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Reminders

• Office Hours are a valuable resource!

• Please name your tests properly, e.g., 
   <team>-<file>.l2

• Please make sure partners are on 
submissions.
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Your TAs are nicer than I am.

Mislabeled tests and lack of partner on 
submission will lead to lower score.



Today

• Lexing

• Parsing
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Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE → NFA  

• NFA → DFA  

• DFA → Minimized DFA

• Limits of Regular Languages
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Compiler Phases

Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens



The Lexer

• Turn stream of characters into a stream of 
tokens
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// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …



The Lexer

• Turn stream of characters into a stream of 
tokens

– Strips out “unnecessary characters”

• comments

• whitespace

– Classify tokens by type

• keywords

• numbers

• punctuation

• identifiers

– Track location

– Associate with syntactic information
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The Lexer

• Turn stream of characters into a stream of 
tokens
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// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …



The Lexer

• Turn stream of characters into a stream of 
tokens
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// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123



The Lexer

• Turn stream of characters into a stream of 
tokens

– More concise

– Easier to parse
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CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123



Lexical Analyzers

• Input: stream of characters

• Output: stream of tokens (with information)

• How to build?

– By hand is tedious

– Use Lexical Analyzer Generator, e.g., flex

• Define tokens with regular expressions

• Flex turns REs into Deterministic Finite 
Automata (DFA) which recognizes and returns 
tokens.
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FLEX

• Define tokens

• Generate scanner code

• Main interface: yylex() which reads 
from yyin and returns tokens til EOF
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2.  Flex Program Format

• A flex program has three sections:

Definitions
%% 
RE rules & actions
%%

User code
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wc As a Flex Program

%{ 

  int charCount=0, wordCount=0, lineCount=0;

%}

word   [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

.  {charCount++;}

%%

int main(void) {

 yylex();

   printf(“Chars %d, Words: %d, Lines: %d\n”,

      charCount,  wordCount,  lineCount);

   return 0;

}
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A Flex Program

%{ 

  int charCount=0, wordCount=0, lineCount=0;

%}

word   [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

.  {charCount++;}

%%

int main(void) {

 yylex();

   printf(“Chars %d, Words: %d, Lines: %d\n”,

      charCount,  wordCount,  lineCount);

   return 0;

}

15

1) Definitions

2) Rules & Actions

3) User Code

skip

skip



Section 1: RE Definitions

• Format:
   name  RE

• Examples:
digit    [0-9]

letter    [A-Za-z]

id     {letter} ({letter}|{digit})*

word      [^ \t\n]+
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Regular Expressions in Flex
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x match the char x 
\. match the char . 
"string" match contents of string of chars 
. match any char except \n
^ match beginning of a line
$ match the end of a line
[xyz] match one char x, y, or z
[^xyz] match any char except x, y, and z 
[a-z] match one of a to z



r* closure (match 0 or more r's)
r+ positive closure (match 1 or more r's)
r? optional (match 0 or 1 r)
r1 r2 match r1 then r2 (concatenation)
r1 | r2 match r1 or r2 (union)
( r ) grouping
r1 \ r2 match r1 when followed by r2
{ name } match the RE defined by name

18

Regular Expressions in Flex (cont)



Some number REs
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[0-9] A single digit. 

[0-9]+ An integer.

[0-9]+ (\.[0-9]+)? An integer or fp number.

[+-]? [0-9]+ (\.[0-9]+)? ([eE][+-]?[0-9]+)?

 Integer, fp, or scientific notation.



Section 2: RE/Action Rule

• A rule has the form:
 name  { action }

 re  { action }

– the name must be defined in section 1

– the action is any C code

• If the named RE matches* an input 
character sequence, then the C code is 
executed.

20

* Some caveats here



Rule Matching

• Longest match rule.

 “int” { return INT; }

 “integer” { return INTEGER; }

• If rules can match same length input, 
first rule takes priority.

 “int” { return INT; }

 [a-z]+ { return ID; }

 [0-9]+ { return NUM; }
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Section 3: C Functions

• Added to end of the lexical analyzer
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Removing Whitespace

whitespace      [ \t\n]

%%

{whitespace}    ;

.     { ECHO; }

%%

int main(void) 

{ 

 yylex(); 

 return 0;

}

23

empty action

ECHO macro

name

RE



Printing Line Numbers
%{

  int lineno = 1;

%}

%%

^(.*)\n   { printf("%4d\t%s", lineno, yytext);
      lineno++;}

%%

int main(int argc, char *argv[])

{

  // appropriate arg processing & error 

handling, …

  yyin = fopen(argv[1], "r");

  yylex();

  return 0;

}

24

the matched text



Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE → NFA  

• NFA → DFA  

• DFA → Minimized DFA

• Limits of Regular Languages
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Under The Covers

• How to go from REs to a working scanner?
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Regular
Expressions

NFA
w/-moves

Minimal
DFA

DFA

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner



Regular Languages

• Finite Alphabet, , of symbols.

• word (or string), a finite sequence of symbols 
from .

• Language over  is a set of words from .

• Regular Expressions describe Regular Languages.

– easy to write down, but hard to use directly

• The languages accepted by Finite Automata are 
also Regular.
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Regular Expressions defined

• Base Cases:

– A single character a

– The empty string  

• Recursive Rules:
If R1 and R2 are regular expressions

– Concatenation R1R2

– Union R1|R2

– Closure R1*

– Grouping (R1)

•REs describe Regular Languages.



RE Examples

• even a’s
     

• odd b’s
     

• even a’s or odd b’s

• even a’s followed by odd b’s
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RE Examples

• even a’s
    b* ( a b* a b* )*

• odd b’s
    a* b a* (b a* b a*)*

• even a’s or odd b’s

• even a’s followed by odd b’s
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RE Examples

• even a’s
    RA = b* ( a b* a b* )*

• odd b’s
    RB = a* b a* (b a* b a*)*

• even a’s or odd b’s
     RA | RB

• even a’s followed by odd b’s
    RA  RB
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Regular Languages

• Regular Expressions are great

– concise notation

– automatic scanner generation

– lots of useful languages

• But, …

– Not all languages are regular

• Context Free Languages

• Context Sensitive Languages

– Even simple things like balanced parenthesis, 
e.g., L = { AkBk }  (or nested comments!)

– RL can’t count 
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Not all Scanning is easy

•Language design should start with lexemes

– My favorite example from PL/I
if then then then = else; else else = then

•blanks not important in Fortran

•nested comments in C

•limited identifier lengths in Fortran
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Today – part 2

• Languages and Grammars

• Context Free Grammars

• Derivations & Parse Trees

• Ambiguity

• Top-down parsers

• FIRST, FOLLOW, and NULLABLE

• Bottom-up parsers
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Compiler Phases

Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens
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Languages

• Compiler translates from sequence of 
characters to an executable.

• A series of language transformations

• lexing: characters → tokens

• parsing: tokens → “sentences”
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Languages

• Compiler translates from sequence of 
characters to an executable.

• A series of language transformations

• lexing: characters → tokens

• parsing: tokens → parse trees
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Grammers and Languages

• A grammer, G, recognizes a language, L(G)

–  set of terminal symbols

– A set of non-terminals

– S  the start symbol, a non-terminal

– P a set of productions

• Usually,

– , , , … strings of terminals and/or non-terminals

– A, B, C, … are non-terminals

– a, b, c, … are terminals

• General form of a production is:  → 
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Derivation

• A sequence of applying productions starting with 
S and ending with w

  S → 1 →  2  … →  n-1 → w

  S →* w

• L(G) are all the w that can be derived from S
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Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G.,
 S → aA
  A → Sb
  S → ε

• An example derivation of aab:
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• An example derivation of aabc:

 S → aS
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• An example derivation of aabc:

 S → aS→ aaS
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA→ aabcA
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• An example derivation of aabc:

 S → aS→ aaS→ aabA→ aabcA → aabc
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• E.G., a*bc*
 S → aS
  S → bA
  A → ε
  A → cA

• Above is a right-regular grammar

• All rules are of form: A → a
   A → aB
   A → ε
  15-411/611 © 2019 Goldstein 95

S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Regular Grammar (NFA)

• Regular expressions and NFAs can be 
described by a regular grammar

• right regular grammar: A → a
   A → aB
   A → ε

• left regular grammar: A → a
   A → Ba
   A → ε

• Regular grammars are either right-regular 
or left-regular.
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S → aA

A → Sb

S → ε

S → aA

A → Sb

S → ε



Expressiveness

• Restrictions on production rules limit 
expressiveness of grammars.

• No restrictions allow a grammar to 
recognize all recursively enumerable 
languages

• A bit too expressive for our uses ☺

• Regular grammars cannot recognize anbn

• We need something more expressive
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Chomsky Hierarchy
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Class Language Automaton Form
“word” 

problem Example

0
Recursively 
Enumerable

Turing 
Machine

any undecidable
Post’s 

Corresp. 
problem

1
Context 

Sensitive
Linear-

Bounded TM
A→

PSPACE-
complete

anbncn

2 Context Free
Pushdown 
Automata

A→ cubic anbn

3 Regular NFA
A→a

A→aB
linear a*b*



Today – part 2

• Languages and Grammars

• Context Free Grammars

• Derivations & Parse Trees

• Ambiguity

• Top-down parsers

• FIRST, FOLLOW, and NULLABLE

• Bottom-up parsers
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Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals (which are just the set of 
possible tokens from the lexer)
e.g., if, then, while, id, int, string, …

– A, a set of non-terminals.
Non-terminals are syntactic variables which 
define sets of strings in the language
e.g., stmt, expr, term, factor, vardecl, …

– S

– P
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Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals …

– A, a set of non-terminals.

– S, S  A, the start symbol
The set of strings derived from S are the valid 
string in the language.

– P, set of productions that specify how 
terminals and non-terminals combine to form 
strings in the language
a production, p, has the form: A→ 
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Context-Free Grammar

• A context-free grammar, G, is described by:

– , a set of terminals …

– A, a set of non-terminals.

– S, S  A, the start symbol

– P, set of productions …
a production, p, has the form: : A→ 

– E.g.,: S := E
  S := print E

  E := E + T
  T := F terminals

non-terminals
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What makes a grammar CF?

• Only one NT on left-hand side → context-free

• What makes a grammar context-sensitive?

• A→ where 

–  or  may be empty, 

– but  is not-empty

• Are context-sensitive grammars useful for 
compiler writers?
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Simple Grammar of Expressions

S := Exp

Exp := Exp + Exp

Exp := Exp - Exp

Exp := Exp * Exp

Exp := Exp / Exp

Exp := id

Exp := int

Describes a language of expressions. e.g.: 2+3*x
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Derivation

• A derivation is a chosen sequence of 
productions (expansions)

• S → Exp → Exp + Exp → id + Exp → id + int

• A successful sequence of expansions that 
match the input constitute a parse

– Connecting the expansions in each successive 
step produces a parse tree

– Parse tree is a form of abstract syntax tree

– Building a correct AST is the whole point
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Derivations

• A sequence of steps in which a non-terminal is 
replaced by its right-hand side.

S

by 1  Exp

by 4  Exp * Exp

by 6  Exp * idx

by 2  Exp + Exp * idx

by 7  int2 + Exp * idx

by 7  int2 + int3 * idx 

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

There are possibly many derivations 
determined by the NT chosen to 

expand.

input: 2+3*x
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Leftmost Derivations

• Leftmost derivation: leftmost NT always chosen

S

by 1  Exp

by 4  Exp * Exp

by 2   Exp + Exp * Exp

by 7   int2 + Exp * Exp

by 7  int2 + int3 * Exp

by 6  int2 + int3 * idx 

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

input: 2+3*x
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Rightmost Derivations

• Rightmost derivation: rightmost NT always 
chosen

S

by 1  Exp

by 4  Exp * Exp

by 6   Exp * idx

by 2   Exp + Exp * idx

by 7   Exp + int3 * idx

by 7  int2 + int3 * idx 

1 S := Exp

2 Exp := Exp + Exp

3 Exp := Exp - Exp

4 Exp := Exp * Exp

5 Exp := Exp / Exp

6 Exp := id

7 Exp := int

input: 2+3*x
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Parse Trees

• symbols in rhs are children of NT being 
rewritten

S

by 1  Exp

by 4  Exp * Exp

by 2   Exp + Exp * Exp

by 7   int2 + Exp * Exp

by 7  int2 + int3 * Exp

by 6  int2 + int3 * idx 

S

E

EE *

EE + x

2 3

input: 2+3*x
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Parse Trees

• parse tree for rightmost derivation

S

E

EE *

EE + x

2 3

S

by 1  Exp

by 4  Exp * Exp

by 6   Exp * idx

by 2   Exp + Exp * idx

by 7   Exp + int3 * idx

by 7  int2 + int3 * idx 

Different derivations can 
lead to the same parse tree.

What about different parse trees for same sentence?
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Ambiguous Grammars

• A grammar is ambiguous if it can derive a 
sentence with >1 parse trees. or,

• If grammer has >1 leftmost (rightmost) 
derivations it is ambiguous

What does ambiguity point out?

S

E

EE *

EE + x

2 3

S

E

EE +

x

2

3

EE *
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Resolving Ambiguity

• Ambiguity is a problem with the grammar

• One possible fix:
     Add precedence with more non-terminals

• In this example, one for each level of precedence:

– (+, -) exp

– (*, /) term

– (id, int) factor

– Make sure parse derives sentences that respect the 
precedence

– Make sure that extra levels of precedence can be 
bypassed, i.e., “x” is still legal
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A Better Exp Grammar

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

S

by 1  Exp

by 2  Exp + Term

by 4   Term + Term

by 7   Factor + Term

by 9   int2 + Term

by 5   int2 + Term * Factor

by 7   int2 + Factor * Factor

by 9  int2 + int3 * Factor

by 8  int2 + int3 * idx 

What is the parse tree?

input: 2+3*x



15-411/611 © 2019 Goldstein 116

A Better Exp Grammar
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Another Ambiguous Grammer

S := if E then S

 | if E then S else S

 | other

• What is the parse tree for: 
    if E then if E then S else S?

• What is the language designers intention?

• Is there a context-free solution?
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Dangling Else Grammar

S  := matchedS

  | unmatchedS

unmatchedS := if E then S

  | if E then matchedS else unmatchedS

matchedS := if E then matchedS else matchedS

  | other

• Is this clearer?

• What is parse tree for: if E then if E then S else S?

Parser generators provide a better way
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A primitive robot

Swing := Back Swing Forward

  | 

Back  := back-1-inch

Forward  := forward-2-inchs

• What is L(Swing)?
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A primitive robot

S  := B S F

  | 

B  := b

F  := f

• What is L(Swing)?

• What is the parse tree for “bbff”



Parsing a CFG

• Top-Down

– start at root of parse-tree

– pick a production and expand to match input

– may require backtracking

– if no backtracking required, predictive

• Bottom-up

– start at leaves of tree

– recognize valid prefixes of productions

– consume input and change state to match

– use stack to track state
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Top-down Parsers

• Starts at root of parse tree and recursively 
expands children that match the input

• In general case, may require backtracking

• Such a parser uses recursive descent.

• When a grammar does not require 
backtracking a predictive parser can be 
built.
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A Predictive Parser

S := B S F
 | 
B := b
F := f S() {

 if match(‘b’) -> B(); S(); F();

 else return;

}

B() { mustMatch(‘b’); return; }

F() { mustMatch(‘f’); return; }

action();

action(); return;}

action();  return;}

Idea is for parser to do something 
besides recognize legal sentences.



Top-Down parsing

• Start with root of tree, i.e., S

• Repeat until entire input matched:

– pick a non-terminal, A, and pick a production 
A→ that can match input, and expand tree

– if no such rule applies, backtrack

• Key is obviously selecting the right 
production 
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Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

S  int2 - int3 * idx

by 1  E  int2 - int3 * idx

by 2  E + T  int2 - int3 * idx

by 4  T + T  int2 - int3 * idx

by 7  F + T  int2 - int3 * idx

by 9  int2 + T  int2 - int3 * idx

by 3  E - T  int2 - int3 * idx

by 4  T - T  int2 - int3 * idx

by 7  F - T  int2 - int3 * idx

by 9  int2 - T  int2 - int3 * idx

by 5  int2 – T * F  int2 - int3 * idx

input: 2+3*x
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Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

S  int2 - int3 * idx

by 1  E  int2 - int3 * idx

by 2  E + T  int2 - int3 * idx

by 4  T + T  int2 - int3 * idx

by 7  F + T  int2 - int3 * idx

by 9  int2 + T  int2 - int3 * idx

by 3  E - T  int2 - int3 * idx

by 4  T - T  int2 - int3 * idx

by 7  F - T  int2 - int3 * idx

by 9  int2 - T  int2 - int3 * idx

by 5  int2 – T * F  int2 - int3 * idx

Must backtrack here!

input: 2+3*x
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S  int2 - int3 * idx

by 1  E  int2 - int3 * idx

by 2  E + T  int2 - int3 * idx

by 4  T + T  int2 - int3 * idx

by 7  F + T  int2 - int3 * idx

by 9  int2 + T  int2 - int3 * idx

by 3  E - T  int2 - int3 * idx

by 4  T - T  int2 - int3 * idx

by 7  F - T  int2 - int3 * idx

by 9  int2 - T  int2 - int3 * idx

by 5  int2 – T * F  int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

input: 2+3*x



input: 2+3*x
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S  int2 - int3 * idx

by 1  E  int2 - int3 * idx

by 2  E + T  int2 - int3 * idx

by 4  T + T  int2 - int3 * idx

by 7  F + T  int2 - int3 * idx

by 9  int2 + T  int2 - int3 * idx

by 3  E - T  int2 - int3 * idx

by 4  T - T  int2 - int3 * idx

by 7  F - T  int2 - int3 * idx

by 9  int2 - T  int2 - int3 * idx

by 5  int2 – T * F  int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

What kind of derivation is this parsing?
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S  int2 - int3 * idx

by 1  E  int2 - int3 * idx

by 2  E + T  int2 - int3 * idx

by 2  E + E + T  int2 - int3 * idx

by 2  E + E + E + T  int2 - int3 * idx

Top-down for Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int
Will not terminate!  Why?

What should we do about it?

grammar is left-recursive

Eliminate left-recursion

input: 2+3*x
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Does this work?

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

1 S := E

2 E := T + E

3 E := T - E

4 E := T

5 T := F * T

6 T := F / T

7 T := F

8 F := id

9 F := int

It is right recursive, but also right associative!
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Eliminating Left-Recursion

• Given 2 productions:
  A := A  | 
Where neither  nor  start with A
  (e.g., For example, E := E + T | T)

• Make it right-recursive:
  A :=  R
  R :=  R
     | 

• Extends to general case.

R is right recursive

 
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Rewriting Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

1 S := E

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ := 

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ := 

8 F := id

9 F := int

2 E := T E’

 

 

5 T := F T’

 

 

Is this legible?
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Try again

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ := 

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ := 

8 F := id

9 F := int

S  ⚫int2 - int3 * idx

by 1  E  ⚫int2 - int3 * idx

by 2  T E’  ⚫int2 - int3 * idx

by 5  F T’ E’  ⚫int2 - int3 * idx

by 9  2 T’ E’  int2 ⚫- int3 * idx

by 7’  2 E’  int2 ⚫- int3 * idx

by 3’  2 – T E’  int2 - ⚫int3 * idx

by 5  2 – F T’ E’  int2 - ⚫int3 * idx

by 9  2 – 3 T’ E’  int2 - int3 ⚫* idx

by 5’  2 – 3 * F T’ E’  int2 - int3 * ⚫idx

by 8  2 – 3 * x T’ E’  int2 - int3 * idx⚫

by 7  2 – 3 * x E’  int2 - int3 * idx⚫ 

by 4  2 – 3 * x  int2 - int3 * idx⚫

Unlike previous time we tried this, it 
appears that only one production applies at 
a time. I.e., no backtracking needed.  Why?

input: 2+3*x



Lookahead

• How to pick right production?

• Lookahead in input stream for guidance

• General case: arbitrary lookahead required

• Luckily, many context-free grammars can be 
parsed with limited lookahead

• If we have A → | , then we want to 
correctly choose either A → or A → 

• define FIRST() as the set of tokens that can be 
first symbol of , i.e.,

a  FIRST() iff  →* a for some 
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Lookahead

• How to pick right production?

• If we have A → | , then we want to 
correctly choose either A → or A →

• define FIRST() as the set of tokens that can be 
first symbol of , i.e.,

a  FIRST() iff  →* a for some 

• If A → |  we want:
FIRST()  FIRST() = 

• If that is always true, we can build a predictive 
parser.

15-411/611 135

skip

skip
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FIRST sets

• We use next k characters in input stream to guide 
the selection of the proper production.

• Given: A :=  |  we want next input character to 
decide between  and .

• FIRST() = set of terminals that can begin
   any string derived from .

• IOW: a  FIRST() iff  * a for some 

• FIRST()  FIRST() =  → no backtracking needed
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Computing FIRST()

• Given X := A B C, FIRST(X) = FIRST(A B C)

• Can we ignore B or C?

• Consider:
 A := a
    |
 B := b
    | A
 C := c
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Computing FIRST()

• Given X := A B C, FIRST(X) = FIRST(A B C)

• Can we ignore B or C?

• Consider:
 A := a
    |
 B := b
    | A
 C := c

• FIRST(X) must also include FIRST(C)

• IOW: 
– Must keep track of NTs that are nullable

– For nullable NTs, determine FOLLOWS(NT)
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nullable(A)

• nullable(A) is true if A can derive the empty 
string

• For example:

  B := X Y b

  X := x

      |  Y Y

  Y := 

In this case, nullable(X) = nullable(Y) = true

      nullable(B) = false
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FOLLOW(A)

• FOLLOW(A) is the set of terminals that can 
immediately follow A in a sentential form.

• I.e.,
a  FOLLOW(A) iff S * Aa for some  and 
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Building a Predictive Parser

• We want to know for each non-terminal which 
production to choose based on the next input 
character.

• Build a table with rows labeled by non-terminals, 
A, and columns labeled by terminals, a.  We will 
put the production, A :=  , in (A, a) iff

– FIRST() contains a     or

– nullable() and FOLLOW(A) contains a

skip

skip
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The table for the robot

S  := B S F

  | 

B  := b

F  := f

b f $

S

B

F

FIRST FOLLOW nullable

S b $ yes

B b b,f no

F f f,$ no
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The table for the robot

S  := B S F

  | 

B  := b

F  := f

b f $

S S:=BSF S:=

B B:=b

F F:=f

FIRST FOLLOW nullable

S b $ yes

B b b,f no

F f f,$ no

nullable()=true
and

FOLLOW(S) = $

FIRST(BSF) = b
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Table for exp grammar

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ := 

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ := 

8 F := id

9 F := int

FIRST FOLLOW nullable

S id, int $

E id, int $

E’ +, - $ yes

T id, int +,-,$

T’ /, * +,-,$ yes

F id, int /, *,$

+ - * / id int $

S

E

E’

T

T’

F
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Table for exp grammar

1 S := E

2 E := T E’

2’ E’ := + T E’

3’ E’ := - T E’

4’ E’ := 

5 T := F T’

5’ T’ := * F T’

6’ T’ := / F T’

7’ T’ := 

8 F := id

9 F := int

FIRST FOLLOW nullable

S id, int $

E id, int $

E’ +, - $ yes

T id, int +,-,$

T’ /, * +,-,$ yes

F id, int /, *,$

+ - * / id int $

S :=E :=E

E :=TE’ :=TE’

E’
:=+TE’ :=-TE’ :=

T :=FT’ :=FT’

T’ := := :=*FT’ :=/FT’ :=

F :=id :=int
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Using the Table

• Each row in the table becomes a function

• For each input token with an entry:
Create a series of invocations that 
implement the production, where

– a non-terminal is eaten

– a terminal becomes a recursive call

• For the blank cells implement errors



15-411/611 © 2019 Goldstein 149

Example function
+ - * / id int $

S :=E :=E

E :=TE’ :=TE’

E’ :=+TE’ :=-TE’ :=TE’ :=TE’ :=

T :=FT’ :=FT’

T’ := := :=*FT’ :=/FT’ :=

F :=id :=int
Eprime() {

 switch (token) {

 case PLUS: eat(PLUS); T(); Eprime(); break;

 case MINUS: eat(MINUS); T(); Eprime(); break;

 case ID: T(); Eprime();

 case INT: T(); Eprime();

 default: error();

}

How to handle errors?
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Left-Factoring

• Predictive parsers need to make a choice 
based on the next terminal.

• Consider:
 S := if E then S else S 
    |  if E then S

• When looking at if, can’t decide

• so left-factor the grammar

  S := if E then S X
 X := else S

   |
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Top-Down Parsing

• Can be constructed by hand

• LL(k) grammars can be parsed 

– Left-to-right

– Leftmost-derivation

– with k symbols lookahead

• Often requires

– left-factoring

– Elimination of left-recursion



15-411/611 © 2019 Goldstein 152

Bottom-up parsers

• What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?
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Bottom-up parsers

• What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

• Bottom-up parsers use the entire right-
hand side of the production

• LR(k):

– Left-to-right parse, 

– Rightmost derivation (in reverse), 

– k look ahead tokens
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Top-down vs. Bottom-up

scanned  unscanned scanned  unscanned

Top-down Bottom-up

LL(k), recursive descent     LR(k), shift-reduce
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Example - Top-down

S := X
X := X a
    |  b

Is this grammar LL(k)?

How can we make it LL(k)?

S := X
X := b R
R := a R
   |

What about a bottom up parse?
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Example - Bottom-up

S := X
X := X a
    |  b

right-most derivation:
 S  X  Xa  Xaa  baa

Left-to-Right, Rightmost in reverse
 baa
 Xaa
 Xa
 X
 S

X

aX

S

aX

b

LR parser gets to look at an entire right hand side.
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Top-down vs. Bottom-up

scanned  unscanned scanned  unscanned

Top-down Bottom-up

LL(k), recursive descent     LR(k), shift-reduce
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A Rightmost Derivation

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

S

by 1  Exp

by 2  Exp + Term

by 5   Exp + Term * Factor

by 8   Exp + Term * idx

by 7   Exp + Factor * idx

by 9   Exp + int3 * idx

by 4   Term + int3 * idx 

by 7   Factor + int3 * idx

by 9  int2 + int3 * idx 
input: 2+3*x
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A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S 

Lets keep track of where we are in the input.
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A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S 

int2 ⚫ + int3 * idx

Factor ⚫ + int3 * idx

Term ⚫ + int3 * idx

Exp + int3 ⚫ * idx

Exp + Factor ⚫ * idx

Exp + Term * idx ⚫

Exp + Term * Factor ⚫

Exp + Term ⚫

Exp ⚫

S ⚫
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A Rightmost Derivation In Reverse

int2 + int3 * idx

Factor + int3 * idx

Term + int3 * idx

Exp + int3 * idx

Exp + Factor * idx

Exp + Term * idx

Exp + Term * Factor

Exp + Term

Exp

S 

int2 ⚫ + int3 * idx

Factor ⚫ + int3 * idx

Term ⚫ + int3 * idx

Exp + int3 ⚫ * idx

Exp + Factor ⚫ * idx

Exp + Term * idx ⚫

Exp + Term * Factor ⚫

Exp + Term ⚫

Exp ⚫

S ⚫

Lets format this differently,
<prefix of sentential form> input



int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!15-411/611 © 2019 Goldstein 162

A Rightmost Derivation In Reverse



int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!15-411/611 © 2019 Goldstein 163

A Rightmost Derivation In Reverse

LR-Parser either:
1. shifts a terminal or 
2. reduces by a production.
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

When we reduce by a production: A → , 
 is on right side of sentential form.

E.g., here  is ‘int’ and production is F → int 
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → F

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept! 180

2

F
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept! 182

2

F

E

T

+
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F



Handles

• LR parsing is handle pruning

• LR parsing finds a rightmost derivation (in 
reverse)

• A handle in , a right-hand sentential form,  is

– a position in  matching  

– a production A → 
  
   S →* Aw → w

• if a grammar is unambiguous, then every  has 
exactly 1 handle
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

Where is next handle?  
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

Where is next handle?  
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Where is next handle?  
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Where is next handle?  E+F*x and T→ F 



Handle Pruning

• LR parsing consists of

– shifting til there is a handle on the top of the 
stack

– reducing handle

• Key is handle is always on top of stack, i.e., 
if  is a handle with A → , then  can be 
found on top of stack.
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

top of stack does 
not have a handle, 
so must shift.
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A Rightmost Derivation In Reverse
int2 + int3 * idx $ shift 2

int2 + int3 * idx $ reduce by F → int

Factor + int3 * idx $ reduce by T → F

Term + int3 * idx $ reduce by T → E

Exp + int3 * idx $ shift +

Exp + int3 * idx $ shift 3

Exp + int3 * idx $ reduce by F → int

Exp + Factor * idx $ reduce by F → T

Exp + Term * idx $ shift *

Exp + Term * idx $ shift x

Exp + Term * idx $  reduce by F → id

Exp + Term * Factor $  reduce by T → T * F

Exp + Term $  reduce by E → E + T

Exp $ reduce by S → E

S $ accept!

2

F

E

T

+

3

F

S

E

T

x

FT *

Now, x is a handle.
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A Shift-Reduce Parser

• Stack holds the viable prefixes.

• input stream holds remaining source

• Four actions:

– shift: push token from input stream onto stack

– reduce: right-end of a handle (  of A → ) is at top of 
stack, pop handle (), push A

– accept: success

– error: syntax error discovered

Key is recognizing handles efficiently



Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Push down automata:

FSM with stack

source
code

15-411/611 © 2019 Goldstein 195



Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Parser 
Generator

Push down automata:

FSM with stack

source
code

Grammar
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Parser Loop

• Same code regardless of grammar
– only tables change

• (Very) General Algorithm:
– Based on table contents, top of stack, and current 

input character either
• shift: pushes onto stack, reads next token 
• reduce: manipulate stack to simplify representation of 

already scanned input
• accept: successfully scanned entire input
• error: input not in language 

Driver
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Stack

• Represents the scanned input

• Contents?

– Reduced nonterminals not enough

– Must store previously seen states

• the context of the current position

– In fact, nonterminals unnecessary

• include for readability

Stack

x + y• + z

T

+

T
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Parser Tables

Action table

• given state s and terminal a tells parser 
loop what action (shift, reduce, accept, 
reject) to perform

Goto table

• used when performing reduction; given a 
state s and nonterminal X says what state 
to transition to

Action table
&

GOTO table
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Parser Tables Action table
&

GOTO table

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

sN push state N onto stack
rR reduce by rule R
gN goto state N
a accept
 error
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DriverParser Loop Revisited

while(true)

 s = state on top of stack

 a = current input token

 if(action[s][a] == sN)   shift
  push N

  read next input token

 else if(action[s][a] == rR)  reduce
  pop rhs of rule R from stack

  X = lhs of rule R

  N = state on top of stack

  push goto[N][X]

 else if(action[s][a] == a)  accept 
  return success

 else      error
  return failure
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ Stack
(0,S)

x

0
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

3
(3,x)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

0
(3,x)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

2
(2,T)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

+

2
(2,T)

15-411/611 © 2019 Goldstein 208



Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

y

4
(2,T)

(4,+)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

y

4
(2,T)

(4,+)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

3
(2,T)

(4,+)
(3,y)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

3
(2,T)

(4,+)

(?,T)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)
(2,T)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)
(2,T)

15-411/611 © 2019 Goldstein 214



Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

2
(2,T)

(4,+)

(?,E)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5
(2,T)

(4,+)
(5,E)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5
(2,T)

(4,+)
(5,E)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

5 (2,T)

(4,+)

(5,E)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

1
(1,E)
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Current input token =
State on top of the stack =

Example

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4 r2

3 r3 r3

4 s3 g5 g2

5 r1

x + y$ (0,S)

$

1
(1,E)

Accept!
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Table-driven LR(k) parsers

Driver

Lexer
tokens

Stack
Action table

&
GOTO table

AST

Push down automata:

FSM with stack

source
code

Parser 
Generator

Grammar
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The parser generator

• Finds handles

• Creates the action and GOTO tables.

• Creates the states

– Each state indicates how much of a handle we 
have seen

– each state is a set of items

Parser 
Generator

15-411/611 © 2019 Goldstein 222



15-411/611 © 2019 Goldstein 224

Items

• Items are used to identify handles.

• LR(k) items have the form:
  [ production-with-dot, lookahead]

• For example, A → a X b has 4 LR(0) items

– [A →  a X b]

– [A → a  X b]

– [A → a X  b]

– [A → a X b ]

The  indicates how much 
of the handle we have 

recognized.
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What LR(0) Items Mean

• [X →    ]
input is consistent with X →   

• [X →    ]
input is consistent with X →    and we 
have already recognized 

• [X →    ]
input is consistent with X →    and we 
have already recognized  

• [X →    ]
input is consistent with X →    and we 
can reduce to X
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Generating the States
• Start with start production.

• In this case, “S → E$”

• Each state is consistent with 
what we have already shifted 
from the input and what is 
possible to reduce.  So, what 
other items should be in this 
state?

0 S → E$
1 E → T + E
2 E → T
3 T → identifierS → •E$
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Completing a state
• For each item in a state, add 

in all other consistent items.

• This is called, taking the 
closure of the state.

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

S → •E$
E → •T + E
E → •T
T → •identifier
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Closure*

closure(state)

 repeat

  foreach item A → a•Xb in state

   foreach production X → w

    state.add(X → •w)

 until state does not change

 return state

Intuitively:

Given a set of items, add all production rules that 
could produce the nonterminal(s) at the current 
position in each item

*: for LR(0) items
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What about the other states?

• How do we decide what the 
other states are?

• How do we decide what the 
transitions between states are?

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

S → •E$
E → •T + E
E → •T
T → •identifier

S → E•$

E → T• + E
E → T•T → identifier•

E

T

identifier
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Next(state, sym)

• Next function determines what state to 
goto based on current state and symbol 
being recognized.

• For Non-terminal, this is used to determine 
the GOTO table.

• For terminal, this is used to determine the 
shift action.



15-411/611 © 2019 Goldstein 231

Constructing states

initial_state = closure({start production})

state_set.add(initial_state)

state_queue.push(initial_state)

while(!state_queue.empty()) 

 s = state_queue.pop()

 foreach item A → a•Xb in s

  n = closure(next(s, X))

  if(!state_set.contains(n))

   state_set.add(n)

   state_queue.push(n)

  

A state is a set of 
LR(0) items

get “next” state
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Closure*

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

closure({S → •E$}) =

S → •E$
E → •T + E
E → •T
T → •identifier

*: for LR(0) items
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Closure*

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

closure({S → •E$}) =

S → •E$
E → •T + E
E → •T
T → •identifier

*: for LR(0) items
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Next

next(state, X)

 ret = empty

 foreach item A → a•Xb in state

   ret.add(A → aX•b) 

 return ret  

S → •E$
E → •T + E
E → •T
T → •identifier

next(initial, E)
initial:

next(initial, T)

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

next(initial, identifier)
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Example

S → •E$
E → •T + E
E → •T
T → •identifier

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

0

S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•

5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +
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Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0

1

2

3

4

5

What can we fill out?

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0

1

2

3

4

5

shift 
transition on terminal

action goto

state ident + $ E T

0 s3

1

2 s4

3

4 s3

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier



15-411/611 © 2019 Goldstein 238

Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0 s3

1

2 s2

3

4 s3

5

goto 
transition on nonterminal

action goto

state ident + $ E T

0 s3 g1 g2

1

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

accept 
about to shift $

action goto

state ident + $ E T

0 s3 g1 g2

1

2 s4

3

4 s3 g5 g2

5

a

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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Parse Tables for LR(0) parser

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

reduce 
item has dot at end
A → w•

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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LR(0)

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

No lookahead
reduce state for all
nonterminals

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 r2 r2/s4 r2

3 r3 r3 r3

4 s3 g5 g2

5 r1 r1 r1

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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LR(0)

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

shift/reduce conflict
need to be pickier about
when we reduce

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 r2 r2/s4 r2

3 r3 r3 r3

4 s3 g5 g2

5 r1 r1 r1

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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SLR - Simple LR

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

Only reduce in position (s,a) 
by rule R:A → w if a is in the 
follow set of A

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier
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follow(X)

set of terminals that can
appear immediately after
the nonterminal X in some
sentential form

I.e., t  FOLLOW(X) iff S * Xt for some  and 

Reminder: Follow sets

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

follow(E) = {$}

follow(T) = {+,$}
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SLR - Reduce using follow sets

S → •E$
E → •T + E
E → •T
T → •identifier

0
S → E•$

1

E → T• + E
E → T•

2

T → identifier•

3 identifier

E

T

E → T + E•
5 E

identifier

T

E → T +• E
E → •T + E
E → •T
T → •identifier

4 +

action goto

state ident + $ E T

0 s3 g1 g2

1 a

2 s4

3

4 s3 g5 g2

5

0 S → E$
1 E → T + E
2 E → T
3 T → identifier

follow(E) = {$}

follow(T) = {+,$}

r1

r3r3

r2
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SLR Limitations

• SLR uses LR(0) item sets

• Can remove some (but not all) shift/reduce 
conflicts using follow set

• Consider

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L



15-411/611 © 2019 Goldstein 248

Example

S → •E

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

What are the 
reduce states?

1,2,3,5,7,8,9
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Example

S → •E

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

What are the 
reduce states?

1,2,3,5,7,8,9
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Example

S → •E$

E → • L = R

E → • R

L → • *R

L → • id

R → • L

0

S → E •$1

E → L • = R

R → L •
2

E → R •3

L → * • R

R → • L

L → • *R

L → • id

4

L → id •5

E→ L = • R

R → • L

L → • *R

L → • id

6

L → * R •7

R → L •8

E → L = R •9

R

L

id

* *

R

L

L

=

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E

id

id

R

*

shift/reduce 
conflict

follow(R) = {=,$}
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Problem with SLR

• Reduce on ALL terminals in FOLLOW set

• FOLLOW(R) = FOLLOW(L)

• But, we should never reduce R → L on ‘=‘ 
I.e., R=… is not a viable prefix for a right 
sentential form

• Thus, there should be no reduction in state 2

• How can we solve this?

S → L = R

  | R

L → * R

 | id

R → L

S → L  = R

R → L 

2
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• An LR(1) item is an LR(0) item combined with a 
single terminal (the lookahead)

• [X →   , a] Means

–  is at top of stack

– Input string is derivable from a

• In other words, when we reduce X → , a had 
better be the look ahead symbol.

• Or, Only put ‘reduce by X → ’ in action[s,a]
• Can construct states as before, but have to 

modify closure

LR(1) Items
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What LR(1) Items Mean

• [X →    , a]
input is consistent with X →   

• [X →    , a]
input is consistent with X →    and we 
have already recognized 

• [X →    , a]
input is consistent with X →    and we 
have already recognized  

• [X →    , a]
input is consistent with X →    and if 
lookahead symbol is a, then we can reduce 
to X
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LR(1) Closure 

closure(state)

 repeat

  foreach item A → a•Xb, t in state

   foreach production X → w 

     and each terminal t’ in FIRST(bt)

    state.add(X → •w, t’)

 until state does not change

 return state
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Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L
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Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L
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Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L
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Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L
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Closure

closure({S → •E$, ?}) =

S → •E$, ?
E → •L = R, $
E → •R, $
L → •id, =
L → •*R, =
R → •L, $
L → •id, $
L → •*R, $

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L
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LR(1) Example

S → •E$  ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0

0 S → E$
1 E → L = R
2 E → R
3 L → id
4 L → *R
5 R → L

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

R

*

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

L → id• $
L → id• =

5
id

S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R
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LR(1) Example

S → •E$  ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0 S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R
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Parsing Table

• 14 states versus 10 LR(0) states

• In general, the number of states (and 
therefore size of the parsing table) is much 
larger with LR(1) items
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LALR: Lookahead LR

• More powerful than SLR

• Given LR(1) states, merge states that are 
identical except for lookaheads

• End up with same size table as SLR

• Can this introduce conflicts?
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Merge-able states

S → •E$ ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0 S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

L → *•R $
R → •L $
L → •id $
L → •*R $

12

*

*
id

L

L → *R• $13

R
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Merge-able states

S → •E$  ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0 S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

L → id• $11

L

id

12

*

id
L

L → *R• $13 R
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Merge-able states

S → •E$  ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0 S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

R → L• $10

E → L = R• $9

R

11

L

id

12

*

L
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Merge-able states

S → •E$  ?
E → •L = R $
E → •R  $
L → •id  =
L → •*R  =
R → •L  $
L → •id  $
L → •*R  $

0 S → E•$ ?1

E → L •= R $

R → L• $
2

E

L

E → R• $3

R

L → *•R  =
L → *•R  $
R → •L  =
R → •L  $
L → •id  =
L → •*R  =
L → •id  $
L → •*R  $

4
*

*

L → id• $
L → id• =

5
id

E → L =• R $
R → •L $
L → •id $
L → •*R $

6
=

id

R → L• =
R → L• $

7L

L → *R• =
L → *R• $

8

E → L = R• $9

R

L

id*

R
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LALR

• Can generate parse table without 
constructing LR(1) item sets

– construct LR(0) item sets

– compute lookahead sets

• more precise than follow sets

• LALR is used by most parser generators 
(e.g., bison)



15-411/611 © 2019 Goldstein 269

Recap

• LR(0) not very useful

• SLR uses follow sets to reduce

• LALR uses lookahead sets

• LR(1) uses full lookahead context
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Power of shift-reduce parsers

• There are unambiguous grammars which 
which cannot be parsed with shift-reduce 
parsers.

• Such grammars can have

– shift/reduce conflicts

– reduce/reduce conflicts

• There grammars are not LR(k)

• But, we can often choose shift or reduce to 
recognize what want. 
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Expression Grammars & Precedence

E := E*E

    | E+E

    | id

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E
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Expression Grammars & Precedence

E := E*E

    | E+E

    | id

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E*

+

E



Handling Ambiguity
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E := E*E

    | E+E

    | id

What to do on + or *?
- shift
- reduce by E → E+E?

E := E *  E

E :=  E * E

E :=  E + E

E :=  id

S’ :=  E

E :=  E * E

E :=  E + E

E :=  id

S’ := E 

E := E  * E

E := E  + E

E := E * E 

E := E  * E

E := E  + E

E := E +  E

E :=  E * E

E :=  E + E

E :=  id

E := E + E 

E := E  * E

E := E  + E

E

* +

E
E*

+

E



Bison

• Precedence and Associativity declarations

• Precedence derived from order of directivies: 
from lowest to highest

• Associativity from %left, %right, %nonassoc 

• Can be attached to rules as well (This can 
solve the dangling if-else problem
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Dangling Else

S := if E then S

 | if E then S else S

 | other

• We can be in the following state:

  … if E then S   else … $

• What do we do?

– shift the else (hoping to reduce by second rule)

– reduce by first rule

We will see a clean way to deal 
with this in a shift-reduce parser.



Next Time

• From words to sentences.

• From regular languages to context free 
languages.

• Parsing
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