IR Trees
Basic Liveness
Basic Lexing

15-411/15-611 Compiler Design

Seth Copen Goldstein

February 3, 2026

Today

e From AST = Tree IR

e Basic Blocks

. Liveness across Control Flow
. Simple Lexing

Compiler Phases

Abstract syntax

tree

e

15-411/611

Triples

© 2019-21 Goldstein

=
Lex Pirs 1 Semantics 4 translation \
ken AST+symbo\%J
S
Intermediate Representation (tree)
| Instruction | L register | code
> . 1 optimization . > .
selection allocation generation
Code T

Compiler Phases

Characters = Lex = Tokens
Tokens = Parse = AST
AST = Elaborate = AST
AST = Semantic Analysis = AST
AST = Translate = IR Trees
IR Trees = Munch = Abs Asm
Abs Asm = Optimize = Abs Asm
Abs Asm = Select = ASM
ASM = Reg Alloc = ASM

ANT

e :=n|x|e;,DeJe De,le 2e,
| fle,,....e,) | le | e; && e,|e; ? e, : e,

S ::=assign(x,e)
if(e,s,,s,)
decl(x, 7;s)
while (e,s)
return e
nop

seq(sy,s)

Translation to IR Trees

Translate from AST into IR Trees

Goals:

- lIsolate side-effects
« Make order of execution explicit
« Support optimization of pure expressions

- Make control flow explicit
Tree IR contains

- pure expressions p
_ commands C
- aprogram r

Any expression which can have a side-
effect must be a top-level expression.

15-411/611 © 2019-21 Goldstein

The Tree IR

nlx|p, @p, Pure Expressions

-'-'-'.-.

Xé? Commands
X$pL D p,

x&f(pg, P2y s P)

if (b;[2)p,) then |, else I,

goto /

[

return(p)

C;;...,C, Programs

Translating (Integer) Expressions

nix|le De,le De,le 2e,
| fle,,-..e,) | le| e; && e,|le; ? e, : e,

e <L €7
et

e,De,?

n|x|p, ®p,

X&<p

x&p; @ p;

x&f(p1, P2 s Pp)

if (p; 2 p,) then /, else I
goto /

I

return(p)

Cyj o C

n

Translating (Integer) Expressions

e = nlxle Dele De,le 2e,
| fle,,--.e)) | le| e; && e,le; ?e,: e

® exp becomes

P 2= n|x|p,Dp;
O seq of commands

e e EEE———— Cc n= x(—p

O pure-expression xp, @ p,
P
° tr(e) =<r,p> x&flp1, P2 s Pp)
o<

if (p; 2 p,) then /, else [,
result of eisp goto /

I
return(p)

r o= Ci4,C

n

Translating (Integer) Expressions

X

e tr(n)=<-,n>
® trix)=<-,x>

o trie; D e,) =<7 T>>"

V@Da <G-,0Cz,7 P = nl|x|p; Dp,
. (@QL7 T o on
006,480 1

if (p; 2 p,) then /, else I,
goto /

I

return(p)

r H= €y G,

Translating (Integer) Expressions

® tr(n)=<-,n>

® tr(x)=<-,x>
o tr(e; D e,):=

tr(ﬁﬁ =<r,p;>
tr(e,) =<r, p,>
<ry;r, b D p,>

n|x|p,@p,

X<p

x&p; O p;

x&f(p1, P21 s Py)

if (p; 2 p,) then /, else I
goto /

I

return(p)

Cy; s Cp

Example

+r(c gev)> k(e =<« ?7

fr(e) <0\
%j;a <Y /1%4'6‘1@6:,1, P,
g ¢ W'

tr(n)=<-:,n> p == nlx|p,®p,
trix) =<+, x> ¢ XK, o

__ x&p; O p,
tr(el @ ez) - xz ﬂpp P2 s pn)

|
|
tr(el) =<Tr, P> | if (p; 2 p,) then /, else /;
oto /
tr(e,) =<r, p,> : €
|

<r;t, b D p,>

I
return(p)

r = €y €,

Side Effects?

tr(n)=<-,n>

tr(x) =<+, x>

trie; @ ey) :=
tr(e;)=<r;, p; >
tr(e;) =<r, p,>
<r;ry,p; Dpy>

tr(e; @ e,) =

n|x|p;®Dp;

X&p

x&p; O p;

X<fP1, P2 s Pn)

if (p; 2 p,) then /, else /,
goto /

l:

return(p)

Cy; s C

n

14

Side Effects"
Xé 7‘/ d,
tr(n) = %

tr(x)
tr(e, ez) =

trie;) =<ry, p;> <¢)tJt<‘X/ﬁ;‘B7

tr(e,) =<r, py>

r
<ry;r,p @D p,>
trie; @ e,) := A

tre;) =<ry, p;>
tr(e,) =<r, py>
<r;r;tép;Qp,, t> (tfresh)

v(<)

Translating (Integer) Expressions

tr(n)=<-,n> p u= n|x|p,Dp,
tr(x) =<+, x> = XEp
tr(e; D e,) := x&p, D p,

xe] r vy pn,
if (p; 2 p,) then [, else /;

tr(e;) =<ry, p; >

tr(e,) =<r,, p,>

goto /
<ryry, p;® p;> I
trie; @ e,) := return(p)
tre;) =<ry, p; > r == ¢;..;¢C,

tre,)=<r,, p,> (tfresh)

<ryr; t&p;@py, t>
'(:(6’-1 2 +r(e\ = <¢.) L\‘Ei
tr(f(el;--:/rin% = \gr’((?b 36(';32,7 g@r
ryhsae (), 3

Why call it Tree IR?

tr(n)=<-,n>
tr(x) =<-, x>
tr(e; @ e,) :=
tr(e;)=<ry, p;>
tr(e,) =<r,, p,>
<r;r,p; D p,>
trie; @ e,) =
tr(e;)=<r, p; >
tr(e,) =<r,, p,>
<ry;ry;t&p;@p,, > (tfresh)
tr(f(e,,...,e,)) =
tr(e;) =<ry, p;>
tr(e,)=<r,, p,>
<r;ry;t&<flpg,...,p,), t> (tfresh)

What next?

e = nixle, De,le De,le 2e,
| fle,,....e,) | le | e; && e,|e; ? e, : e,

&

S .= assign(x,e) _
if(6,51152) 'ir((:‘)) ’ é:/};??
declfx,_z_fé? A=) TRNN
while (e,s) <(LJ xe €2

return e
nop '
) - Ccs7
s‘_g_(_‘ue 2 SSL t%’l? =D < Qﬂ‘(‘{)

Statements
tr(assign(x,e))) :=
tr(if(e,s,,S,))
tr(decl(x, 7;s))
tr(while (e,s))

tr(return e) :=

tr(nop) := p = nlxlp®p,
c = X€Ep
tr(seq(s,,s,)) := xép, @ p,
x<flp1, P2y s Pp)
if (p; 2 p;) then /, else /;
goto /
I
return(p)

r 2= €4} e} €,

Statements
tr(assign(x,e))) := tr(e;)=<r;, p,>
<Irpx<&p;>
tr(if(e,s,,s,))
tr(decl(x, 7;s))
tr(while (e,s))
tr(returne) := tr(e,) =<r, p; >
<ry; return(p,) >
tr(nop) :=

tr(seq(s,,s,)) := <tr(s,); tr(s,) >

take 1: tr(if(e,s;,s,))

/&
S

if (p; 2 p,) then J, else /;
goto /

I

return(p)

take 1: tr(if(e,s;,s,))

tr(if(e,s,;,s,)) =
trle)=<r,p>
<r;
if (o !=0) then /, else /;
l,:S,; goto I ;
lr:S,; goto /5 ;
l5: >
(/) I, I3 fresh)

take 1: tr(if(e,s;,s,))

tr(if(e,s,;,s,)) =

tr(e)=<r,p>

<r;

if (o !=0) then /, else /;

l,:s,; gotoly;

lr:S,; goto /5 ;

l5: >

(I, I, 15 fresh)

tree-IR is in basic block form

take 1: tr(if(e,s;,s,))

tr(if(e,s,,s,)) :=

trie)=<r,p>

<r;

if then /. else /. : And yet,
| S ERE something feels
l,:s;; gotoly; wrong here.

l5: >
(I, 15 15 fresh)

J cpbl [)=<r>
cp(b/lt,lf-<r> \

where the last command in ris
a goto to either [, or /. based on b

cple; 2 ey, 1, 1)

cp(le, I, Iy +r<e,>=§9&7.2
cp(€)&& ew (@) S\ v
cp(O0, I, I

cp(l, 1, 1)

cple, I, 1)

Translating Boolean Expressions

cple; 2 e, 1, 1) = tr(e;) =<ry, p;>
o
trle,) =<r, p,>
<r;;ry;if(p; 2 p,) thenl else I,

st
Cpfé:} l_ﬂ’ﬁhl [f))

cple; && ey, I, 1) -
- lfresh: Cp(é.?z, It’ lf) :ﬁo,s___ﬁ —

cp(0, /,, 1) goto .IL

cpll, 1, 1) ;= goto |,

<;'r_; if (p !=0) then /. else l‘ >

Cp(l €, lt) lf)

Translating Boolean Expressions

tr(e) =

cple; 2 ey, 1, f;]

cp(le, /, Iy)
cple; &&e,, /I, 1) :

C p(or !ﬂ' ;f)
cp(1, I, 1)
cple, I, I)

W —
—

tr(Ej) =< rl! pl >

trle;) =<ry p;>
<ry;ryif(p; 2 p,) then | else /;;

cple, Iy 1)
cpley lesn 1)
Iiresn: cp(€2, 1y 1)
goto |,

goto |,

trle)=<r,p>
<r;if(p!=0) then | else /; >

27

Translating Boolean Expressions

tr(e) =<cple, I, 1) ;
[:t&1;g0tol,,,.,
/f: t&< 0 , gOtO /done , (/f’ lf’ /done freSh)

l done: >

take 2: tr(if(e,s;,5,))

tr(ifle,s;,s,)) =
trie)=<r,p>

<r,

l,:s,; gotol;;
lr:s,; gotoly;

l3: >

if (p |=0) then /, else /;;

(I, I, 15 fresh)

take 2: tr(if(e,s ;,5,))
tr(if(e,s,,s,)) :=
<cple, I, 1) ;
l,:Ss;; goto /;;
lr:S,; goto /5 ;
l5: >
(I;) I, I5 fresh)

Liveness Analysis

e An example of a dataflow analysis
e There are many different dataflow analysis.

e Liveness is an example of a backward, may
analysis

e We will see many others later on.

e Today we just extend to handle control
flow

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

{1}
{}

{}
{}
{}
{}
{}
{}

© 2019 Goldstein

If tis used at
point p, then itis
live immediately
before p

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

e T o T . T o S . S = Y e T o)

© 2019 Goldstein

If tis used at
point p, then itis
live immediately
before p

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

© 2019 Goldstein

If tis used at
point p, then itis
live immediately
before p

What about before p?

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at
* jtisusedinp

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

C e T e T T Y S S T o)

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at ¢
* jtisusedinp

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

C e T e T T Y S S T o)

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at ¢
* jtisusedinp

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

e T e T . T . S S T o T)

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at
* jtisusedinp

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

C e T e T T Y S S T o)

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at ¢
* jtisusedinp

15-411/611

r1Tt+TrT Tt 1T

Computing liveness

i iy, by by by

© 2019 Goldstein

If tis used at
point p, then it is
live immediately
before p

tis live at p if:
e jtislive after p &

it is NOT defined at
* jtisusedinp

10

What about control flow?

e \We need to extend ideas to programs with
control flow.

e Use Control Flow Graph (CFG) to represent
the program

— Nodes: program points, entry, exit

— Edges: (u,v) € G if control can potentially
go fromutov

ret z

tislive at p if:
e jtislive after p &

it is NOT defined at p
e jtisusedinp

What about when there is more
than one “after p”?

15-411/611 © 2019 Goldstein

W/

t—q* L ret z

t is alive at point p if there is an
execution path from p to some

use of t that does not go through
a definition of t.

15-411/611 © 2019 Goldstein

15-411/611

© 2019 Goldstein

tis live at p if:
e jtislive after p &

it is NOT defined at p
e jtisusedinp

14

Liveness Analysis

e Each point in program has a liveln set and a
liveOut set.

e Each point either adds to the set (any uses)
e Or removes from the set (any defs)

In(p) = UsessE) / (Out(p) — Defs(p))
Out(p) = U In(s) A;:-(%)

s € Succ(p)

—

Algorithm

forall nodes, n
In(n) = Out(n) = {}

Until no changes in In or Out sets:
forall nodes, p € CFG

In(p) Uses(p) W (Out(p) — Defs(p))

e Does this terminate?
e Practically, what is best order to visit nodes?

Alternative: Worklist Approach

forall nodes, n € CFG
In(n) = {}
forall nodes, p € CFG:

i@ Uses(p) — Defs(p) not in In.gp)
In(p) U {v}

———
propogate to all Ered‘p) until v is

defined or v is marked livein.

15-411/611

© 2019 Goldstein

18

15-411/611

N\ {x;}
==)
[q < X/ X] 26— X,
' : {2}
[t<—q*x,] ret z

© 2019 Goldstein

19

15-411/611

{x,}
{x,}
{x,}
{x,}

{x; x;}

{ x.}

1\ {X;%q }
‘/XZ#__O\. {Xl}

[q < X/ X] 26— X,
' : {2}

[t<—q*x,] ret z

© 2019 Goldstein

20

15-411/611

1\ {X;%q }
{x,x,} ‘/ijo\. {x:}
[q < X/ X] 26— X,
{X1X2} ' | {Z}
[t<—q*x,] retz |

© 2019 Goldstein

Etc.

21

Another Alternative

M\ {x1 X}
X, #0
— iXlxz} J\-
[qe&/m] [Z¢— X4]
{ax;x,}
t<—q*x | [retz
‘ {tx; X,}
<X, -t
\ {r x,}
X{ € X,
! {r x.}
X, <— I

{x:}

{z}

Improving Algorithm

1\ {x; X3}
X, #0
—X %) — X
[q< X% /%] [26— X,]
laxixd 1 {2}
t<q*x [retz
| {tx; x,}
r<—x, -t
\ {r x,}
X, € X,
[{rxi}
Xy ¢ I

{X1 X3} What if only 1 successor?

Improving Algorithm

1\ {x; X3}
X, #0
—X %) — X
[q< X% /%] [26— X,]
laxixd 1 {2}
t<q*x [retz
| {tx; x,}
r<—x, -t
\ {r x,}
X, € X,
[{rxi}
Xy ¢ I

{X1 X3} What if only 1 successor?

Improving Algorithm

1\ {x1 X}
X, #0
— EXlxz} 4\ X}
[q <X / X] [26— X,]
laxixd 1 {2}
t<q*x, [retz
{tx; %5}

{X1 X3} What if only 1 successor?

Using BasicBlocks

e A basic block has a single entry point and a
single exit.

e Once you start a basic block you execute all of it

e Can create a single dataflow equation for the
block by expanding:
In(p) =(Uses(p) U (In(sugg(p) — Defs(p)) |
e And, then instead of in and out sets lz)r each
program point, you get ones for each basic block

Basic Blocks

Each basic block starts with a “leader”
— function entry

— |abel

Ends with return or jmp
Only 1 entry, only 1 exit

If last statement is conditional jump, two
possible successors in control flow graph

15-411/611

Defs={}, Uses={x,}

Defs={ z}, Uses= {xl}

‘-—_H

! ‘br
Defs={ ? }, Uses={ ? }
~— = N

© 2019 Goldstein

28

15-411/611

Defs={}, Uses={x,}

Defs={ z}, Uses={x,}

Defs={ qtrx;x, }, Uses={x; x, }

© 2019 Goldstein

29

Liveness Analysis

e An example of a dataflow analysis
e There are many different dataflow analysis.

e Liveness is an example of a backward, may
analysis

e We will see many others later on.

Compiler Phases

15-411/611

The Lexer

e Turn stream of characters into a stream of

tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..

© 2019-21 Goldstein

32

15-411/611

The Lexer

e Turn stream of characters into a stream of
tokens

— Strips out “unnecessary characters”

e comments
e whitespace
— Classify tokens by type
e keywords
e numbers
e punctuation
e identifiers

— Track location
— Associate with syntactic information

© 2019-21 Goldstein

33

15-411/611

The Lexer

e Turn stream of characters into a stream of

tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{
static char buffer[128]; /* format buffer */

char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI

CHAR STAR ID EQ ID SEMI ..

© 2019-21 Goldstein

34

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char¥*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{

static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

35

15-411/611 © 2019-21 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

— More concise
— Easier to parse

’

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019-21 Goldstein 36

Lexical Analyzers

e Input: stream of characters
e Qutput: stream of tokens (with information)

e How to build?

— By hand is tedious
— Use Lexical Analyzer Generator, e.g., flex

w

e Define tokens with regular expressions

e Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.

2. Flex Program Format

* A flex program has three sections:

Definitions
RE rules & actions

User code

wc As a Flex Program

3 {
int charCount=0, wordCount=0, lineCount=0;
%}
word [~ \t\n]+
%%
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
{charCount++;}
%%
int main (void) {
yylex();
printf (“Chars %d, Words: %d, Lines: %d\n”,
charCount, wordCount, lineCount);
return O;

15-411/611 © 2019-21 Goldstein

39

Section 1: RE Definitions

* Format:
name RE
* Examples:
digit [0-9]
letter [A-Za-Zz]
id {letter} ({letter}|{digit})*

word [~ \t\n]+

Regular Expressions in Flex

X matc
\. matc
"string" matc

matc
matc
matc
(xyz] matc
(Axyz] matc
a-2z] matc

15-411/611

n the char x

n the char.

n contents of string of chars
n any char except \n

n beginning of a line

n the end of a line

n one char x,y, orz

N any char except x, y, and z

noneofatoz

© 2019-21 Goldstein

41

Some number RESs

[0-9] A single digit.
[0-9]+ An integer.
[0-9]+ (\.[0-9]+)? Aninteger orfp number.

[+-1? [0-9]+ (\.[0-9]+)? ([eE][+-]1?[0-9]+)>
Integer, fp, or scientific notation.

Section 2: RE/Action Rule

e Arule has the form:

name { action }
re { action }

— the name must be defined in section 1
— the action is any C code

* |f the named RE matches™ an input

character sequence, then the C code is

executed. * Some caveats here

Section 3: C Functions

* Added to end of the lexical analyzer

Removing Whitespace

whitespace
%%
name -

{whitespace}

RE —

%%

int main(void)
{

yylex();
return O;

15-411/611

[\t\n]

/ empty action

14

{ ECHO;

© 2019-21 Goldstein

}

T

ECHO macro

45

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE -> NFA

NFA -> DFA

DFA -> Minimized DFA

Limits of Regular Languages

Under The Covers

e How to go from REs to a working scanner?

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

15-411/611 © 2019-21 Goldstein

47

Regular Languages

e Finite Alphabet, X, of symbols.

e word (or string), a finite sequence of symbols
from 2.

e Language over X is a set of words from 2.
e Regular Expressions describe Regular Languages.

— easy to write down, but hard to use directly

e The languages accepted by Finite Automata are
also Regular.

Regular Expressions defined

e Base Cases:
— A single character a
— The empty string €

e Recursive Rules:
If R, and R, are regular expressions

—Concatenation R{R,
—Union R{|R,
—Closure R*
—Grouping (R;)

e REs describe Regular Languages.

RE Examples

even a’s
odd b’s

even a’s or odd b’s
even a’s followed by odd b’s

RE Examples

even a’s

RA=Db*(ab*ab*)*
odd b’s

RE=a*ba*(ba*ba*)*
even a’s or odd b’s

RA | RB
even a’s followed by odd b’s

RA RB

