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Today

• From AST ⇒ Tree IR

• Basic Blocks

• Liveness across Control Flow

• Simple Lexing
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Compiler Phases
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Characters ⇒

Tokens ⇒

AST ⇒

AST ⇒

AST ⇒

IR Trees ⇒

Abs Asm ⇒

Abs Asm ⇒

ASM ⇒

Lex

Parse

Elaborate

Semantic Analysis

Translate

Munch

Optimize

Select

Reg Alloc

⇒ Tokens

⇒ AST

⇒ AST

⇒ AST

⇒ IR Trees

⇒ Abs Asm

⇒ Abs Asm

⇒ ASM

⇒ ASM



AST

e ::=n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

S ::=assign(x,e)

| if(e,s1,s2)

| decl(x,𝜏,s)

| while (e,s)

| return e

| nop

| seq(s1,s2)
5



Translation to IR Trees

• Translate from AST into IR Trees
• Goals:

– Isolate side-effects
• Make order of execution explicit
• Support optimization of pure expressions

– Make control flow explicit

• Tree IR contains
– pure expressions p
– commands c
– a program r

• Any expression which can have a side-
effect must be a top-level expression.
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The Tree IR

p ::= n | x | p1⊕ p2

c ::= x←p

| x←p1⊘ p2

| x←f(p1, p2, …, pn)

| if (p1 ≷ p2) then lt else lf
| goto l

| l:

| return(p)

r ::= c1 ; … ; cn

7

Pure Expressions

Commands

Programs



Translating (Integer) Expressions

9

e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

n | x | e1⊕ e2 ?

e1⊘ e2 ?



Translating (Integer) Expressions
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e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

● exp becomes
○ seq of commands
○ pure-expression

● tr(e) = < r , p >

result of e is p



Translating (Integer) Expressions
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) = < ∙ , p1⊕ p2 >



Translating (Integer) Expressions
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 , p1⊕ p2 >



Example

13

● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 , p1⊕ p2 >



Side Effects?
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) := 



Side Effects?
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 ; t ← p1 ⊘ p2 , t> (t fresh)



Translating (Integer) Expressions
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) := 

tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >  

< r1; r2 ; t ← p1 ⊘ p2 , t>

● tr(f(e1,...,en)) = 

(t fresh)



Why call it Tree IR?
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● tr(n) = < ∙ , n >
● tr(x) = < ∙ , x >
● tr(e1⊕ e2) := 

tr(e1) = < r1, p1 >
tr(e2) = < r2, p2 >  
< r1; r2 , p1⊕ p2 >

● tr(e1 ⊘ e2) := 
tr(e1) = < r1, p1 >
tr(e2) = < r2, p2 >  
< r1; r2 ; t ← p1 ⊘ p2 , t>

● tr(f(e1,...,en)) = 
tr(e1) = < r1, p1 >
tr(en) = < rn, p2 >  
< r1; r2 ; t ← f(p1,...,pn), t>

(t fresh)

(t fresh)



What next?

e ::= n | x | e1⊕ e2| e1⊘ e2| e1 ≷ e2

| f(e1,...,en) | !e | e1 && e2|e1 ? e2 : e3

s ::= assign(x,e)

| if(e,s1,s2)

| decl(x,𝜏,s)

| while (e,s)

| return e

| nop

| seq(s1,s2)
18



Statements

tr(assign(x,e))) :=

tr(if(e,s1,s2))

tr(decl(x,𝜏,s))

tr(while (e,s))

tr(return e) :=

tr(nop) :=

tr(seq(s1,s2)) :=

19



Statements

tr(assign(x,e))) := tr(e1) = < r1, p1 >

< r1; x ← p1 >

tr(if(e,s1,s2))

tr(decl(x,𝜏,s))

tr(while (e,s))

tr(return e) := tr(e1) = < r1, p1 > 

< r1; return(p1) >

tr(nop) :=         ∙ 

tr(seq(s1,s2)) := < tr(s1); tr(s2) >

20



take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

21



take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

22



take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

23

tree-IR is in basic block form



take 1: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

tr(e) = < r, p >

< r ;

if (p != 0) then lt else lf ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

24

And yet,
something feels 

wrong here.



cp(b, lt, lf) = < r >

cp(b, lt, lf) = < r >

where the last command in r is
a goto to either lt or lf based on b

cp(e1 ≷ e2, lt, lf)

cp(! e, lt, lf)

cp(e1 && e2, lt, lf)

cp(0, lt, lf)

cp(1, lt, lf)

cp(e, lt, lf)
25



Translating Boolean Expressions

cp(e1 ≷ e2, lt, lf) := tr(e1) = < r1, p1 >

tr(e2) = < r2, p2 >

< r1  ; r2 ; if (p1≷ p2) then lt else lf ;  

cp(! e, lt, lf) := cp(e, lf, lt)

cp(e1 && e2, lt, lf) := cp(e1, lfresh, lf) ;

lfresh: cp(e2, lt, lf)

cp(0, lt, lf) := goto lf

cp(1, lt, lf) := goto lt
cp(e, lt, lf) := tr(e) = < r, p >

< r ; if (p != 0)  then lt else lf > 
26



Translating Boolean Expressions

tr(e) = 

27



Translating Boolean Expressions

tr(e) = < cp(e, lt, lf) ;

lt: t ← 1 ; goto ldone ;

lf: t ← 0 ; goto ldone ; (lf, lf, ldone fresh)

ldone: >
29



take 2: tr(if(e,s1,s2))

30

tr(if(e,s1,s2)) :=



take 2: tr(if(e,s1,s2))

tr(if(e,s1,s2)) :=

< cp(e, lt, lf) ;

lt : s1 ; goto l3 ;

lf : s2 ; goto l3 ;

l3: >

(lt, lf, l3 fresh)

31



Liveness Analysis

• An example of a dataflow analysis

• There are many different dataflow analysis.

• Liveness is an example of a backward, may 
analysis

• We will see many others later on.

• Today we just extend to handle control 
flow
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Computing liveness
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{ }

{}

{}

{}

{}

{}

{}

{}

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

What about before p?



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



Computing liveness
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{ }

{ v }

{ w, v}

{ v }

{ u, x, w}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



Computing liveness
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{ }

{ v }

{ w, v}

{ v, x, w }

{ u, x, w}

{ w, s, u }

{ s, u }

{ u }

v  1

w  v + 3

x  w + v

u  v

s  u + x

   w

   s

   u

If t is used at 
point p, then it is 
live immediately 
before p 

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p



What about control flow?

• We need to extend ideas to programs with 
control flow.

• Use Control Flow Graph (CFG) to represent 
the program

– Nodes: program points, entry, exit

– Edges: (u,v)  G if control can potentially 
 go from u to v
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

What about when there is more 
than one “after p”?
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z

t is alive at point p if there is an 
execution path from p to some 
use of t that does not go through 
a definition of t.
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z

t is live at p if:
• it is live after p &

it is NOT defined at p
• it is used in p

{z}

{x1}

{x1  x2}

{x1  x2}

{r  x1}

{r  x2}

{t x1 x2}

{q x1 x2}

{x1 x2}



Liveness Analysis

• Each point in program has a liveIn set and a 
liveOut set.

• Each point either adds to the set (any uses)

• Or removes from the set (any defs)

 In(p) = Uses(p)  (Out(p) – Defs(p))

 Out(p) =           In(s)

15-411/611 © 2019 Goldstein 15

s  Succ(p)



Algorithm

forall nodes, n  CFG

 In(n) = Out(n) = {}

Until no changes in In or Out sets:

 forall nodes, p  CFG

• Does this terminate?

• Practically, what is best order to visit nodes?
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In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =           In(s)

s  Succ(p)



Alternative: Worklist Approach

forall nodes, n  CFG

 In(n) = {}

forall nodes, p  CFG:

 if v  Uses(p) – Defs(p) not in In(p)

  In(p)  { v } 

  propogate to all pred(p) until v is
   defined or v is marked livein.
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x1  }

{  x1}

{  x1}

{x1}
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x2 x1 }

{  x1}

{x2 x1}

{x1}

{x2}

{x2}

{x2}

{x2}
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x2 x1 }

{  x1}

{ x1}

{x1}

{ x2}

{x1 x2}

{x1 x2}

{x1 x2}

Etc.



Another Alternative
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1  x2}

{x1  x2}

{r  x1}

{r  x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =           In(s)

s  Succ(p)



Improving Algorithm
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1  x2}

{x1  x2}

{r  x1}

{r  x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) =           In(s)

s  Succ(p)

What if only 1 successor?



Improving Algorithm
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1  x2}

{x1  x2}

{r  x1}

{r  x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (Out(p) – Defs(p))
Out(p) = In(succ(p))

What if only 1 successor?



Improving Algorithm
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z
{z}

{x1}

{x1  x2}

{x1  x2}

{r  x1}

{r  x2}

{t x1 x2}

{q x1 x2}

{x1 x2}

In(p) = Uses(p)  (In(succ(p) – Defs(p))

What if only 1 successor?



Using BasicBlocks

• A basic block has a single entry point and a 
single exit.

• Once you start a basic block you execute all of it

• Can create a single dataflow equation for the 
block by expanding:
    In(p) = Uses(p)  (In(succ(p) – Defs(p))

• And, then instead of in and out sets for each 
program point, you get ones for each basic block
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Basic Blocks

• Each basic block starts with a “leader”

– function entry

– label

• Ends with return or jmp

• Only 1 entry, only 1 exit

• If last statement is conditional jump, two 
possible successors in control flow graph

15-411/611 © 2019-21 Goldstein 27
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z

Defs={}, Uses={x2}

Defs={ z}, Uses={x1}

Defs={ ? }, Uses={ ? }
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x2  0

q  x2 / x1

t  q * x2

r  x1 - t 

x1  x2

x2  r

z x1

ret z

Defs={}, Uses={x2}

Defs={ z}, Uses={x1}

Defs={ q t r x1 x2 }, Uses={x1 x2 }



Liveness Analysis

• An example of a dataflow analysis

• There are many different dataflow analysis.

• Liveness is an example of a backward, may 
analysis

• We will see many others later on.
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Compiler Phases

Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

tokens
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The Lexer

• Turn stream of characters into a stream of 
tokens
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// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …



The Lexer

• Turn stream of characters into a stream of 
tokens

– Strips out “unnecessary characters”

• comments

• whitespace

– Classify tokens by type

• keywords

• numbers

• punctuation

• identifiers

– Track location

– Associate with syntactic information
15-411/611 © 2019-21 Goldstein 33



The Lexer

• Turn stream of characters into a stream of 
tokens
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// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …



The Lexer

• Turn stream of characters into a stream of 
tokens

15-411/611 © 2019-21 Goldstein 35

// create a user friendly descriptor for this arg.  

// if key is absent, then use it.  Otherwise use longkey

char*

ArgDesc::helpkey(WhichKey keytype, bool includebraks)

{

    static char buffer[128]; /* format buffer */

    char* p = buffer;

    …

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123



The Lexer

• Turn stream of characters into a stream of 
tokens

– More concise

– Easier to parse
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CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID 

RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI 

CHAR STAR ID EQ ID SEMI …

Position: 4,0
Position: 5,40

text: “includebraks”

Position: 6,23

value: 123



Lexical Analyzers

• Input: stream of characters

• Output: stream of tokens (with information)

• How to build?

– By hand is tedious

– Use Lexical Analyzer Generator, e.g., flex

• Define tokens with regular expressions

• Flex turns REs into Deterministic Finite 
Automata (DFA) which recognizes and returns 
tokens.
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2.  Flex Program Format

• A flex program has three sections:

Definitions
%% 
RE rules & actions
%%

User code
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wc As a Flex Program

%{ 

  int charCount=0, wordCount=0, lineCount=0;

%}

word   [^ \t\n]+

%%

{word} {wordCount++; charCount += yyleng; }

[\n] {charCount++; lineCount++;}

.  {charCount++;}

%%

int main(void) {

 yylex();

   printf(“Chars %d, Words: %d, Lines: %d\n”,

      charCount,  wordCount,  lineCount);

   return 0;

}
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Section 1: RE Definitions

• Format:
   name  RE

• Examples:
digit    [0-9]

letter    [A-Za-z]

id     {letter} ({letter}|{digit})*

word      [^ \t\n]+
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Regular Expressions in Flex

41

x match the char x 
\. match the char . 
"string" match contents of string of chars 
. match any char except \n
^ match beginning of a line
$ match the end of a line
[xyz] match one char x, y, or z
[^xyz] match any char except x, y, and z 
[a-z] match one of a to z
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Some number REs

42

[0-9] A single digit. 

[0-9]+ An integer.

[0-9]+ (\.[0-9]+)? An integer or fp number.

[+-]? [0-9]+ (\.[0-9]+)? ([eE][+-]?[0-9]+)?

 Integer, fp, or scientific notation.
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Section 2: RE/Action Rule

• A rule has the form:
 name  { action }

 re  { action }

– the name must be defined in section 1

– the action is any C code

• If the named RE matches* an input 
character sequence, then the C code is 
executed.

43

* Some caveats here
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Section 3: C Functions

• Added to end of the lexical analyzer
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Removing Whitespace

whitespace      [ \t\n]

%%

{whitespace}    ;

.     { ECHO; }

%%

int main(void) 

{ 

 yylex(); 

 return 0;

}

45

empty action

ECHO macro

name

RE
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Today – part 1

• Lexing

• Flex & other scanner generators

• Regular Expressions

• Finite Automata

• RE -> NFA  

• NFA -> DFA  

• DFA -> Minimized DFA

• Limits of Regular Languages
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Under The Covers

• How to go from REs to a working scanner?
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Regular
Expressions

NFA
w/-moves

Minimal
DFA

DFA

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner



Regular Languages

• Finite Alphabet, , of symbols.

• word (or string), a finite sequence of symbols 
from .

• Language over  is a set of words from .

• Regular Expressions describe Regular Languages.

– easy to write down, but hard to use directly

• The languages accepted by Finite Automata are 
also Regular.
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Regular Expressions defined

• Base Cases:

– A single character a

– The empty string  

• Recursive Rules:
If R1 and R2 are regular expressions

– Concatenation R1R2

– Union R1|R2

– Closure R1*

– Grouping (R1)

•REs describe Regular Languages.



RE Examples

• even a’s
     

• odd b’s
     

• even a’s or odd b’s

• even a’s followed by odd b’s
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RE Examples

• even a’s
    RA = b* ( a b* a b* )*

• odd b’s
    RB = a* b a* (b a* b a*)*

• even a’s or odd b’s
     RA | RB

• even a’s followed by odd b’s
    RA  RB
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