
15-411/15-611 Compiler Design

Seth Copen Goldstein

IR Trees

Basic Liveness

Basic Lexing

15-411/611 © 2019-21 Goldstein 1

February 3, 2026

Today

• From AST ⇒ Tree IR

• Basic Blocks

• Liveness across Control Flow

• Simple Lexing

15-411/611 © 2019-21 Goldstein 2

Compiler Phases

Lex
Pars

e
Semantics translation

instruction
selection

register
allocation

code
generation

optimization

Abstract syntax
tree

AST+symbol tables

Intermediate Representation (tree)

Code
Triples

source
code

token
s

15-411/611 © 2019-21 Goldstein 3

Compiler Phases

15-411/611 © 2019-21 Goldstein 4

Characters ⇒

Tokens ⇒

AST ⇒

AST ⇒

AST ⇒

IR Trees ⇒

Abs Asm ⇒

Abs Asm ⇒

ASM ⇒

Lex

Parse

Elaborate

Semantic Analysis

Translate

Munch

Optimize

Select

Reg Alloc

⇒ Tokens

⇒ AST

⇒ AST

⇒ AST

⇒ IR Trees

⇒ Abs Asm

⇒ Abs Asm

⇒ ASM

⇒ ASM

AST

e ::=n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

S ::=assign(x,e)

| if(e,s1,s2)

| decl(x,𝜏,s)

| while (e,s)

| return e

| nop

| seq(s1,s2)
5

Translation to IR Trees

• Translate from AST into IR Trees
• Goals:

– Isolate side-effects
• Make order of execution explicit
• Support optimization of pure expressions

– Make control flow explicit

• Tree IR contains
– pure expressions p
– commands c
– a program r

• Any expression which can have a side-
effect must be a top-level expression.

15-411/611 © 2019-21 Goldstein 6

The Tree IR

p ::= n | x | p1⊕ p2

c ::= x←p

| x←p1⊘ p2

| x←f(p1, p2, …, pn)

| if (p1 ≷ p2) then lt else lf
| goto l

| l:

| return(p)

r ::= c1 ; … ; cn

7

Pure Expressions

Commands

Programs

Translating (Integer) Expressions

9

e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

n | x | e1⊕ e2 ?

e1⊘ e2 ?

Translating (Integer) Expressions

10

e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

● exp becomes
○ seq of commands
○ pure-expression

● tr(e) = < r , p >

result of e is p

Translating (Integer) Expressions

11

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) = < ∙ , p1⊕ p2 >

Translating (Integer) Expressions

12

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 , p1⊕ p2 >

Example

13

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 , p1⊕ p2 >

Side Effects?

14

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) :=

Side Effects?

15

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 ; t ← p1 ⊘ p2 , t> (t fresh)

Translating (Integer) Expressions

16

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) :=

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1; r2 ; t ← p1 ⊘ p2 , t>

● tr(f(e1,...,en)) =

(t fresh)

Why call it Tree IR?

17

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) :=

tr(e1) = < r1, p1 >
tr(e2) = < r2, p2 >
< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) :=
tr(e1) = < r1, p1 >
tr(e2) = < r2, p2 >
< r1; r2 ; t ← p1 ⊘ p2 , t>

● tr(f(e1,...,en)) =
tr(e1) = < r1, p1 >
tr(en) = < rn, p2 >
< r1; r2 ; t ← f(p1,...,pn), t>

(t fresh)

(t fresh)

What next?

e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

s ::= assign(x,e)

| if(e,s1,s2)

| decl(x,𝜏,s)

| while (e,s)

| return e

| nop

| seq(s1,s2)
18

Statements

tr(assign(x,e))) :=

tr(if(e,s1,s2))

tr(decl(x,𝜏,s))

tr(while (e,s))

tr(return e) :=

tr(nop) :=

tr(seq(s1,s2)) :=

19

Statements

tr(assign(x,e))) := tr(e1) = < r1, p1 >

< r1; x ← p1 >

tr(if(e,s1,s2))

tr(decl(x,𝜏,s))

tr(while (e,s))

tr(return e) := tr(e1) = < r1, p1 >

< r1; return(p1) >

tr(nop) := ∙

tr(seq(s1,s2)) := < tr(s1); tr(s2) >

20

take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

21

take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

22

take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

23

tree-IR is in basic block form

take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

24

And yet,
something feels

wrong here.

cp(b, lt, lf) = < r >

cp(b, lt, lf) = < r >

where the last command in r is
a goto to either lt or lf based on b

cp(e1 ≷ e2, lt, lf)

cp(! e, lt, lf)

cp(e1 && e2, lt, lf)

cp(0, lt, lf)

cp(1, lt, lf)

cp(e, lt, lf)
25

Translating Boolean Expressions

cp(e1 ≷ e2, lt, lf) := tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1 ; r2 ; if (p1≷ p2) then lt else lf ;

cp(! e, lt, lf) := cp(e, lf, lt)

cp(e1 && e2, lt, lf) := cp(e1, lfresh, lf) ;

lfresh: cp(e2, lt, lf)

cp(0, lt, lf) := goto lf

cp(1, lt, lf) := goto lt
cp(e, lt, lf) := tr(e) = < r, p >

< r ; if (p != 0) then lt else lf >
26

Translating Boolean Expressions

tr(e) =

27

Translating Boolean Expressions

tr(e) = < cp(e, lt, lf) ;

lt: t ← 1 ; goto ldone ;

lf: t ← 0 ; goto ldone ; (lf, lf, ldone fresh)

ldone: >
29

take 2: tr(if(e,s1,s2))

30

tr(if(e,s1,s2)) :=

take 2: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

< cp(e, lt, lf) ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

31

Liveness Analysis

• An example of a dataflow analysis

• There are many different dataflow analysis.

• Liveness is an example of a backward, may
analysis

• We will see many others later on.

• Today we just extend to handle control
flow

15-411/611 © 2019 Goldstein 1

Computing liveness

15-411/611 © 2019 Goldstein 2

{ }

{}

{}

{}

{}

{}

{}

{}

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

Computing liveness

15-411/611 © 2019 Goldstein 3

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

Computing liveness

15-411/611 © 2019 Goldstein 4

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

What about before p?

Computing liveness

15-411/611 © 2019 Goldstein 5

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

Computing liveness

15-411/611 © 2019 Goldstein 6

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

Computing liveness

15-411/611 © 2019 Goldstein 7

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

Computing liveness

15-411/611 © 2019 Goldstein 8

{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

Computing liveness

15-411/611 © 2019 Goldstein 9

{ }

{ v }

{ w, v}

{ v }

{ u, x, w}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

Computing liveness

15-411/611 © 2019 Goldstein 10

{ }

{ v }

{ w, v}

{ v, x, w }

{ u, x, w}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

  w

  s

  u

If t is used at
point p, then it is
live immediately
before p

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

What about control flow?

• We need to extend ideas to programs with
control flow.

• Use Control Flow Graph (CFG) to represent
the program

– Nodes: program points, entry, exit

– Edges: (u,v)  G if control can potentially
 go from u to v

15-411/611 © 2019 Goldstein 11

15-411/611 © 2019 Goldstein 12

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

What about when there is more
than one “after p”?

15-411/611 © 2019 Goldstein 13

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z

t is alive at point p if there is an
execution path from p to some
use of t that does not go through
a definition of t.

15-411/611 © 2019 Goldstein 14

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

{z}

{x1}

{x1 x2}

{x1 x2}

{r x1}

{r x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

Liveness Analysis

• Each point in program has a liveIn set and a
liveOut set.

• Each point either adds to the set (any uses)

• Or removes from the set (any defs)

 In(p) = Uses(p)  (Out(p) – Defs(p))

 Out(p) =  In(s)

15-411/611 © 2019 Goldstein 15

s  Succ(p)

Algorithm

forall nodes, n  CFG

 In(n) = Out(n) = {}

Until no changes in In or Out sets:

 forall nodes, p  CFG

• Does this terminate?

• Practically, what is best order to visit nodes?

15-411/611 © 2019 Goldstein 16

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =  In(s)

s  Succ(p)

Alternative: Worklist Approach

forall nodes, n  CFG

 In(n) = {}

forall nodes, p  CFG:

 if v  Uses(p) – Defs(p) not in In(p)

 In(p)  { v }

 propogate to all pred(p) until v is
 defined or v is marked livein.

15-411/611 © 2019 Goldstein 17

15-411/611 © 2019 Goldstein 18

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

15-411/611 © 2019 Goldstein 19

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x1 }

{ x1}

{ x1}

{x1}

15-411/611 © 2019 Goldstein 20

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x2 x1 }

{ x1}

{x2 x1}

{x1}

{x2}

{x2}

{x2}

{x2}

15-411/611 © 2019 Goldstein 21

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x2 x1 }

{ x1}

{ x1}

{x1}

{ x2}

{x1 x2}

{x1 x2}

{x1 x2}

Etc.

Another Alternative

15-411/611 © 2019 Goldstein 22

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1 x2}

{x1 x2}

{r x1}

{r x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =  In(s)

s  Succ(p)

Improving Algorithm

15-411/611 © 2019 Goldstein 23

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1 x2}

{x1 x2}

{r x1}

{r x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =  In(s)

s  Succ(p)

What if only 1 successor?

Improving Algorithm

15-411/611 © 2019 Goldstein 24

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1 x2}

{x1 x2}

{r x1}

{r x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) = In(succ(p))

What if only 1 successor?

Improving Algorithm

15-411/611 © 2019 Goldstein 25

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1 x2}

{x1 x2}

{r x1}

{r x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (In(succ(p) – Defs(p))

What if only 1 successor?

Using BasicBlocks

• A basic block has a single entry point and a
single exit.

• Once you start a basic block you execute all of it

• Can create a single dataflow equation for the
block by expanding:
 In(p) = Uses(p)  (In(succ(p) – Defs(p))

• And, then instead of in and out sets for each
program point, you get ones for each basic block

15-411/611 © 2019 Goldstein 26

Basic Blocks

• Each basic block starts with a “leader”

– function entry

– label

• Ends with return or jmp

• Only 1 entry, only 1 exit

• If last statement is conditional jump, two
possible successors in control flow graph

15-411/611 © 2019-21 Goldstein 27

15-411/611 © 2019 Goldstein 28

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z

Defs={}, Uses={x2}

Defs={ z}, Uses={x1}

Defs={ ? }, Uses={ ? }

15-411/611 © 2019 Goldstein 29

x2  0

q  x2 / x1

t  q * x2

r  x1 - t

x1  x2

x2  r

z x1

ret z

Defs={}, Uses={x2}

Defs={ z}, Uses={x1}

Defs={ q t r x1 x2 }, Uses={x1 x2 }

Liveness Analysis

• An example of a dataflow analysis

• There are many different dataflow analysis.

• Liveness is an example of a backward, may
analysis

• We will see many others later on.

15-411/611 © 2019 Goldstein 30

Compiler Phases

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens

15-411/611 © 2019-21 Goldstein 31

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019-21 Goldstein 32

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

The Lexer

• Turn stream of characters into a stream of
tokens

– Strips out “unnecessary characters”

• comments

• whitespace

– Classify tokens by type

• keywords

• numbers

• punctuation

• identifiers

– Track location

– Associate with syntactic information
15-411/611 © 2019-21 Goldstein 33

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019-21 Goldstein 34

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

The Lexer

• Turn stream of characters into a stream of
tokens

15-411/611 © 2019-21 Goldstein 35

// create a user friendly descriptor for this arg.

// if key is absent, then use it. Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

 static char buffer[128]; /* format buffer */

 char* p = buffer;

 …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123

The Lexer

• Turn stream of characters into a stream of
tokens

– More concise

– Easier to parse

15-411/611 © 2019-21 Goldstein 36

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123

Lexical Analyzers

• Input: stream of characters

• Output: stream of tokens (with information)

• How to build?

– By hand is tedious

– Use Lexical Analyzer Generator, e.g., flex

• Define tokens with regular expressions

• Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.

15-411/611 © 2019-21 Goldstein 37

2. Flex Program Format

• A flex program has three sections:

Definitions
%%
RE rules & actions
%%

User code

3815-411/611 © 2019-21 Goldstein

wc As a Flex Program

%{

 int charCount=0, wordCount=0, lineCount=0;

%}

word [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

. {charCount++;}

%%

int main(void) {

 yylex();

 printf(“Chars %d, Words: %d, Lines: %d\n”,

 charCount, wordCount, lineCount);

 return 0;

}

3915-411/611 © 2019-21 Goldstein

Section 1: RE Definitions

• Format:
 name RE

• Examples:
digit [0-9]

letter [A-Za-z]

id {letter} ({letter}|{digit})*

word [^ \t\n]+

4015-411/611 © 2019-21 Goldstein

Regular Expressions in Flex

41

x match the char x
\. match the char .
"string" match contents of string of chars
. match any char except \n
^ match beginning of a line
$ match the end of a line
[xyz] match one char x, y, or z
[^xyz] match any char except x, y, and z
[a-z] match one of a to z

15-411/611 © 2019-21 Goldstein

Some number REs

42

[0-9] A single digit.

[0-9]+ An integer.

[0-9]+ (\.[0-9]+)? An integer or fp number.

[+-]? [0-9]+ (\.[0-9]+)? ([eE][+-]?[0-9]+)?

 Integer, fp, or scientific notation.

15-411/611 © 2019-21 Goldstein

Section 2: RE/Action Rule

• A rule has the form:
 name { action }

 re { action }

– the name must be defined in section 1

– the action is any C code

• If the named RE matches* an input
character sequence, then the C code is
executed.

43

* Some caveats here

15-411/611 © 2019-21 Goldstein

Section 3: C Functions

• Added to end of the lexical analyzer

4415-411/611 © 2019-21 Goldstein

Removing Whitespace

whitespace [\t\n]

%%

{whitespace} ;

. { ECHO; }

%%

int main(void)

{

 yylex();

 return 0;

}

45

empty action

ECHO macro

name

RE

15-411/611 © 2019-21 Goldstein

Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE -> NFA

• NFA -> DFA

• DFA -> Minimized DFA

• Limits of Regular Languages

15-411/611 © 2019-21 Goldstein 46

Under The Covers

• How to go from REs to a working scanner?

15-411/611 © 2019-21 Goldstein 47

Regular
Expressions

NFA
w/-moves

Minimal
DFA

DFA

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

Regular Languages

• Finite Alphabet, , of symbols.

• word (or string), a finite sequence of symbols
from .

• Language over  is a set of words from .

• Regular Expressions describe Regular Languages.

– easy to write down, but hard to use directly

• The languages accepted by Finite Automata are
also Regular.

15-411/611 © 2019-21 Goldstein 48

15-411/611 © 2019-21 Goldstein 49

Regular Expressions defined

• Base Cases:

– A single character a

– The empty string 

• Recursive Rules:
If R1 and R2 are regular expressions

– Concatenation R1R2

– Union R1|R2

– Closure R1*

– Grouping (R1)

•REs describe Regular Languages.

RE Examples

• even a’s

• odd b’s

• even a’s or odd b’s

• even a’s followed by odd b’s

15-411/611 © 2019-21 Goldstein 50

RE Examples

• even a’s
 RA = b* (a b* a b*)*

• odd b’s
 RB = a* b a* (b a* b a*)*

• even a’s or odd b’s
 RA | RB

• even a’s followed by odd b’s
 RA RB

15-411/611 © 2019-21 Goldstein 51

