: 2+3*x
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Top-down for Exp Grammar

{ S-E S lint, - int; * id,
2 Ew=E+T byl= E lint, - int3 * id,
3 E:=E-T by2—= E+T lint, - int3 * id,
4 E = by4d—= T+T |int, - int3; * id,
5 T:=T*F by 7= F+T |int; - int3 * id,
6 T:=T/F by 9= int,+ T int,]- int3 * id,
g ::-zid by3= E-T lint, - int3 * id,
9 F :=int by4= T-T lint, - int; * id,

by 7= F-T |int, - int; * id,

by 9= int,- T int,l- int; * id,

t, -lint; * id,
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Top-down for Exp Grammar

S lint, - int3 * id,
byl= E lint, - int3 * id,
by2—= E+T lint, - int; * id,
by2—= E+E+T |int, - int3 * id,
by2= E+E+E+T |int, - int3 * id,

Will not terminatel Why?

grammar is left-recursive
What should we do about it?

Eliminate left-recursion

input: 2+3*x - —
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Does this work?

44 mmmon
i
—\ <4 4 mMmm

1
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It is right recursive, but also right associativel
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Eliminating Left-Recursion

e Given 2 productions:
A=Aa|p
Where neither a nor 3 start with A

(e.g., Forexample, E:=E+T | 1)

e Make it right-recursive: v

A:=BR
R:=0a&R |Ris right recursive

e Extends to general case.



\ Rewriting Exp Grammar
/

O 00 N OO U A W IN BB

m M -4 4 4 m m m O

=1int
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E
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! +
.—l
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*FT
/FT

VOO A WN -
'.l.
Q.

mTm o+ 4 mmlm o

"
'.l.
o

ct

|
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2 E=TF

5 T:=FT

132



Try again

S .intz - int3 * ldx

1 é :EE byl= E ®int, - int; * id,
2 E:=JFE , . . .

2! """E'J; ::?-E:.F-E, by 2 :>P_:_r) E | .Zf.ntz - Zf.nt3 : ldx

= F-.TF by5= FTE ®int, - int3; * id,

‘= by 9 — 2 T' E' intz ?' int3 * ldx

5 T:=FT by7 = 2F int, ®- int; * id,

5 T:=*FT | by33=2-TF int, - ®int; * id,

& i:z/FT by5=2-FTFE int, - ®int; * id,

7 Ti=

_ ' . _ .* .

8 Fi=ig by 9': 2-3 ;l: E | :f.ntz :f.nt3 ‘ :f.d)<

9 F :=int by5=>2-3*FTE int, - int3; * @id,

int3 x ldx.

int3 * ldx.
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L.ookahead

How to pick right production?

Lookahead in input stream for guidance

General case: arbitrary lookahead required

Luckily, many context-free grammars can be
parsed with limited lookahead

If we have A — o | [3, then we want to
correctly choose either A— o orA — 3

define FI
first sym
aekf

RST(o) as the set of tokens that can be
ol of a, i.e.,

RST(av) iff o —™* ay for some vy



L.ookahead -

e How to pick right production?

e If we have A — a | [3, then we want to
correctly choose either A — aorA — [3

e define FIRST(a) as the set of tokens that can be
first symbol of ¢, i.e.,
a € FIRST(a) iff oo >* ay for some y

e IfA— a | 3 wewant:
FIRST(ct) M FIRST(B) = &

e |f that is always true, we can build a predictive
parser.

15-411/611



FIRST sets

e We use next k characters in input stream to guide
the selection of the proper production.

e Given: A:=a | B we want next input character to
decide between a and 3.

e FIRST(at) = set of terminals that can begin
any string derived from o..

e |OW: a € FIRST(a) iff oo =* ay for some y

e FIRST(at) ™ FIRST(B) = D — no backtracking needed



Computing FIRST (o)
e Given X:=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=a2a



15-411/611

Computing FIRST (o)
e Given X:=ABC, FIRST(X) = FIRST(A B C)
e Can we ignore B or C?

e Consider:
A:=a2a

C:=c
e FIRST(X) must also include FIRST(C)

e |OW:

— Must keep track of NTs that are nullable
— For nullable NTs, determine FOLLOWS(NT)



nullable(A)

e nullable(A) is true if A can derive the empty
string

e For example:

B:=XYb
X=X

| YY
Y =

In this case, nullable(X) = nullable(Y) = true
nullable(B) = false



FOLLOW(A)

e FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

° |.e,
a € FOLLOW(A) iff S =* aAa} for some o and 3



Building a Predictive Parser

e \We want to know for each non-terminal which
production to choose based on the next input
character.

e Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A:=a, in (A, a) iff
— FIRST(o) contains a or
— nullable(a) and FOLLOW/(A) contains a



The table for the robot

S =BSF FIRST | FOLLOW |nullable
| S|b $ yes
6 =b 15 Tw
, no
F =f
b f $
S
B
F




The table for the robot

S =BSF FIRST | FOLLOW |nullable
| S|b $ yes
B Z=b B b b,f no
FIf f.$ no
FI FIRST(BSF) = b
ﬁ /] nullable(¢)=true

FOLLOW(S) = $

b / f 1% /_ and
S




Table 1

VWO U O hwWRNRN

MM 4 44 4mMmmmm W0

m

TE

+TFE
-TFE

F T

*FT
/FT

id

int

FIRST |FOLLOW |nullable
S |id,int | $
E |id,int |$
E' |+, - $ yes
T |id,int  |+,-$
T/, * +-.% yes
F |id,int |/, *%
+ - / id | int | $

M| H(4A|MmMmwn

© 2019 Goldstein




Table 1

VWO U O hwWRNRN

MM 4 44 4mMmmmm W0

— m
m

+TFE
-TFE

F T

*FT
/FT

id

int

15-411/611

FIRST |FOLLOW |nullable

S |id,int | $

E |id,int |$

E' |+, - $ yes

T |id,int  |+,-$

T/, * +-.% yes

F |id,int |/, *%

+ - / id | int
S =B |=E
E =TE' :=TE'
e =+TE' [:=-TE' =
T =FT |:=FT
T |= = =*FT=/FT =
F =id  |:=int

© 2019 Goldstein
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Using the Table

e Each row in the table becomes a function

e For each input token with an entry:
Create a series of invocations that
implement the production, where

— a hon-terminal is eaten
— a terminal becomes a recursive call

e For the blank cells implement errors



Example function

+ - x / id int $
S =k |:=E
E :=TE' [=TE'
E' [=+TE |[=-TF =TE [=TE" |:=
= ———
m—— B R How to handle errors?
F i i:ﬁd L:nw i i

15-411/611

Eprime () {

switch (token) {
case PLUS:

case MINUS.:
case ID:
case INT:
default:

eat (PLUS); T(); Eprime(); break;
eat (MINUS); T(); Eprime(); break;
T(); Eprime();
T(); Eprime();

error () ;

© 2019 Goldstein
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Left-Factoring

e Predictive parsers need to make a choice
based on the next terminal.

e Consider:
S:=,gi§ E then §( else S)
|1tif E then S

e When looking at 1 £, can’t decide
e so |left-factor the grammar

S:=1f E then S |X




Top-Down Parsing

e Can be constructed by hand

y(k rammars can be parsed L_‘L.Cl\

— Leftsto-right
— Leftmost>derivation

— with k symbols ldokahead
e Often requires

— |left-factoring

— Elimination of left-recursion



Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?



Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

e Bottom-up parsers use the entire right-
hand side of the production

" (R (A

— Left-to-right parse,
P |

— Rightmost derivation (in reverse),

— k look ahead tokens



Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

unscanned ned unScanned

Top-down Bottom-up



Example - Top-down

S =X Is this grammar LL(k)?
X=%n
| b How can we make it LL(Kk)?
Si=X_
X := b(R
R = aR:
-V

What about a bottom up parse?



Example - Bottom-up

Si=X
XI-%(“S‘

right-most derivation: S

Left-to-Right, Rightmost in reverse R
" X @

aa
a

n X X



Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up



A Rightmost Derivation

S
1S = Exp Vv
3 Exp  :=Exp+Term by 1= Exp o
>3 Exp  := Exp - Term by 2 = Exp + ferm-
e
4 Exp :=Term by 5= Exp+Term * Factor
TeLm :=Term * Factor by8 = Exp+Term * id,
6 Term :=Term /Factor by 7 = Exp + Factor * id,
/ Term :=Factor

: . -
8 Factor ‘= id by9 = Exp+int;*id,

by 7= Factor+int; * id,

, by9 = int,+int;*id,
input: 2+3*x
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A Rightmost Derivation In Reverse

int, +int; * id,
Factor + int3 *id,
Term i

ex

Exp +Factor * id,

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

S

15-411/611 © 2019 Goldstein 159



A Rightmost Derivation In Reverse

: : : int, @+ int, * id
int, +int; * id, 2 3 X

: : ®+j * 3
Factor + int; * id, Factor @ +int, * 1d,

. : Terme®+int, * i
Term+ int, * id, 3 14

: .
Exp + int, * id, Exp+int.,® * id,

Exp + Factor * id ;:? Exp + Factor @ * id,
X

. -
Exp + Term * id, Exp + Term * id, ®

X
Exp + Term * Factor Exp + Term * Factor @

Exp + Term Exp + Term @

Exp @
Se

Exp
S
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A Rightmost Derivation In Reverse

: : : int, ®+int; *id
int, +int; * id, 2 3 x

: : @+ * 3
Factor + int, * id, Factor @ +int, * 1d,

: : Term® + int, * i
Term+ int; * id, 3 1o

: %
Exp+int, * id Exp+int;® * id,

%
Exp + Factor * id, Exp + Factor @ * 1d,

. -
Exp + Term * 3 Exp + Term * 1d, ®

Factor @

Exp + Term

Exp + Term

EXp Exp ®
Se

S
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A Rightmost Derivation In Reverse

int, +int, *id, $

inte +int, *id $
Factor +int, *id $
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp+ int, *id, S
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int, +int, *id, $

'-/i:t: +int, *id, $
Factor +int, *id, S
Telrm +int, *id S
E‘S‘!p €« — +inty*id$
Exp + int, *id S

fi"/@-“‘/ *id,$
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S

Exp + Term * i

15-411/611 S S © 2019 Goldstein
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, S
Factor +int, *id, S
Term +int; *id, S
EXp +int, *id $
Exp + int, *id S
Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id S reduce by F — int
Factor
Term
Exp
Exp +
Exp + int, *id, S
Exp + Factor *id S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S
Exp + Term * Factor S
Exp + Term S
Exp S
sayen S S 165



A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int; *id, S

EXp rint,*id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
EXp +int, *id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
~N o

Exp +int, *id, S shift +

E;(.;) + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +
Exp + int, *id S shift 3
Exp + int, * ids&%
—_
Exp + Factor *id, S
Exp + Term *id, S
Exp + Term * id, S
Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor reduceby T—>T*F

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S reducebyF > T
Exp + Term *id, S shift *

Exp + Term * id, S shift x

Exp + Term * id, S reduce by F — id

Exp + Term * Factor reduceby T—>T*F

S
Exp + Term S reducebyE > E+T
Exp S

S

15-411/611 S
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A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int;

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $
*id $
*id S

id, $

S

S
S
S
S

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int
reduceby F—>T
shift *

shift x

reduce by F — id
reduceby T—>T*F
reducebyE > E+T

reduce by S —> E

177



A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int;

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $
*id $
*id S

id, $

S

S
S
S
S

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int
reduceby F—>T
shift *

shift x

reduce by F — id
reduceby T—>T*F
reducebyE > E+T

reduce by S —> E

Caccept! D

178



11S

A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, S
Factor +int, *id, S
Term +int; *id, S
EXp +int, *id $
Exp + int, *id S
Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

S
Exp + Term S
Exp S

S



A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int; *id, S

Term +int; *id, S

EXp rint,*id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
EXp +int, *id $

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S

15-411/611 S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int; *id, S

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp+ int, *id, S

Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S
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Handles

LR parsing is handle pruning

LR parsing finds a rightmost derivation (in
reverse)

A handle in vy, a right-hand sentential form, is

— a position in y matching [3

—a productionm l

S % QAW —;@v

if a grammar is unambiguous, then every y has
exactly 1 handle



A Rightmost Derivation In Reverse

int,+int; *id, S  shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S
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A Rightmost Derivation In Reverse

Where is next handle?  int,+int,*id,$ shift2

int, +int, *id, $ reduce by F — int
Factor +int, *id, S reduce by T > F
Term +int, *id, S reduce by T > E
Exp +int, *id, S shift +

Exp + int, *id S shift 3

Exp + int, *id, S reduce by F — int
Exp + Factor *id, S

Exp + Term *id, S @

Exp + Term * id, S

Exp + Term * id, S

Exp + Term * Factor

O

7
©

S
Exp + Term S
Exp S

S
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Where is next handle?

OO N U D WM =

A Rightmost Derivation In Reverse

int,
Factor
Term

Exp

Exp +

Exp + int;

Exp + Factor

MM A4 4 4 mMmmm®n
.. .
_'

*

-

int, +int, *id, $

+int,*id $
+int; *id, S
+int,*id $
rint,*id $
int, * id $
*id $
*id $

shift 2

reduce by F — int
reduceby T— F
reduceby T —>E
shift +

shift 3

reduce by F — int

®

7
©

O

188



A Rightmost Derivation In Reverse

Where is next handle? int, +int; *id $

int, +int; *id, S
Factor +int; *id, S
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp + int, *id, S

Exp + Factor *id, S

1 S:=E

2 E=E+T

3 E=E-T @
4 E =T

B T:=T*F

6 T:=T/F

I Ti=

s ® @

9 F :=int



A Rightmost Derivation In Reverse
Where is next handle? E-Iif*x and T—> F S

int, +int, *id, S
Factor +int; *id, S
Term +int; *id, S
EXp rint,*id $
Exp + int; *id, S
Exp + int, *id, S
Exp + Factor *id, S
Exp + Term *id, S @
1 S:=E
2 E:=E+T @
3 E=E-T
4 E =T
5 T:=T*F
6 T:=T/F
f 1=
®
9 F :=int



Handle Pruning

e LR parsing consists of

— shifting til there is a handle on the top of the
stack

— reducing handle
e Key is handle is always on top of stack, i.e.,

if B is a handle with A — 3, then [3 can be
found on top of stack.



A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int,
Exp + Factor

Exp + Term

int,+int; *id, S
+int, *id $
+int; *id, S
+int,*id $
+int,*id $
int,*id, $
*id $

*id $

148 ®

top of stack does
not have a handle,
so must shift.

Exp + Term *

Exp + Term * id,
Exp + Term * Factor
Exp + Term

Exp

15-411/611 S

id, $
S

O
ORORS)

S
S
S
S

192



A Rightmost Derivation In Reverse

int,

Factor

Term

Exp

Exp +

Exp + int,
Exp + Factor
Exp + Term
Exp + Term *

Exp + Term * id,

int, +int, *id, $
+int, *id $ Now, x is a handle.
+int; *id, S

+int, *id, $

+int,*id, $

int, *id, $

*id S

*id $

‘148 ®

id, $
S

Exp + Term * Factor
Exp + Term

Exp

11S

O
ORORS)

S
S
S
S



A Shift-Reduce Parser

e Stack holds the viable prefixes.
e input stream holds remaining source
e Four actions:

— shift: push token from input stream onto stack

— reduce: right-end of a handle (3 of A — [3) is at top of
stack, pop handle ([3), push A

— accept: success

— error: syntax error discovered



Table-driven LR(K) parsers

S )
source Driver
code

a / tokens AST

Lexer : Action table
Stack
&

GOTO table

Push down automata:
FSM with stack
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(=.

)

¢

source

code

Table-driven LR(K) parsers

Lexer

tokens

Driver

&

Action table

GOTO table

Stack

)
‘J-Grammar

15-411/611

Parser
Generator

© 2019 Goldstein

Push down automata:

AST

FSM with stack
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15-411/611

Parser Loop

Driver

e Same code regardless of grammar
— only tables change

e (Very) General Algorithm:

— Based on table contents, top of stack, and current

input character either
e shift: pushes onto stack, reads next token

e reduce: manipulate stack to simplify representation of

already scanned input
e accept: successfully scanned entire input
e error: input not in language

© 2019 Goldstein
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Stack

e Represents the scanned Input >tack
e Contents?
— Reduced nonterminals not enough
— Must store previously seen states
e the context of the current position
— In fact, nonterminals unnecessary
e include for readability
T
+
X tye+z T

15-411/611 © 2019 Goldstein 198



Parser Tables Actiogtable

Action table GOTO table

e given state s and terminal a tells parser
loop what action (shift, reduce, accept,
reject) to perform

Goto table

e used when performing reduction; given a
state s and nonterminal X says what state
to transition to



15-411/611

Parser Tables

Action table

&
GOTO table
push state N onto stack
reduce by rule R
goto state N
accept .
action goto
error state | ident + E T
0 gl g2
1
2
3
4 g5 g2
5

© 2019 Goldstein
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Parser Loop Revisited

while (true)

s = state on top of stack

a = current input token

if (action[s] [a] == sN)
push N
read next input token

else if (action[s][a] == rR)
pop rhs of rule R from stack
X = lhs of rule R
N = state on top of stack
push goto[N] [X]

else if (action[s][a] == a)
return success

else
return failure

15-411/611 © 2019 Goldstein

Driver

accept

error
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action goto
state | ident + E T
s3 gl g2
g5 g2

Current input token = X
State on top of the stack =

X+y$

15-411/611

© 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(0,5)
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action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(3,x)
(0,5)
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action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)
(0,5)
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action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = +
State on top of the stack = 3

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)

(0,5)
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action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack =

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,x)

(0,5)
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action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = +
State on top of the stack= 2

X +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(2,T)
(0,5)
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action goto
state | ident + S E T
gl g2
d
s4
g5 g2

Current input token = +
State on top of the stack= 2

X +y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(2,T)
(0,5)
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action goto
state ident + S E T
gl g2
d
s4
g5 g2

Current input token =Y
State on top of the stack = 4

x +y$

15-411/611 © 2019 Goldstein

S — ES
E—>T+E
E>T

T — identifier

(4,+)
(2,T)
(0,5)
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action goto
state ident + E T
gl g2
s3 g5 g2

Current input token =Y
State on top of the stack = 4

X +y$

15-411/611

© 2019 Goldstein

S — ES
E—>T+E
E>T

T — identifier

(4,+)
(2,T)
(0,5)
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action goto
state | ident + S E T
gl g2
d
r3
g5 g2

Current input token = S
State on top of the stack = 3

X+y$

15-411/611

© 2019 Goldstein

S — ES
E—>T+E
E—>T

*T — identifier

(3,y)
(4,+)
(2,T)
(0,5)
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action goto S ES
state | ident + S E T E S T4E
81 | &2 E>T
a . .
T — identifier
g5 g2

(2,T)
Current input token = S

State on top of the stack = 3

(4,+)
(2,T)
X +y$ (0,5)

© 2019 Goldstein
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action goto S ES
state | ident + S E T S T+E
81 | &2 E>T
d

T — identifier

g5 g2
Current input token = S (2,T)
State on top of the stack = 2 (4,+)

(2,T)
X +y$ (0,5)
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action goto S ES
state | ident + S E T S T+E
Bl | 8  2p 7
a . .
5 T — identifier
r
g5 g2
Current input token = S (2,T)
State on top of the stack = 2 (4,+)

(2,T)
X +y$ (0,5)
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action goto
state | ident + S E T
gl g2
d
r2
g5 g2

Current input token = S
State on top of the stack = 2

X+y$

15-411/611

© 2019 Goldstein

S > ES
E>T+E
‘EST

T — identifier

(4,+)
(2,T)
(0,5)

(?,E)
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action goto S ES
state ident + S E T EST+E
8l | &2 E>T
d

T — identifier

g> g2
Current input token = S (5,E)
State on top of the stack = g (4,+)

(2,T)
X e y$ (O,S)

15-411/611 © 2019 Goldstein 216



action goto S ES
state ident + S E T 1E_ST+E
8l | &2 E>T
d

T — identifier

g> g2
rl
Current input token = S (5,E)
State on top of the stack = g (4,+)

(2,T)
X e y$ (O,S)
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action goto
state | ident + S E T
gl g2
d
g5 g2
rl

Current input token = S
State on top of the stack = g

X+y$

15-411/611 © 2019 Goldstein

S — ES
'E>T+E

E—>T

T — identifier

(5,E)
(4,+)
(2,T)

(0,5)
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action goto
state | ident + S E T
gl g2
d
g5 g2

Current input token = S
State on top of the stack = 1

X+y$

15-411/611 © 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(1,E)
(0,5)

219



state

action

Example

goto

ident

+

E

T

gl g2
Accept!

g5

g2

15-411/611

Current input token = S
State on top of the stack = 1

X+y$

© 2019 Goldstein

S — ES
E>T+E
E—>T

T — identifier

(1,E)
(0,5)
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Table-driven LR(K) parsers

Lexer

tokens

Driver

&

Action table

GOTO table

Stack

)
‘J-Grammar
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Parser
Generator
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Push down automata:

AST

FSM with stack
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The parser generator | Parser

Generator

e Finds handles
e Creates the action and GOTO tables.
e Creates the states

— Each state indicates how much of a handle we
have seen

— each state is a set of items



Items

e |[tems are used to identify handles.

e LR(k) items have the form:
[ production-with-dot, lookahead]

e For example, A — a X b has 4 LR(0) items
— [A—> ® a XDb]
— [A—> ae®XDb]
—[A—>aXeb]
—-[A—>aXbe




What LR(0) Items Mean

* [X—>eoafy]
input is consistent with X > a By

* [X—>aepy]
input is consistent with X - o 3 vy and we
have already recognized o

* [X—>oafpey]
input is consistent with X = o 3 v and we
have already recognized o [3

* [X—>oafye]
input is consistent with X - o 3 vy and we
can reduce to X



Generating the States

e Start with start production.

e |n this case, “S — ES” S > ES
E—>T+E
E—>T
S *E5 T — identifier

e Each state is consistent with
what we have already shifted
from the input and what is
possible to reduce. So, what
other items should be in this
state?



Completing a state
e For each item in a state, add

in all other consistent items.

S —>ES
S > oFS E—>T+E
E—> eT+E E—>T
E_> o T — identifier
T — eidentifier

e This is called, taking the
closure of the state.



Closure”

closure ( )
repeat
foreach item A — aeXb in
foreach production X — w
.add(X — ew)
until does not change
return

Intuitively:

Given a set of items, add all production rules that
could produce the nonterminal(s) at the current
position in each item

*: for LR(0) items
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What about the other states?

e How do we decide what the

other states are?

e How do we decide what the
transitions between states are?

S — eES

E— e

E—>eT+E

T — eidentifier

S — ES
E—>T+E
E>T

T — identifier

\%ei:ztiﬁer

-|S — E*S

T — identifiere

E—>Te+E
E—>Te




Next(state, sym)

e Next function determines what state to
goto based on current state and symbol
being recognized.

e For Non-terminal, this is used to determine
the GOTO table.

e For terminal, this is used to determine the
shift action.



Constructing states

= closure ({start production})
state set.add(initial state)
state queue.push(initial state)

A state is a set of

while (!state queue.empty()) LR(0) items

= state queue.pop ()
foreach item A — aeXb in
= closure (next (s, X))
if(!'state set.contains(n))
state set.add(n) get “next” state
state queue.push(n)
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Closure”

S— ES
closure({S — ES}) = E>T+E

E—>T

S— ES T — identifier

*: for LR(0) items

© 2019 Goldstein



Closure”

S — ES
closure({S — *ES}) = E—>T+E
E>T
S —> *ES T — identifier
E—>elT+E
E— e

T — eidentifier

*: for LR(0) items

© 2019 Goldstein



Next

next (state, X)
ret = empty
0
foreach item A — a*Xb in state S— ES
ret.add (A —> aXeb) lESTH+E
return ret 2 ET

*T — identifier

initial: next(initial, E)

S — ¢ES ]
E—> T +E

E— ‘T | next(initial, T)

T — eidentifier "

(N(”“Ual, identlfiel’)

15-411/611 © 2019 Goldstein
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Example

0 1 S > ES$
S —> ¢ES . S —> EeS =
E—>eT+E E->T+E
E—>eT 2 E>T
T — eidentifier T E—>Te+E T— identiﬁer
E—>Te
3 | identifier
. 4 IT l +
T — identifiere
E—>T+eE
identifier E—> eT+E
E— o
T — eidentifier
5 |E

E—>T+Ee

© 2019 Goldstein
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Parse Tables for LR(0) parser

0
S — eES
What can we fill out? E—> oT+E
E— T
T — eidentifier
3 \dentifier
T — identifiere
3ction 20to identifie
state ident + E T
0
1
2
3
4
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

a [T 4+

E—>T+e E
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier

236



transition on terminal

Parse Tables for LR(0) parser

0

S — eES
E—>eeT+E
E— T

T — eidentifier

identifie

15-411/611

3 \dentifier
T — identifiere
action goto
state ident + E T
0
1
2
3
4
5

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

a [T §*

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier
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Parse Tables for LR(0) parser

0 1
S — ES S— EeS
gOtO E—>eT+E 2
transition on nonterminal e NG E>Te+E
T — eidentifier E s Te
dentifier A
3 Wdentifi A
T — identifiere
Tontife E>T+eE
action goto aenty E—> eT+E
' E—>eT
state ident + S E T T dentiior
: |-E —> T+ Ee
2 s4
3 S—>ES
> E>T

T — identifier

15-411/611 © 2019 Goldstein 238



Parse Tables for LR(0) parser

0
S — eES
accept E - :1 tE
about to shift S T —> eidentifier
3 \dentifier
T — identifiere
_ identifie
action goto
state ident + E T
0 s3 gl g2
1
2 s4
3
4 s3 g5 g2
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

4 |7 3¢

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier
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Parse Tables for LR(0) parser

reduce

item has dot at end

0

S — eES

E— T

E—>eT+E

T — eidentifier

\dentifier

identifie

A— we 3
T — identifiere
action goto

state ident + E T
0 s3 gl g2
1
2 s4
3
4 s3 g5 g2
5

15-411/611

© 2019 Goldstein

S — EeS
2
NG E>Te+E

1

E—>Te

4 |7 3¢

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier
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LR(0)

0 1
S > oES S — EeS
No lookahead E—>eT+E <z
E— T o
reduce state for all T s sidentifier T E:I tE
nonterminals 3 identifier s 11 1+
T — identifiere E T 1eE
_ identifie E—s oT+E
action goto
E— T
state ident + S E T T — eidentifier
0 gl g2 5 VE
1 a |-E —> T+ Ee
2 /
X S—ES
p - > E—>T+E
S © E>T
> T — identifier
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/

conflict
need to be pickier about

LR(0)

0

S — eES

E—>eT+E
E— T

T — eidentifier

identifie

when we reduce 3 Wentifier
T — identifiere
action goto

state ident + E T
0 gl g2
1
2 r2/s4
3
4 g5 g2
5

15-411/611

© 2019 Goldstein

E—>T+e E
E—> eT+E
E— T

T — eidentifier
+ E

5
|-E—>T+E-

S —>ES
E—>T+E
E—>T

T — identifier
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SLR - Simple LR

Only reduce in position (s,a)
by rule R:A —> wifaisin the

0

S — eES
E—>eeT+E
E— T

identifie

follow set of A T3_’ "'de’;;Z‘;er
T — identifiere
action goto

state ident + S E T
0 gl g2
1 a
2
3
4 g5 g2
5

15-411/611 © 2019 Goldstein

E—>T+eE
E—> eT+E
E— T

T — eidentifier

5 v E
|_E—>T+ Ee

S —>ES
E—>T+E
E—>T

T — identifier
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Reminder: Follow sets

follow(X) S—ES
. E—>T+E
set of terminals that can
E—>T

appear immediately after . |
the nonterminal X in some T — identifier
sentential form

l.e., t € FOLLOW(X) iff S =* aXt[3 for some o and [

follow(E) = {S}
follow(T) = {+,S}



SLR - Reduce using follow sets

0 1
S — eES S > Ee5
follow(E) = {S} E s oTE )
E—oel NG| EoTe+E
follow(T) = {+,5} [ cidenifer £ Te
3 \dentifier ‘
4 |17 }*
T — identifiere
— 1 E-—>T+eE
action goto RN E > +T + E
. E— T
state ident + S E T T — eidentifier
0 gl g2 5 VE
1 3 |-E > T+Ee
2
: S — ES
p : » E—>T+E
g 8 E>T
> T — identifier
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SL.LR Limitations
e SLR uses LR(0) item sets

e Can remove some (but not all) shift/reduce
conflicts using follow set

e Consider

S > ES
E—>L=R
E—R
L — id
L —> *R
R—o>L



Example

S—ES S—>E- E SL—R-

E—>L=R 0|S—eE IR

F >R E—>+«L=R E—->L=°<R

L > id E—<R

L — *R L—>«*R L—>+*R
L—eid L—>-id

R—>L Rosel

What are the
reduce states?
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Example

S—ES S—>E- E SL—R-

E—>L=R 0|S—eE IR

F >R E—>+«L=R E—->L=°<R

L > id E—<R

L — *R L—>«*R L—>+*R
L—eid L—>-id

R—>L Rosel

What are the
reduce states?
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S S ES

'E—>L=R 0
‘E—>R
*L—>id
“L— *R
"R—>L

S — ¢E$

E—>+L=R

E—><*R
L —>e«*R
L—>eid
R—>-L

shift/reduce
conflict

follow(R) = {=,S}

15-411/611

L—o>id-

© 2019 Goldstein
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Problem with SLLR

e Reduce on ALL terminals in FOLLOW set
S —> L=R

R 2[S—>Le=R
L —> * R R_>Le

| id
R — L

e FOLLOW(R) = FOLLOW/(L)

e But, we should never reduceR — L on ‘=’
l.e., R=... is not a viable prefix for a right

sentential form
e Thus, there should be no reduction in state 2
e How can we solve this?

15-411/611



LR(1) Items

e An LR(1) item is an LR(0) item combined with a
single terminal (the lookahead)

e [X—> o @[3, a] Means
— o is at top of stack

— Input string is derivable from [3a
e |In other words, when we reduce X — o3, a had
better be the look ahead symbol.

e Or, Only put ‘reduce by X - af}’ inaction/[s,a]
e Can construct states as before, but have to
modify closure



What LR(1) Items Mean

e [X—>eoqa[y,a]
input is consistent with X > a By

e [X—>aoa®py,al
input is consistent with X - o 3 vy and we
have already recognized o

e [X>apey,a]
input is consistent with X = o 3 v and we
have already recognized o [3

e [X—>afye,a]
input is consistent with X > o By and if
lookahead symbol is a, then we can reduce
to X



15-411/611

LR(1) Closure

closure (state)
repeat
foreach item A —» a*Xb, t in state
foreach production X — w
and each terminal t’ in FIRST (bt)
state.add(X > ew, t’)

until state does not change
return state

© 2019 Goldstein
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Closure

S —ES
closure({S — *ES, ?}) = E—>L=R
E—>R
L —id
?
S — eES, : R

R—>L

15-411/611 © 2019 Goldstein 255



Closure

closure({S — ®ES, ?}) =

S — eES, ?
E— eL=R,
E — eR,

W N

2019 Goldstein

S —ES
E—->L=R
E—R
L — id
L— *R
R—>L



Closure

S—ES
closure({S — *ES, ?}) = E—>L=R
E—R
S —> eES, ? L_’fkd
L—> *R
E— eL=R, S R s L
E— eR, S
L — eid, =

L — o*R,

2019 Goldstein



Closure

S—ES
closure({S — *ES, ?}) = E—>L=R

E—>R

S — eES, ? L_’fkd
L—> *R

E— eL=R, S R s L

E— eR, S

L — eid, =

L — e*R, =

R— el S

© 2019 Goldstein



Closure

S—>ES
closure({S — *ES, ?}) = E—>L=R
E—R
S—).Es, ? L > id
L —> *R
E— eL=R, S R s L
E— eR, S
L — eid, =
L — e*R, =
R— el S
L > eid, S
L — ¢*R, S

© 2019 Goldstein



LR(1) Example

0[S —> eES ? 1S —>Ee§ 2 o)
E—>eL=R S
E— eR S 6
L — eid = E—->Le=R §| =
L — ¢*R = R —>Le $ '
R— el S
L — eid 5 E—>Re §
L— ¢*R S
* .
# L *eR = L—ide
L *eR $ L — ide =
R— el =
R—elL S Ro>Lle = :
L — eid = R— Le
L — ¢*R =
% L — eid S L — *Re =
L —> ¢*R S L—>*Re S 13
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LR(1) Example

S > eES ? 1S —>Ee§ 2
E—>eL=R S| E

E— eR S

L —> ej] =|/1 2|E>Le=R §
L —> e*R = R —>Le $
R— el S

L— eid > E—>Re §
L— ¢*R S

L > *eR _ : L—)l:do

L *eR $ . L — ide =
R—> ol =] ¢

R— el > L 7|R>Le =
L — eid = ﬁR_)l_o

L—> e*R = R

L — eid S L — *Re =
L — ¢*R S L — *Re

© 2019 Goldstein
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Parsing Table

e 14 states versus 10 LR(O) states

e In general, the number of states (and
therefore size of the parsing table) is much
larger with LR(1) items



LALR: Lookahead LR

e More powerful than SLR

e Given LR(1) states, merge states that are
identical except for lookaheads

e End up with same size table as SLR
e Can this introduce conflicts?



Merge-able states

© 2019 Goldstein

0[S —>eES? 14 S—> Ee§ ? 9 |E—>L=Re S
E—>eL=R S
E— eR S 6 |[E>L=*R R
L—> eid = E—>Le=R §| = |[R—>eL
L — *R = R —Le $ 1L— eid

/R—>-L S L —> ¢*R
L— eid > E—>Re §
L— ¢*R S *

* .

# |L— *eR = L_)l.d. 11
L s *eR $ L>ide =
R— el = L—>*eR $
it ol > R—>Le = R—> el S
L_)'id - R—>1Le Lo>eid S
2Ol = L—>e*R S
L — eid S L — *Re
L —> ¢*R S L — *Re L—>*Re S




15-411/611

Merge-able states

E— L=Re S

S > oF$ ? S—>Ee§ ?
E—>eL=R S

E— R S

L —> ej] - E—>Le=R $
L— ¢*R = R —>Le $
R— el S

L— eid > E—>Re §
L— ¢*R S

L —> *eR - S e

L s *eR $ L>ide =
R— el =

R— el S R—le =
L — eid = R— Le

L — ¢*R =

L — eid S L — *Re =
L — ¢*R S L—> *Re S,

E>L=eR ¢| |R
|R— oL S
1L— eid S d
L— *R S
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1l R>Le S

L—o>ide S
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Merge-able states

S — eES

E—>eL=R

E— eR
L — eid
L —> e*R
R— el
L — eid
L —> e*R

i unun v

W WUnWn il

L —> *eR
L —> *eR
R— el

R— el

L —> eid
L —> e*R
L — eid
L —> e*R

1 02 N | I V2 0 |

W N i

S—>FEe§ ? E— L=Re S
6 E—>L=eR S
E —> L ee=R $ ‘ R— el S
R —>Le $ 1L— eid S
L —> e*R S
E—>Re §
"1y R> LS
L — ide
L—>ide =
R—>Le = 12
R— Le
L—> *Re =
L — *Re S/

id

4
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Merge-able states

S > oF$ ? 14 S—>Ee§ ? 9 |E—>L=Re S
E-—>eL=R $

E— eR S 6 |[E>L=*R S
L — eid = E—>Le=R §| = |R>eL S
L — e*R = R — Le $ L— eid S
R—> el $ L— ¢*R S
L— eid > E—>Re §

L—> *R S

L *eR _ L—>ide S

L s *eR $ L—>ide =

R— el =

R— el S R—le =

L — eid = R— Le S

L—> e*R =

L — eid S L — *Re =

L — ¢*R S L—>*Re S

e
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LALR

e Can generate parse table without
constructing LR(1) item sets
— construct LR(0) item sets
— compute lookahead sets

e more precise than follow sets

e LALR is used by most parser generators
(e.g., bison)



LR(O)
SLR

LALR
LR(1)

Recap

not very useful

uses follow sets to reduce
uses lookahead sets

uses full lookahead context



Power of shift-reduce parsers

e There are unambiguous grammars which
which cannot be parsed with shift-reduce
parsers.

e Such grammars can have
— shift/reduce conflicts
— reduce/reduce conflicts

e There grammars are not LR(k)

e But, we can often choose shift or reduce to
recoghize what want.



Expression Grammars & Precedence

15-411/611

S i=eF i S=Ete E= E'E
E-—@F*E />E:=E°*E | E+E
E:=®E+E E:=E®+E | id
* -
E:=eid /\‘
E:=E*®E E=E+©E
E:=0E*E E:=0E*E
E:=eE+E E:=®E+E
EE:='id E:=eid
E:=E*Ee® E=Eb+Ee
F:=Fe®*F E:=E®*E
E:=E®+E E=Ee+F
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Expression Grammars & Precedence

E*E
E+E
id

S =eE S:=Es E
E x
E:=@EX*E /’EI:E. E
—®FE+F E:=E®+E
* +
= 0 jd /\‘
E:=E*e®E E=E+eE
=®E*E
=®FE+E
= o id
—
E:=E*Ee®
E:=E®*E

© 2019 Goldstein
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Handling Ambiguity

E:= E*E
’::.E S’I=E.
E:=z=@E*E _/E»EFE.*E | E+E
' | id
E:=eid

What to do on + or *?
- shift
- reduce by E —> E+E?
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Bison

e Precedence and Associativity declarations

e Precedence derived from order of directivies:
from lowest to highest

e Associativity from %left, %right, %nonassoc

e Can be attached to rules as well (This can
solve the dangling if-else problem



Dangling Else

S = if E thenS
| if EthenSels

| other

e We can be in the following state:

...1f EthenS else .. $

e What do we do?
— shiftthe else (hoping to reduce by second rule)

— reduce by first rule
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Next Time

e From words to sentences.

e From regular languages to context free
anguages.

e Parsing
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