

Register Allocation – 2

SSA-based Register Allocation

15-411/15-611 Compiler Design

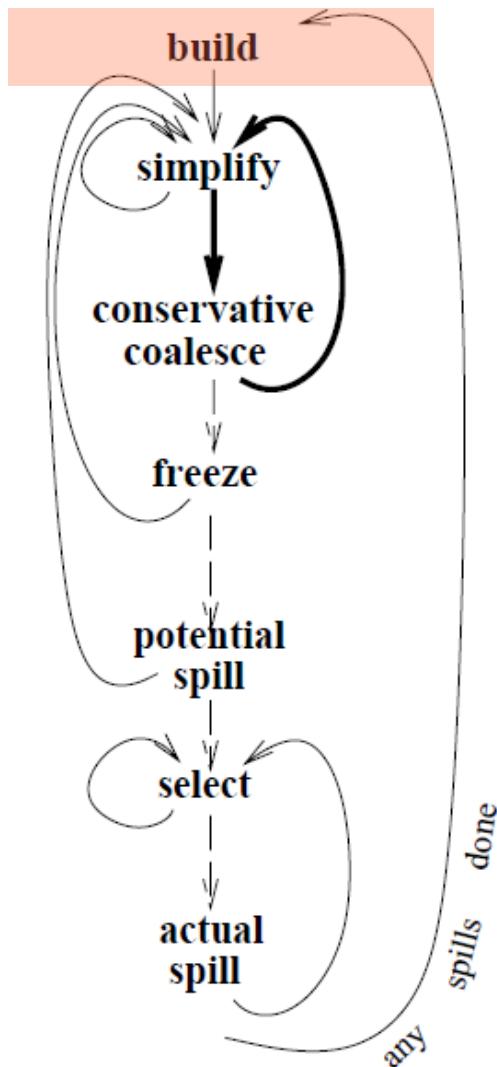
Seth Copen Goldstein

January 20, 2026

Today

- Iterated Register Allocation
 - Coalescing
 - Special registers
 - Spilling
 - Frame slot coalescing
 - Implementation
- SSA-Based Register Allocation
 - SSA
 - ϕ -functions
 - Chordal Graphs
 - Perfect Elimination Order

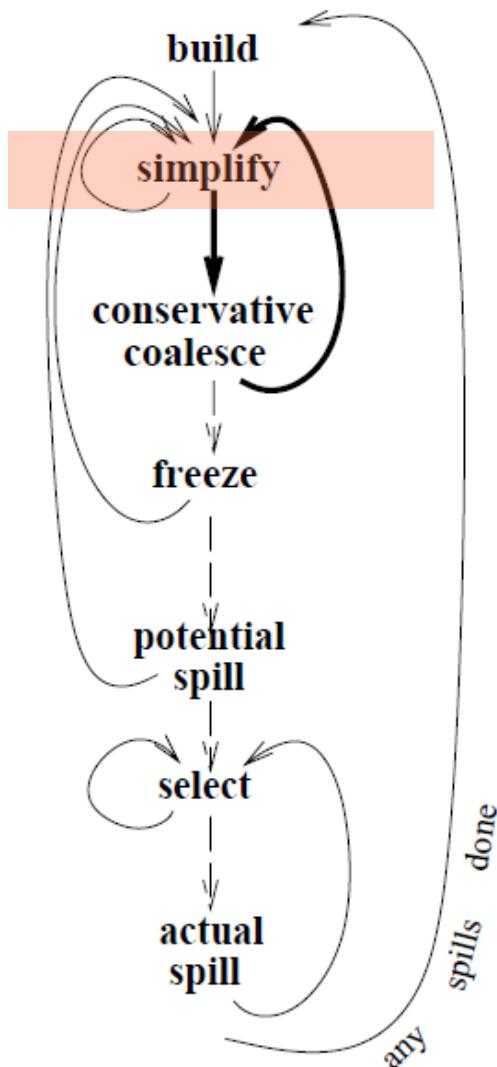
Iterated Register Coloring



Build:

- construct interference graph
 - Construct liveness information
 - Add edge (u, v) to IG if at point of definition of u, v is live.

Iterated Register Coloring

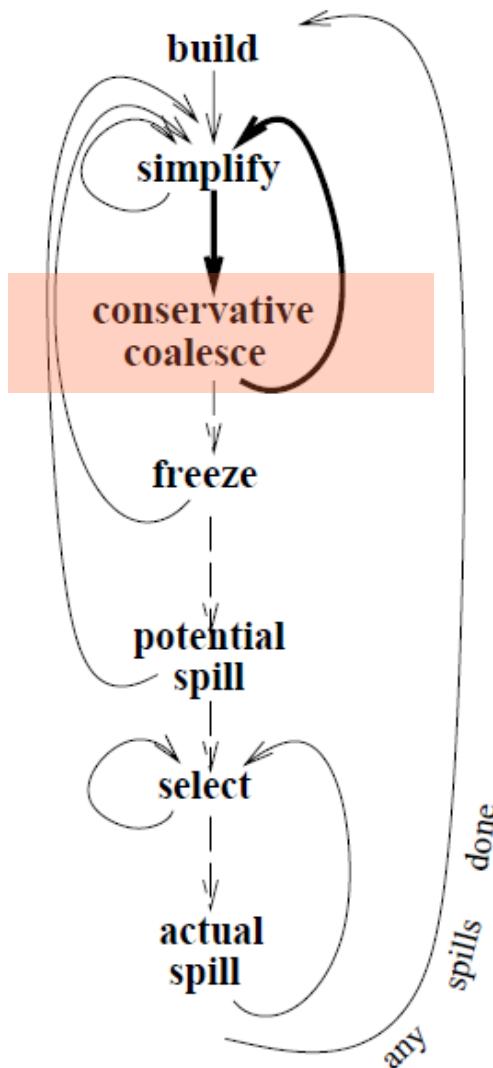


Simplify:

Repeat

- remove nodes with degree $< K$
- And, which are not “move related”

Iterated Register Coloring

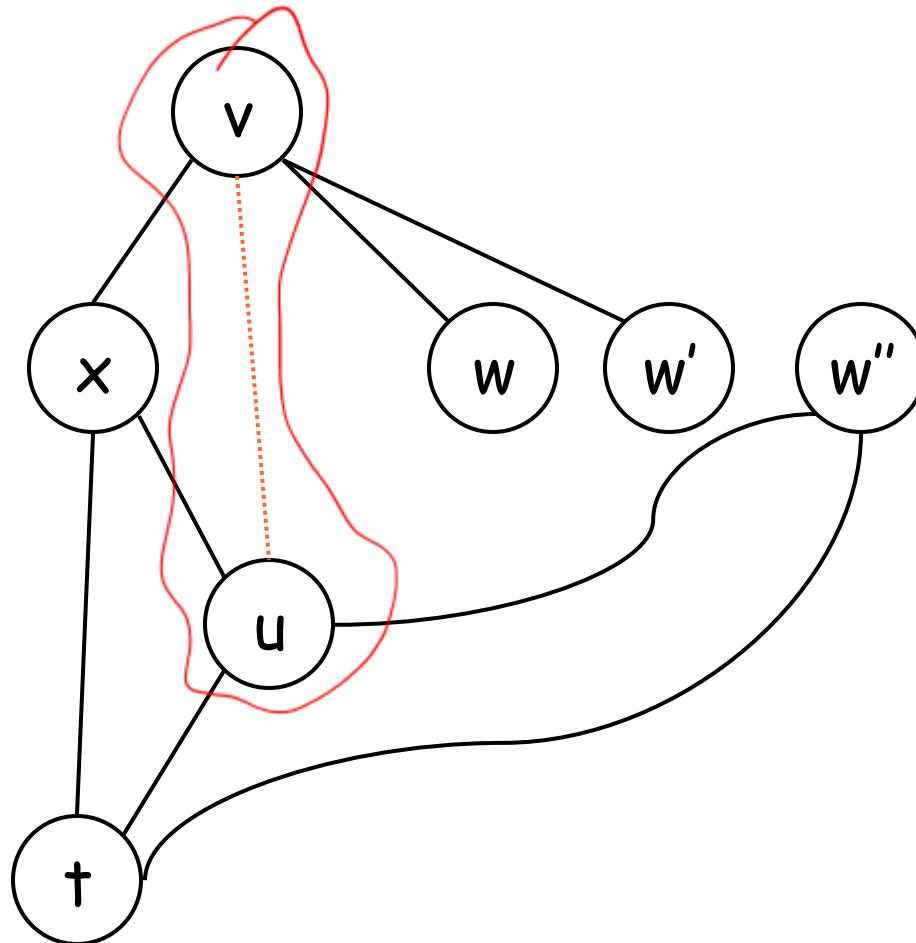


Coalesce:

- For any move related nodes:
 - if they pass conservative test
 - briggs for temp \leftrightarrow temp
 - preston for temp \leftrightarrow hard
 - then, mark move to be deleted
 - merge nodes
 - update degree of neighbors, etc.
 - back to simplify

Coalescing

```
v ← 1
w ← v + 3
M[] ← w
w' ← M[]
x ← w' + v
u ← v
t ← u + v
w'' ← M[]
← w'' + x
← t
← u
```



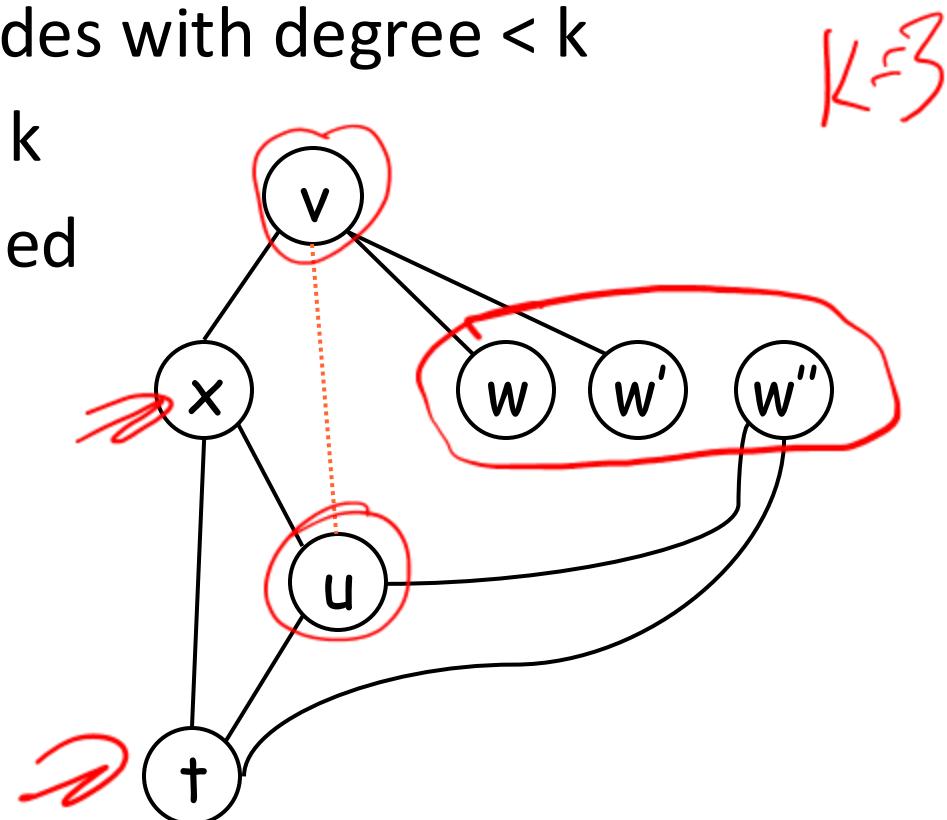
Can u & v be coalesced?
Should u & v be coalesced?

Coalescing

- Conservative or Aggressive?
- Aggressive:
 - coalesce even if potentially causes spill
 - Then, potentially undo
- Conservative:
 - coalesce if it won't make graph uncolorable
 - How to detect?

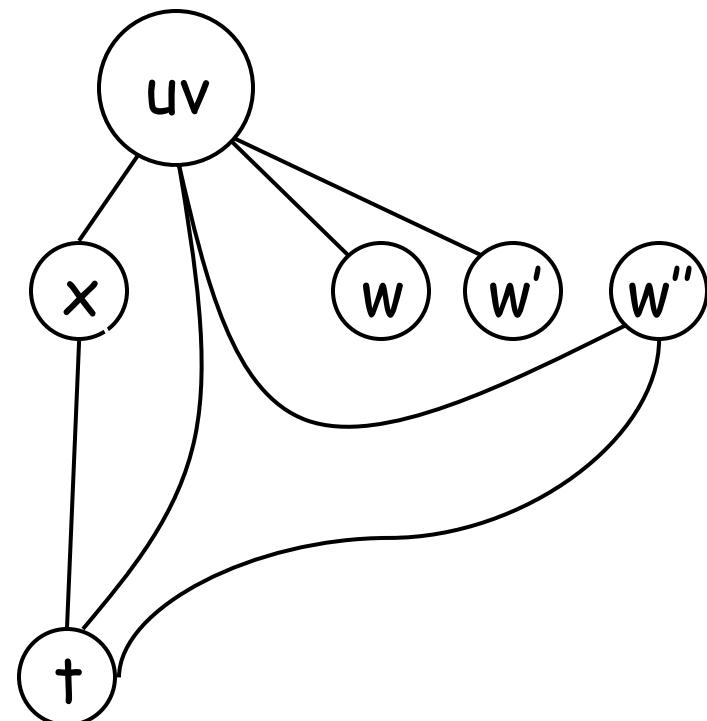
Briggs

- Can coalesce a and b if
(# of neighbors of ab with degree $> k$) $< k$
- Why?
 - Simplify removes all nodes with degree $< k$
 - # of remaining nodes $< k$
 - Thus, ab can be simplified



Briggs

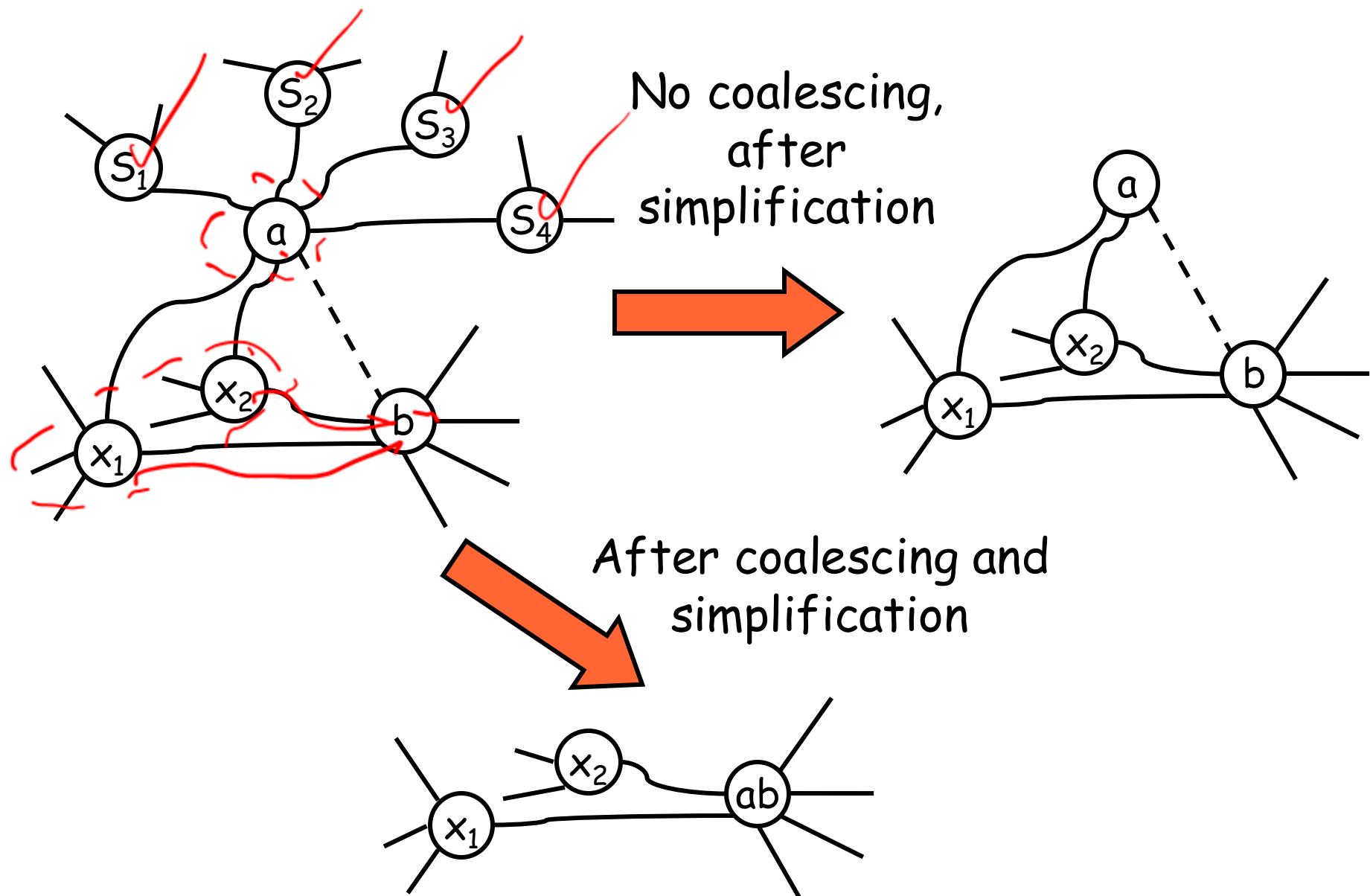
- Can coalesce a and b if
 $(\# \text{ of neighbors of } ab \text{ with degree} > k) < k$
- Why?
 - Simplify removes all nodes with degree $< k$
 - # of remaining nodes $< k$
 - Thus, ab can be simplified



Preston

- Can coalesce a and b if
 - foreach neighbor t of a
 - t interferes with b, or,
 - degree of t < k
- Why?
 - let S be set of neighbors of a with degree < k
 - If no coalescing, simplify removes all nodes in S, call that graph G^1
 - If we coalesce we can still remove all nodes in S, call that graph G^2
 - G^2 is a subgraph of G^1

Preston



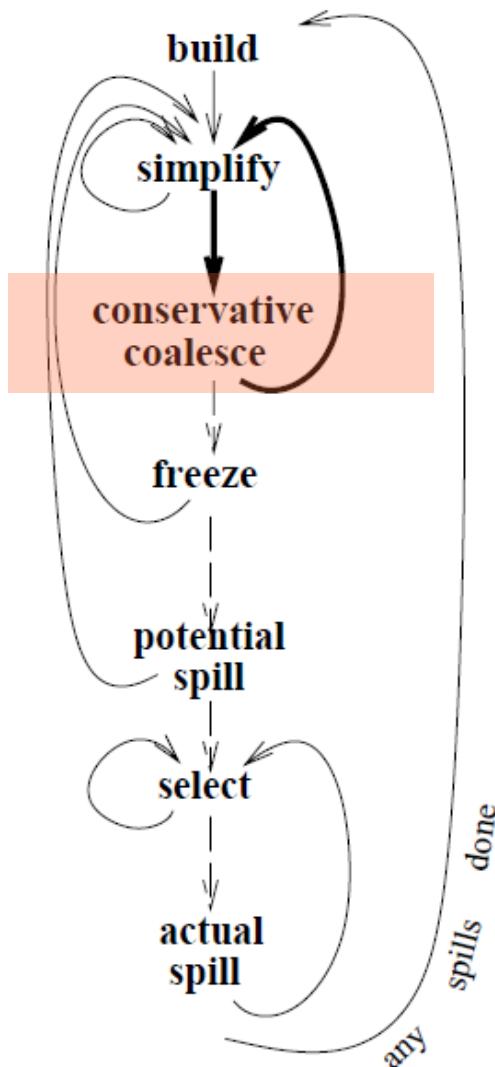
Why Two Methods?

- With Briggs one needs to look at:
neighbors of a & b
- With Preston, only need to look at
neighbors of a.
- As we will see, we will need to insert “hard”
registers into graph and they have LOTS of
neighbors
 - RAX, RCX, RDI, ...
 - Called hard registers
 - aka precolored nodes

Briggs and Preston

- With Briggs one needs to look at:
neighbors of a & b
- With Preston, only need to look at
neighbors of a.
- Briggs
Used when a and b are both temps
- Preston
Used when either a or b is precolored

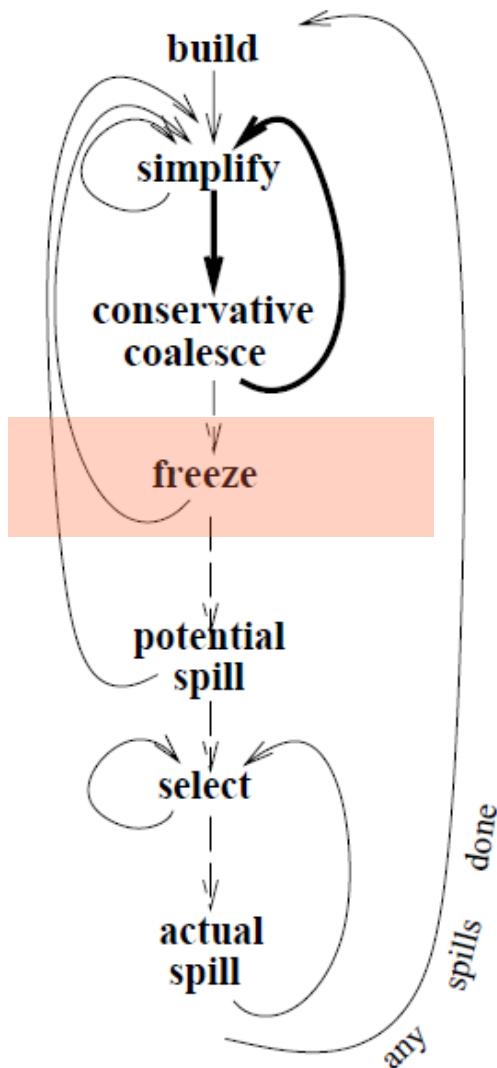
Iterated Register Coloring



Coalesce:

- For any move related nodes:
 - if they pass conservative test
 - briggs for temp \leftrightarrow temp
 - preston for temp \leftrightarrow hard
 - then, mark move to be deleted
 - merge nodes
 - update degree of neighbors, etc.
 - back to simplify

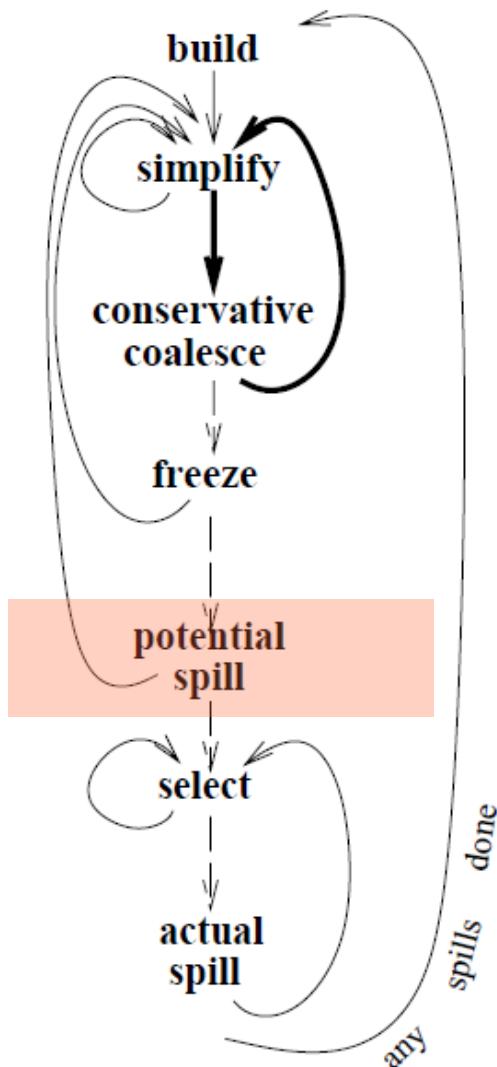
Iterated Register Coloring



Freeze:

- Mark any unremoved “move related” nodes as frozen
- E.g., treat them like regular nodes
- Go back to simplify

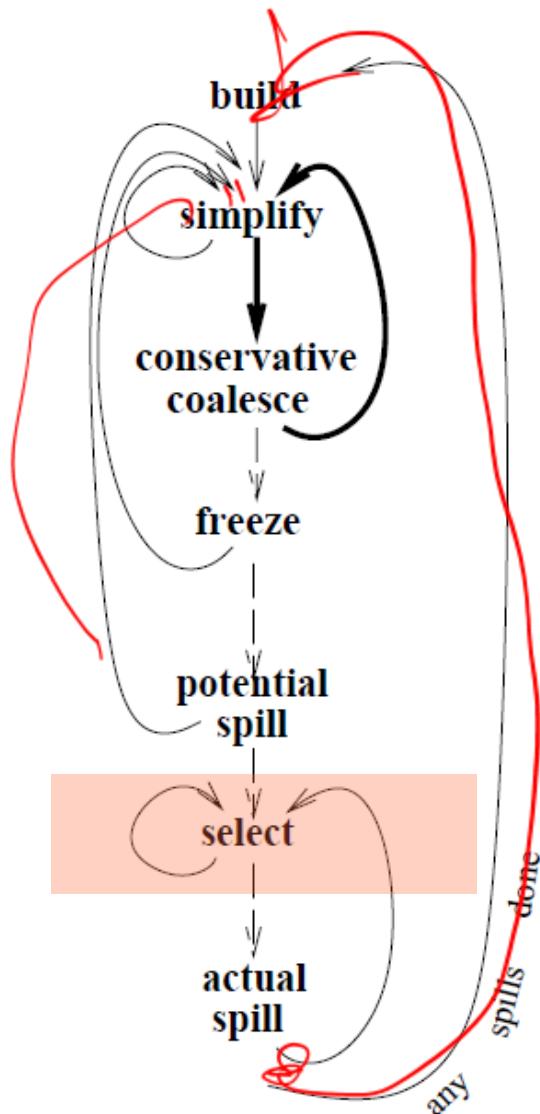
Iterated Register Coloring



Potential Spill:

- Select a node to spill
- remove it and push to stack
- go back to simplify

Iterated Register Coloring



Select:

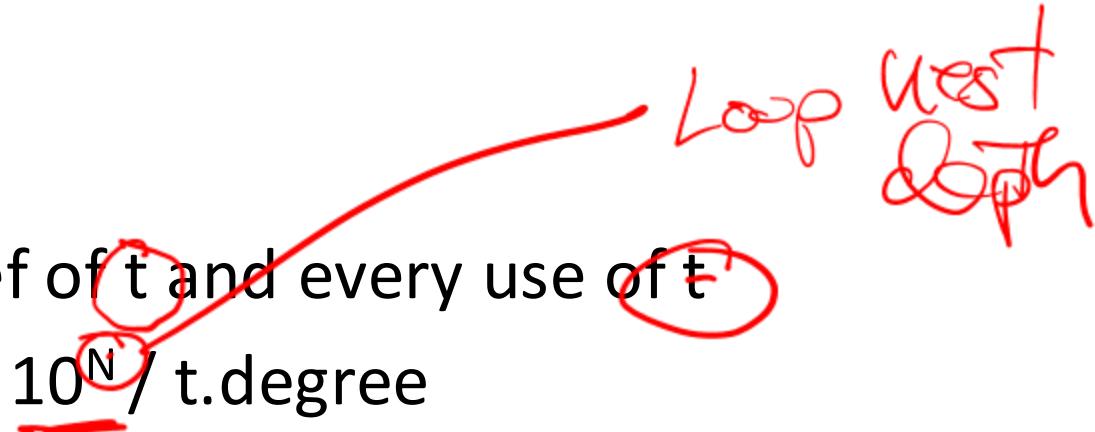
- Pop nodes, coloring as you go
- If you can't color, then do actual spill
- rewrite code
 - Will have to undo at least some coalescing (can you keep some?)
 - Insert spill code
- go back to build

“Details”

- How to choose a node to spill?
- How to limit size of stack frame?
- What about hard registers?

Spill Heuristics

- Choose a temp to map to stack frame
 - will be used as infrequently as possible
 - will be most likely to make IG colorable
- for each temp evaluate spillCost(t). Choose minimum to potentially spill
- For example:
 - spillCost(t):
 - t.cost = 0
 - for every def of t and every use of t
 - $t.cost += 10^N / t.degree$

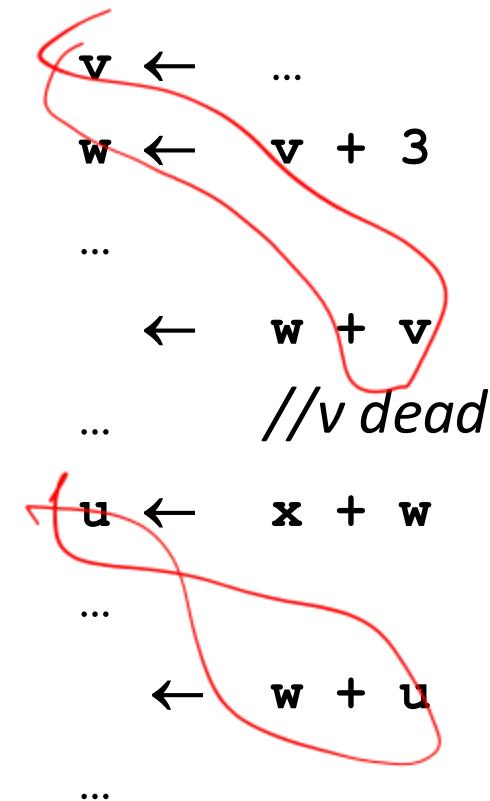


Choosing frame slots

- Want to minimize stack frame.
- if v and u need to be spilled,
they could go into same frame slot
- After register allocation is done,
can use coloring method ($k = ?$) to
color spill slots and use coalescing
 - minimizes frame slots needed
 - can help coalesce spill-spill moves

Choosing frame slots

- Want to minimize stack frame.
- if v and u need to be spilled,
they could go into same frame slot
- After register allocation is done,
can use coloring method ($k = ?$) to
color spill slots and use coalescing
 - minimizes frame slots needed
 - can help coalesce spill-spill moves



Choosing frame slots

- Want to minimize stack frame.
- if v and u need to be spilled,
they could go into same frame slot
- After register allocation is done,
can use coloring method ($k=\infty$) to
color spill slots and use coalescing
 - minimizes frame slots needed
 - can help coalesce spill-spill moves

What about special registers?

- Precolored nodes/hard registers
- Instructions with register requirements

`d ← a * b`

`ret x`

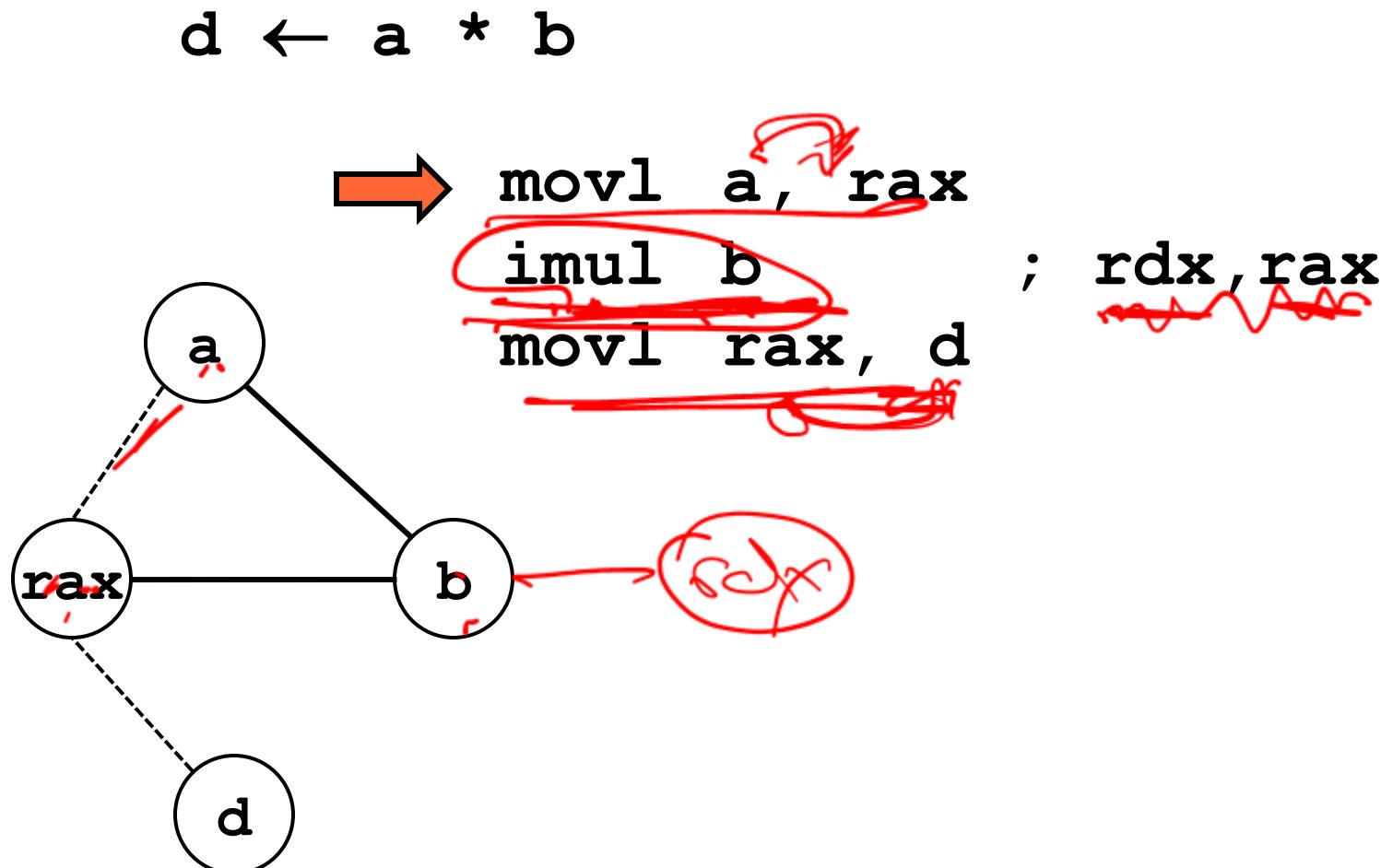
- Callee-save registers
 - x86-64: **RDI**, **RSI**, **RDX**, **RCX**, **R8**, **R9** must be saved by callee if callee wants to use them.
- Special registers: **RSP** or frame pointer

Precolored Nodes

- Some temps are real registers
- Obviously they interfere with each other
 - don't add edges in IG
 - just set degree to infinity
 - they can't be spilled. ☺
- Some interfere with all temps (e.g., frame pointer)
- Hope for coalescing
- Start “select” phase when only precolored nodes remain in IG

What about special registers?

- Instructions with register requirements

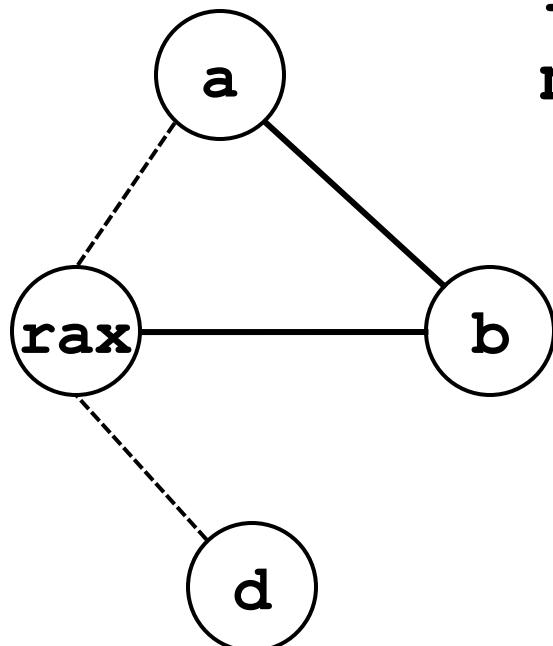


What about special registers?

- Instructions with register requirements

$d \leftarrow a * b$


```
movl a, rax
imul b          ; rdx, rax
movl rax, d
```



If all goes perfectly, then **a** & **d** will end up being coalesced with **rax**

What about special registers?

- Instructions with register requirements

$d \leftarrow a * b$

→ `movl a, rax`
`imul b ; rdx, rax`
`movl rax, d`

`ret x`

→ `movl x, rax`
`ret`

Preserving Callee-registers

- Move callee-reg to temp at start of proc
- Move it back at end of proc.
- What happens if there is no register pressure?
- What happens if there is a lot of register pressure?

prologue:

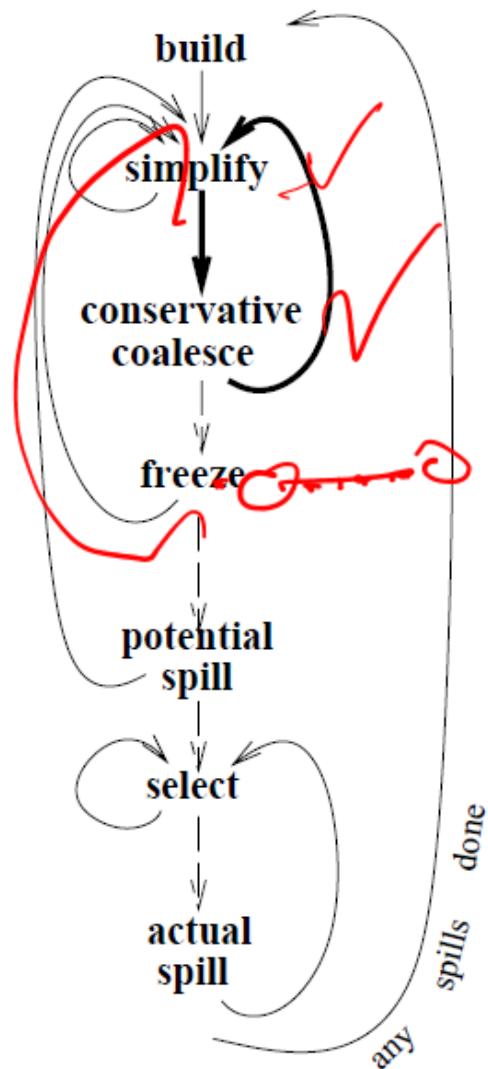
...

epilogue:

Using Caller Save Registers

- Prefer not to use caller save registers across calls
- How can we make this happen with existing machinery?

Iterated Register Coloring



In practice

- Iterated Register Coloring does a good job
- Building Interference Graph is Expensive
 - Calculating live ranges
 - graph is $O(n^2)$
 - Need quick test for interference
 - Need quick test for neighbors
- Coalescing is important
 - Many passes generate extra temps and moves
 - Aggressive requires fix-up (e.g., live range splitting)
- Spilling has biggest impact on generated code

Today

- Iterated Register Allocation
- SSA-Based Register Allocation
 - Def-Use chains
 - SSA
 - ϕ -functions (briefly)
 - Chordal Graphs
 - Perfect Elimination Order

Def-Use Chains

- Common Analysis in support of optimizations, register allocation, etc.
 - Find all the sites where a variable is used
 - Find the definition of a variable in an expression
- Traditional Solution: def-use chains
 - Link each triple defining a variable to all triples that use it
 - Link each use of a variable to its definition

Def-Use Chains

```
...  
for (i=0; i++; i<10) {  
... = ...;  
...  
}  
How is this related to  
register allocation?
```

Web

```
for (i=j; i++; i<20) {  
... = ...;  
}  
Unrelated uses of the same variable are mixed together  
– complicates analysis.
```

Def-Use chains are expensive

```
foo(int i, int j) {  
    ...  
    switch (i) {  
        case 0: x=3; break;  
        case 1: x=1; break;  
        case 2: x=6; break;  
        case 3: x=7; break;  
        default: x = 11;  
    }  
    switch (j) {  
        case 0: y=x+7; break;  
        case 1: y=x+4; break;  
        case 2: y=x-2; break;  
        case 3: y=x+1; break;  
        default: y=x+9;  
    }  
    ...  
}
```

Def-Use chains are expensive

```
foo(int i, int j) {
```

```
...
```

```
switch (i) {
```

```
case 0: x=3;
```

```
case 1: x=1;
```

```
case 2: x=6;
```

```
case 3: x=7;
```

```
default. x = 11;
```

```
}
```

```
switch (j) {
```

```
case 0: y=x+7;
```

```
case 1: y=x+4;
```

```
case 2: y=x-2;
```

```
case 3: y=x+1;
```

```
default: y=x+9;
```

```
}
```

```
...
```

In general,

N defs

M uses

$\Rightarrow O(NM)$ space and time

A solution is to limit each var to
ONE def site

Def-Use chains are expensive

```
foo(int i, int j) {
```

```
    ..  
    switch (i) {  
        case 0: x=3; break;  
        case 1: x=1; break;  
        case 2: x=6;  
        case 3: x=7;  
        default: x = 11;  
    }
```

x1 is one of the above x's

```
    switch (j) {  
        case 0: y=x1+7;  
        case 1: y=x1+4;  
        case 2: y=x1-2;  
        case 3: y=x1+1;  
        default: y=x1+9;  
    }
```

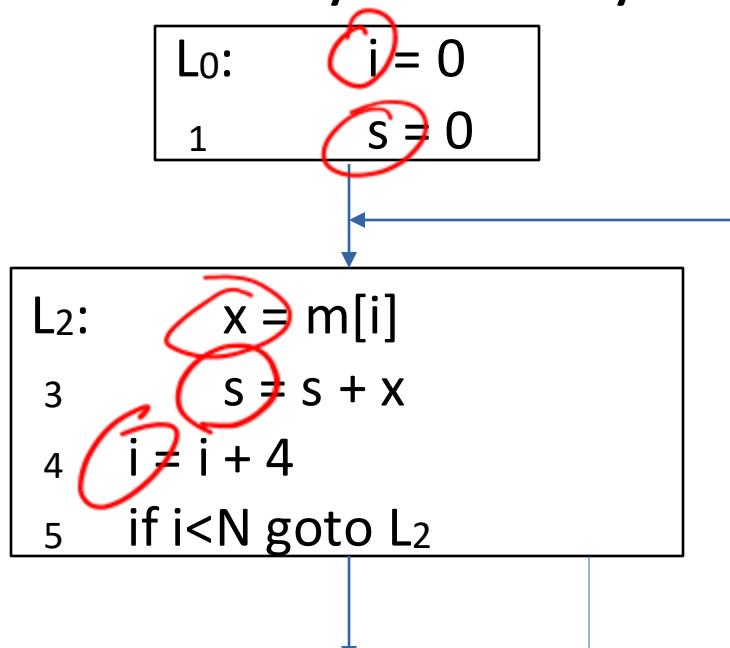
A possible solution is to limit
each var to ONE def site

Basic Blocks & Control Flow Graph

- Control Flow
 - what is potential sequence of instructions?
 - Only interested in transfers of control
 - jump
 - conditional jump
 - call
 - label (target of a transfer)
- Group together non-jumps into Basic Block
 - One entry point
 - One point of exit
 - When entered all instructions are executed
- Basic Blocks are nodes in Control Flow Graph

SSA

- Static single assignment is an IR where every variable has **ONE** definition in the program text
 - single **static** definition
 - (Could be in a loop which is executed dynamically many times.)



Not in SSA form:

- **i** and **s** have two static def sites
- **x** has only one static def site, but may be dynamically defined many times in loop.

SSA

- Static single assignment is an **IR** where every variable has only **ONE** definition in the program text
 - single **static** definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a straight-line code:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.

Advantages of SSA

- Makes du-chains explicit
- Makes dataflow optimizations
 - Easier
 - faster
- Improves register allocation
 - Makes building interference graphs easier
 - Easier register allocation algorithm
 - Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements

SSA History

- Developed by Wegman, Zadeck, Alpern, and Rosen in 1988
- Today used in most production compilers, e.g., gcc, llvm, most JIT compilers, ...

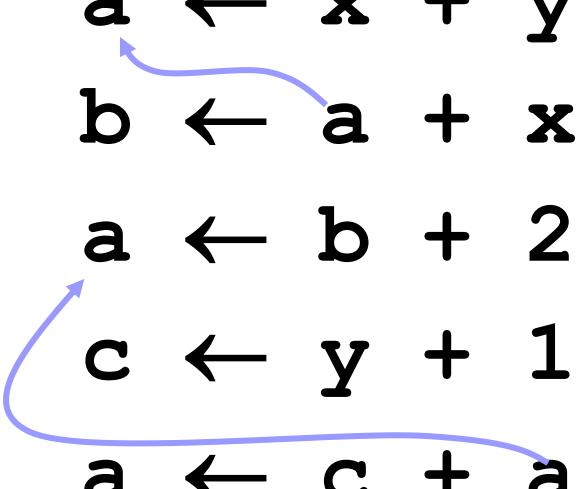
Straight-line SSA

$$\begin{array}{l} \text{a}_1 \leftarrow x + y \\ \text{b}_1 \leftarrow \text{a}_1 + x \\ \text{a}_2 \leftarrow \text{b}_1 + 2 \\ \text{c} \leftarrow y + 1 \\ \text{a}_3 \leftarrow \text{c} + \text{a}_2 \end{array}$$

- Straight forward to convert basic block into SSA
- Connect each use to its most recent definition

Straight-line SSA

```
a ← x + y
b ← a + x
a ← b + 2
c ← y + 1
a ← c + a
```



- Straight forward to convert basic block into SSA
- Connect each use to its most recent definition

Straight-line SSA

~~a~~ \leftarrow ~~x~~_P + ~~y~~_O
~~b~~ \leftarrow ~~a~~_V + ~~x~~
~~a~~_Z \leftarrow ~~b~~ + 2
~~c~~ \leftarrow ~~y~~ + 1
~~a~~ \leftarrow ~~c~~ + ~~a~~

for each variable a :

~~count[a] = 0~~

~~Stack[a] = [0]~~

rename_basic_block(B) =

for each instruction S in block B :

for each use of a variable x in S :

$i = \text{top}(\underline{\text{Stack}[x]})$

replace the use of x with x_i

for each variable a that S defines

$\text{count}[a] = \text{count}[a] + 1$

$i = \text{count}[a]$

push i onto $\text{Stack}[a]$

replace definition of a with a_i

Straight-line SSA

$a_1 \leftarrow x_0 + y_0$
 $b_1 \leftarrow a_1 + x_0$
 $a_2 \leftarrow b_1 + 2$
 $c_1 \leftarrow y_0 + 1$
 $a_3 \leftarrow c_1 + a_2$

count:

$a \rightarrow \textcircled{2} \textcircled{2} \textcircled{3}$
 $b \rightarrow \textcircled{1} \textcircled{1}$
 $c \rightarrow \textcircled{1} \textcircled{1}$

Stack:

$a: \textcircled{2} \textcircled{2} \textcircled{3}$
 $b: \textcircled{1} \textcircled{1}$
 $c: \textcircled{1} \textcircled{1}$

Straight-line SSA

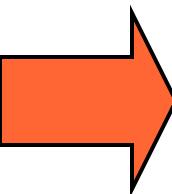
$$a \leftarrow x + y$$

$$b \leftarrow a + x$$

$$a \leftarrow b + 2$$

$$c \leftarrow y + 1$$

$$a \leftarrow c + a$$



$$a_1 \leftarrow x + y$$

$$b_1 \leftarrow a_1 + x$$

$$a_2 \leftarrow b_1 + 2$$

$$c_1 \leftarrow y + 1$$

$$a_3 \leftarrow c_1 + a_2$$

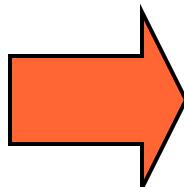
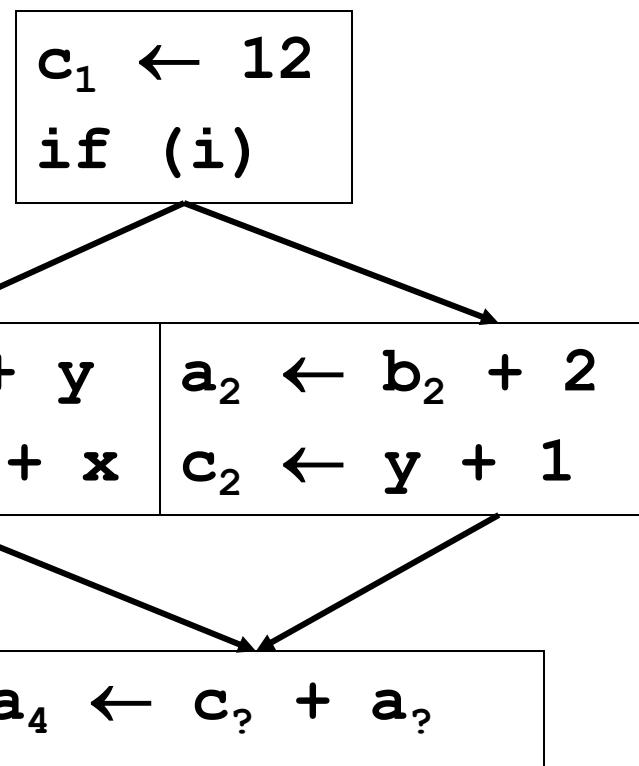
SSA

- Static single assignment is an **IR** where every variable has only **ONE** definition in the program text
 - single **static** definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
- **What about at joins in the CFG?**

Merging at Joins

```

c ← 12
if (i) {
    a1 ← x + y
    b ← a + x
} else {
    a2 ← b + 2
    c ← y + 1
}
    
```



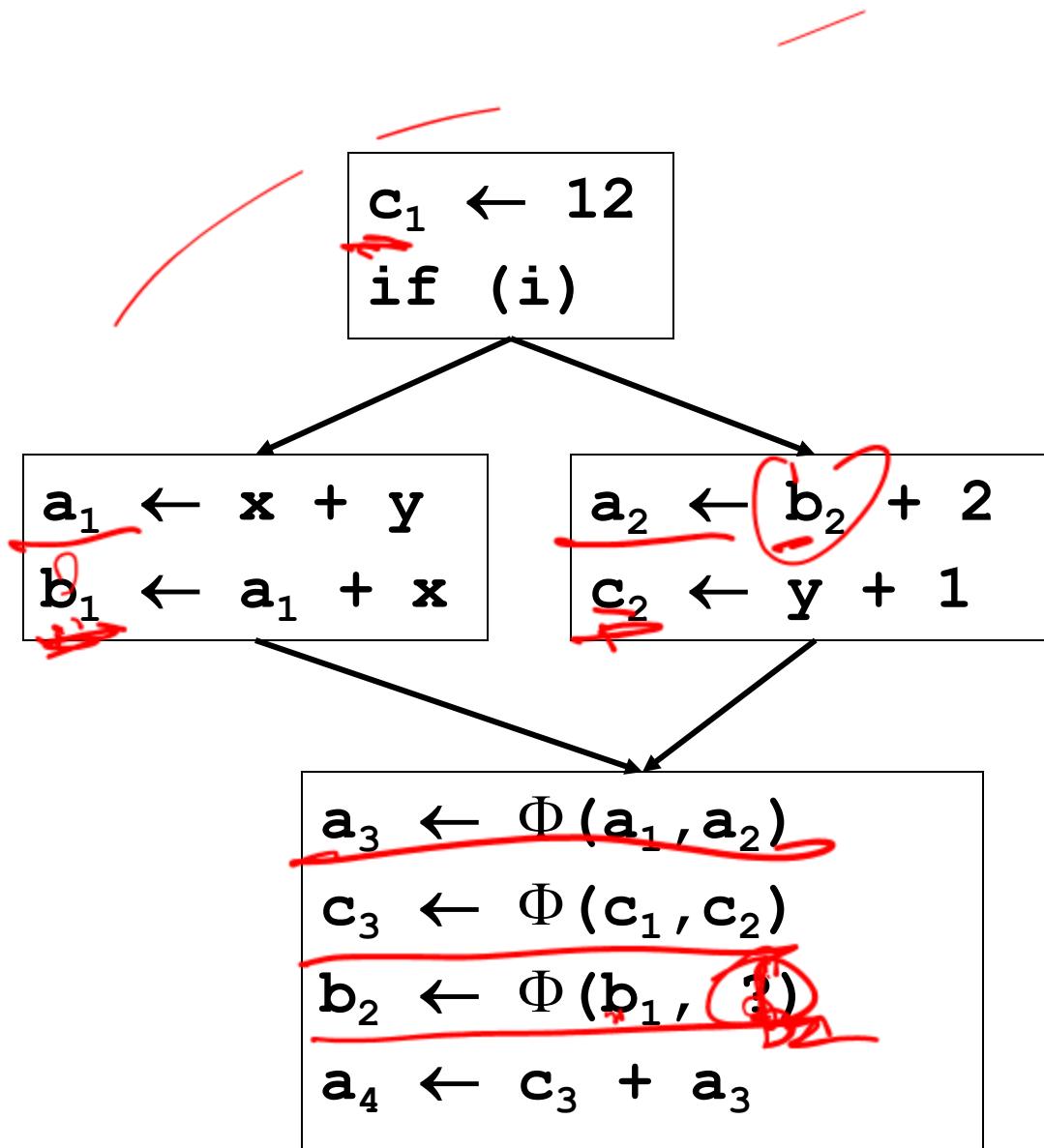
$a_5 = \phi(a_1, a_2)$

$a_3 = \phi(a_1, a_2, a_3, \dots)$

SSA

- Static single assignment is an **IR** where every variable has only **ONE** definition in the program text
 - single **static** definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
- What about at joins in the CFG?
- Use notional fiction: Φ -functions

Merging at Joins



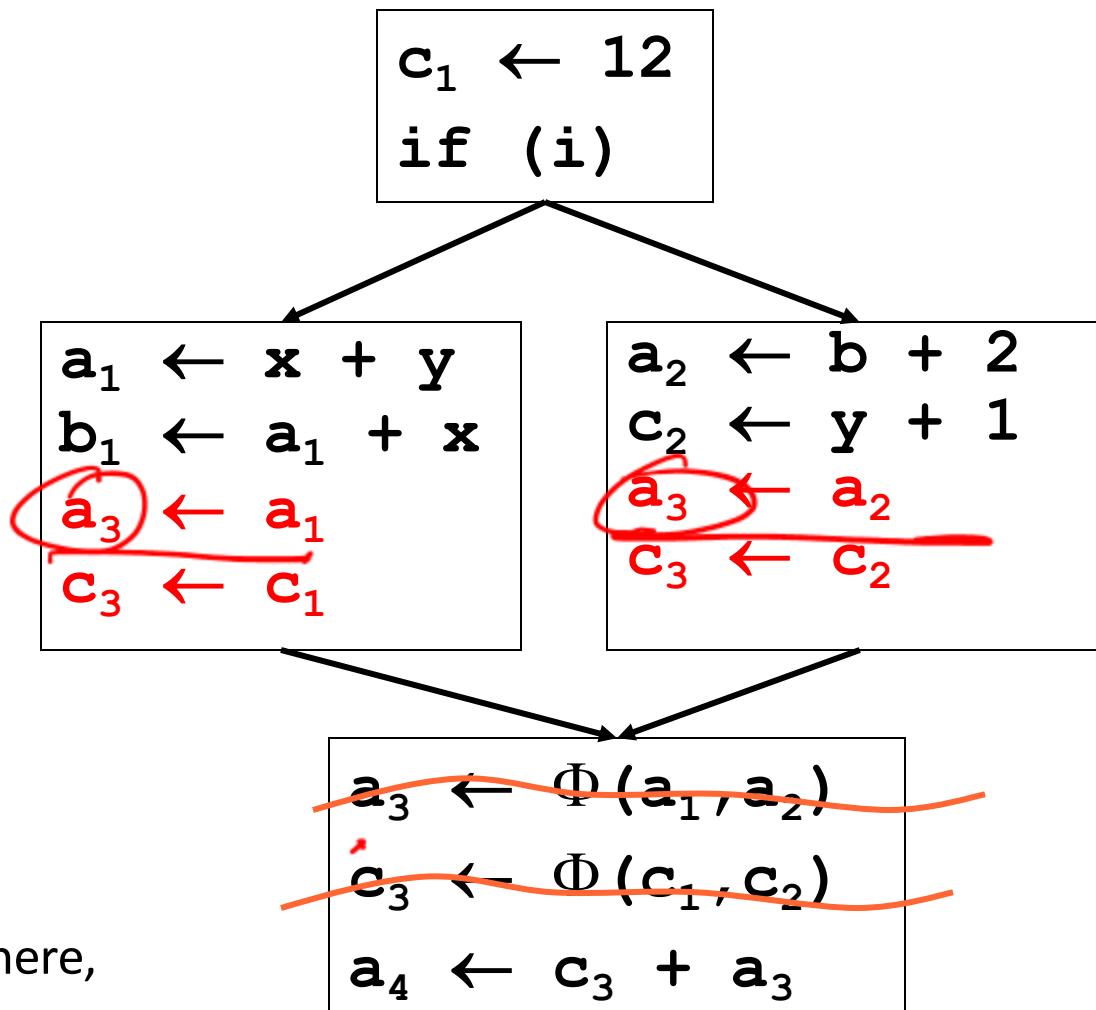
The Φ function

- Φ merges multiple definitions along multiple control paths into a single definition.
- At a BB with p predecessors, there are p arguments to the Φ function.

$$x_{\text{new}} \leftarrow \Phi(x_1, x_2, x_3, \dots, x_p)$$

- How do we choose which x_i to use?
 - We don't really care!
 - If we care, use moves on each incoming edge

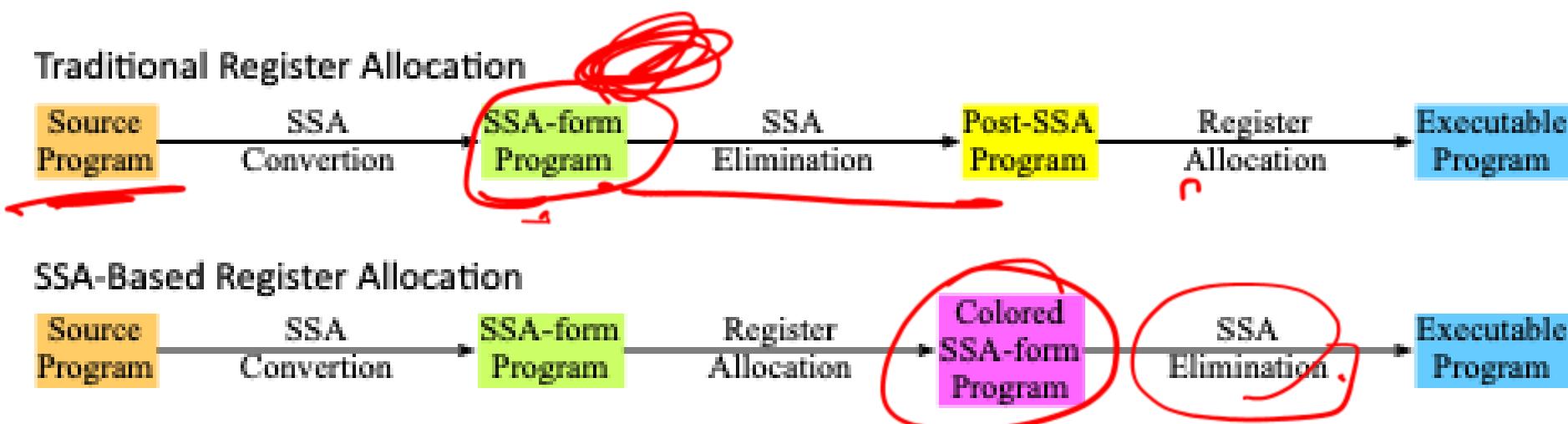
“Implementing” Φ^*



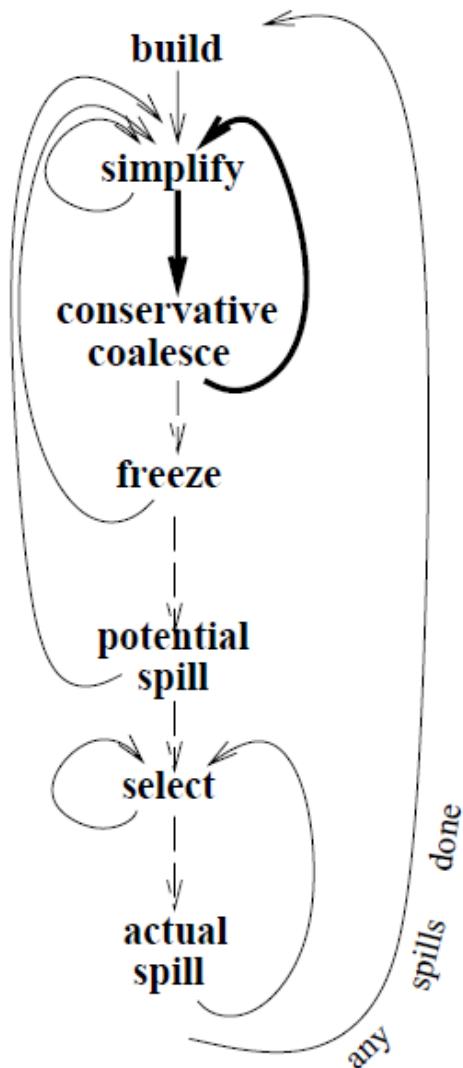
*Huge caveat here,
discussed later.
(e.g, lost-copy,
swap-problem)

SSA-based Register Allocation

- SSA-based register allocation is a technique to perform register allocation on SSA-form.
 - Simpler algorithm.
 - Decoupling of spilling, coalescing, and register assignment
 - Less spilling.
 - Smaller live ranges
 - Polynomial time minimum register assignment



Basis for Coloring Approach



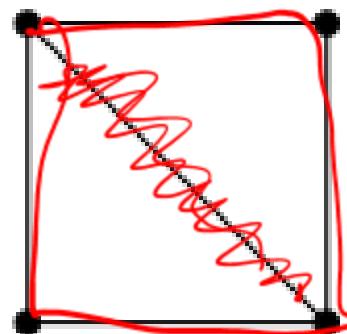
~~Simplify – creating order in which to color nodes~~

~~Select –~~ Uses “simplify” order to color nodes

Need heuristic because minimal coloring of general graph is NP-complete

Chordal Graphs

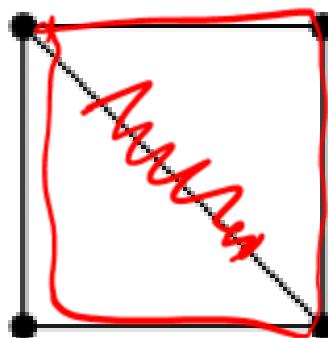
- An undirected graph is chordal if every cycle of 4 or more nodes has a chord.
- A chord is an edge the connects two vertices in the cycle, but is not part of the cycle.



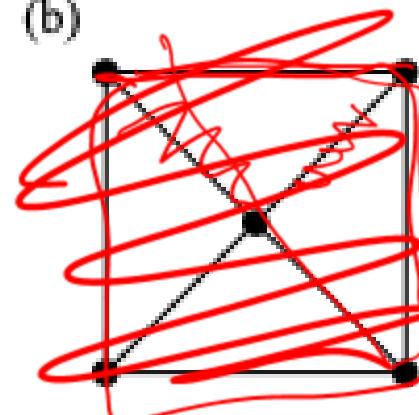
Chordal Graphs

- An undirected graph is chordal if every cycle of 4 or more nodes has a chord.

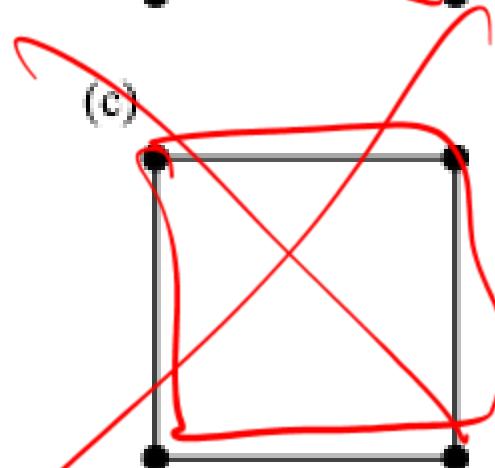
(a)



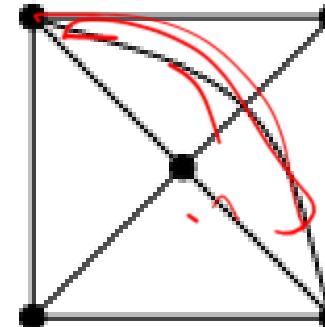
(b)



(c)



(d)

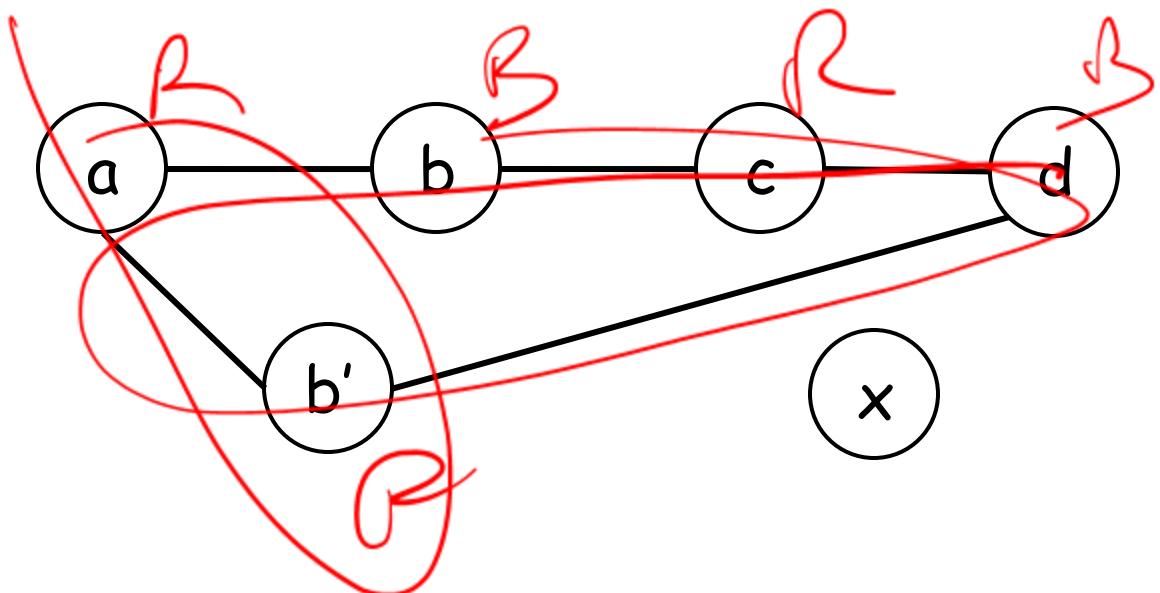


Graph Facts

- Clique: fully connected subgraph
- Chromatic number of graph G : minimal k such that G is k -colorable
- chromatic number of $G \geq$ size of largest clique
- Perfect graph: chromatic number = size of largest clique
- All chordal graphs are perfect
- Can color perfect graph in poly-time
- Finally, IG of SSA programs is chordal!

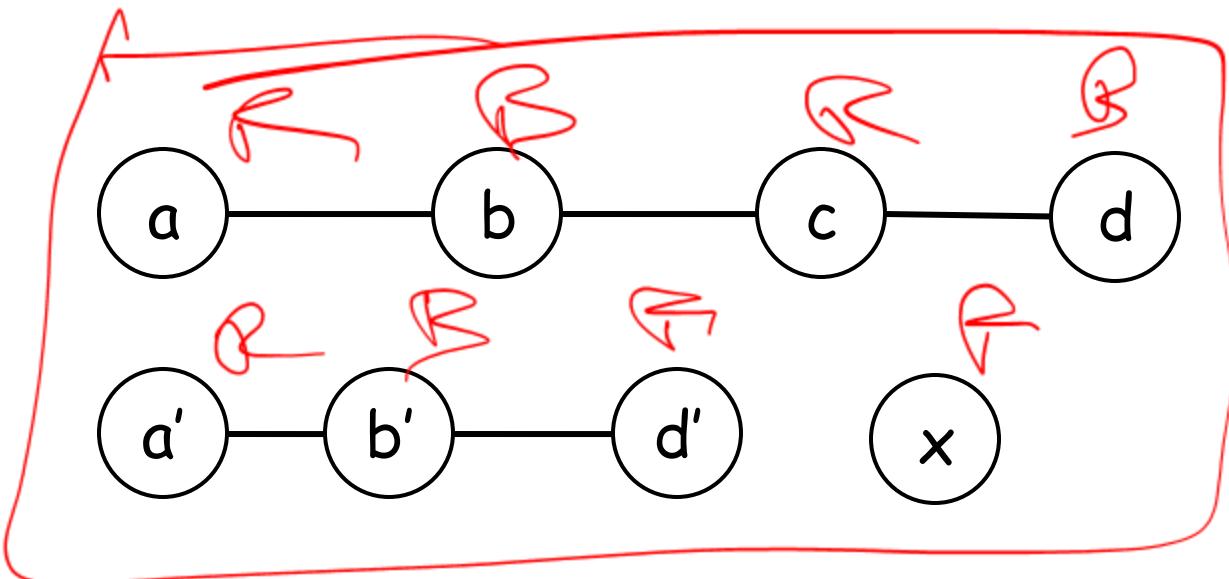
Non-chordal example

```
a ← 0
b ← 1
c ← a + b
d ← b + c
a ← c + d
b' ← 7
d ← a + b'
x ← b' + d
ret x
```



Break up the live ranges

```
a ← 0
b ← 1
c ← a + b
d ← b + c
a' ← c + d
b' ← 7
d' ← a' + b'
x ← b' + d'
ret x
```

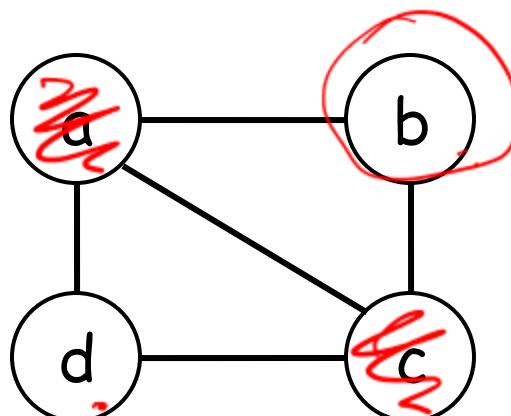


Adding more temps → fewer registers!

BTW: now in SSA-form!

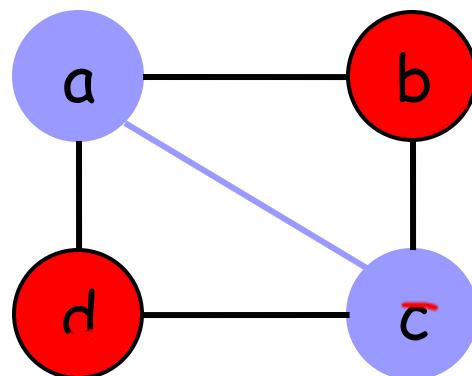
Simplicial Elimination Ordering

- If $G = (V, E)$ is a graph, then a vertex $v \in V$ is called *simplicial* if, and only if, its neighborhood in G is a clique.
- b & d are simplicial



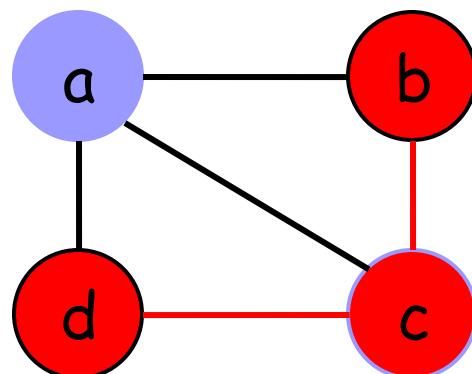
Simplicial Elimination Ordering

- If $G = (V, E)$ is a graph, then a vertex $v \in V$ is called *simplicial* if, and only if, its neighborhood in G is a clique.
- b & d are simplicial



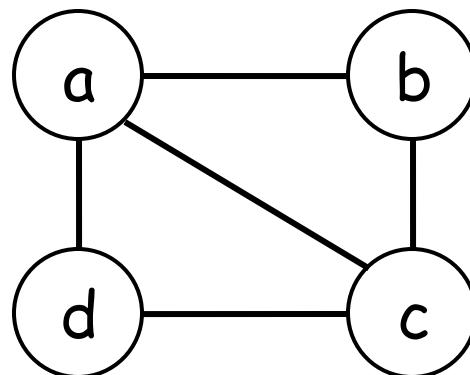
Simplicial Elimination Ordering

- If $G = (V, E)$ is a graph, then a vertex $v \in V$ is called *simplicial* if, and only if, its neighborhood in G is a clique.
- b & d are simplicial
- a & c are not



Simplicial Elimination Ordering

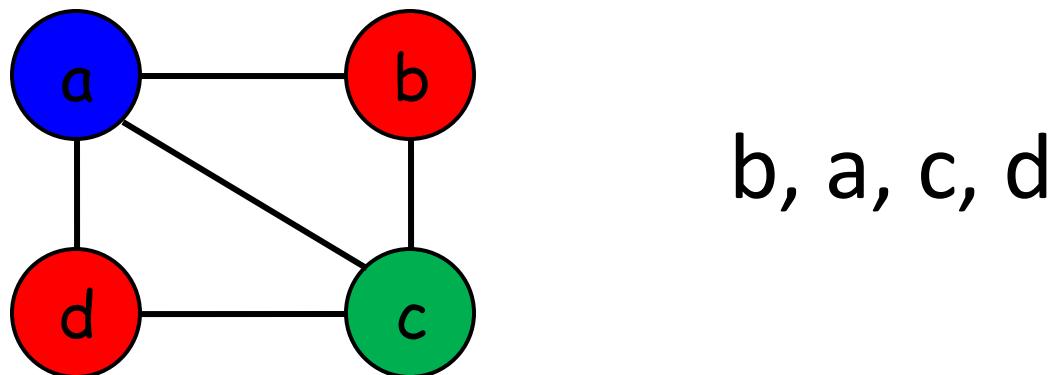
- If $G = (V, E)$ is a graph, then a vertex $v \in V$ is called *simplicial* if, and only if, its neighborhood in G is a clique.
- A *Simplicial Elimination Ordering* of G is a bijection $\sigma: V(G) \rightarrow \{1, \dots, |V|\}$, such that every vertex v_i is a simplicial vertex in the subgraph induced by $\{v_1, \dots, v_i\}$.



b, a, c, d

Greedy Coloring using SEO is optimal

- If $G = (V, E)$ is a graph, then a vertex $v \in V$ is called *simplicial* if, and only if, its neighborhood in G is a clique.
- A *Simplicial Elimination Ordering* of G is a bijection $\sigma: V(G) \rightarrow \{1, \dots, |V|\}$, such that every vertex v_i is a simplicial vertex in the subgraph induced by $\{v_1, \dots, v_i\}$.



Maximal Cardinality Search

Use Maximum Cardinality Search to generate SEO

Maximum Cardinality Search

input: $G = (V, E)$ with $|V| = n$

output: a simplicial elimination ordering $\sigma = v_1, \dots, v_n$

for all $v \in V$ **do** $\lambda(v) \leftarrow 0$

for $i \leftarrow 1$ to n **do**

let $v \in V$ be a node such that $\forall u \in V, \lambda(v) \geq \lambda(u)$ **in**

$\sigma(i) \leftarrow v$

for all $u \in V \cap N(v)$ **do** $\lambda(u) \leftarrow \lambda(u) + 1$

$V = V \setminus \{v\}$

Running Time: $O(|V| + |E|)$

$v \leftarrow 1$

$w \leftarrow v + 3$

$x \leftarrow w + v$

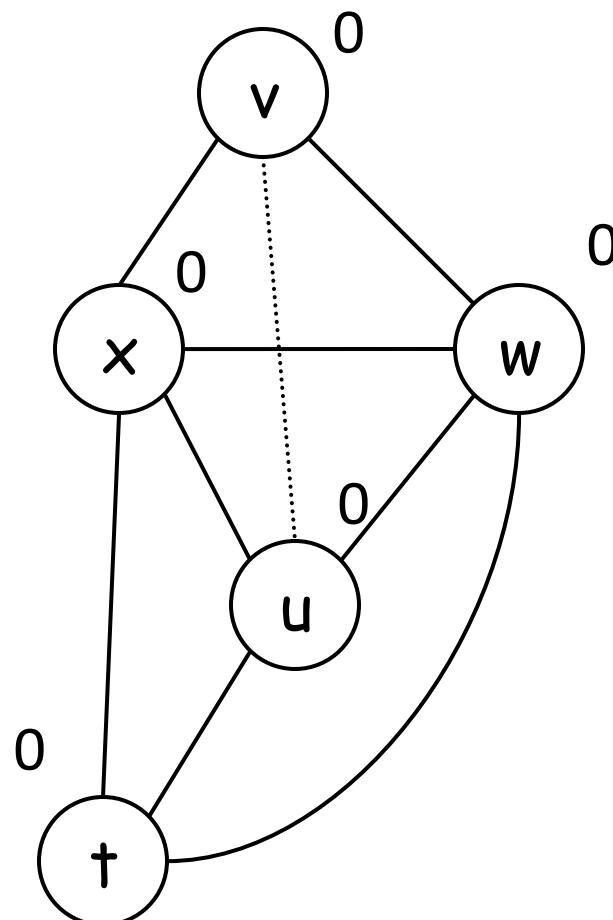
$u \leftarrow v$

$t \leftarrow u + x$

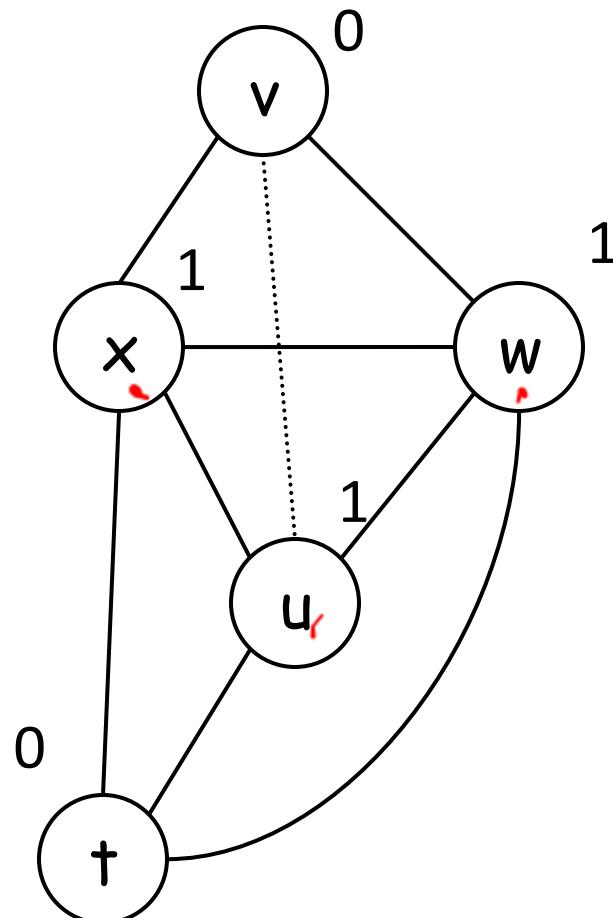
$\leftarrow w$

$\leftarrow t$

$\leftarrow u$

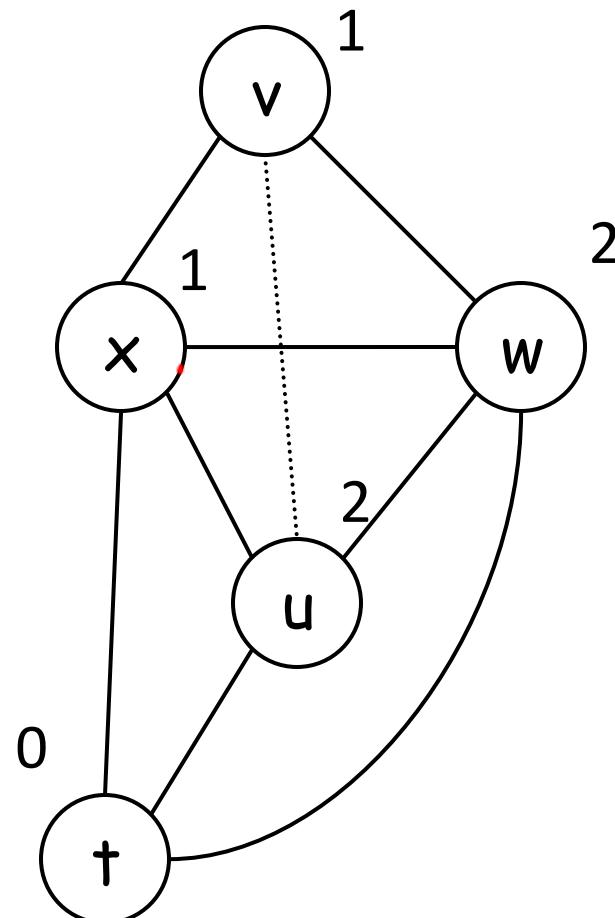


$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



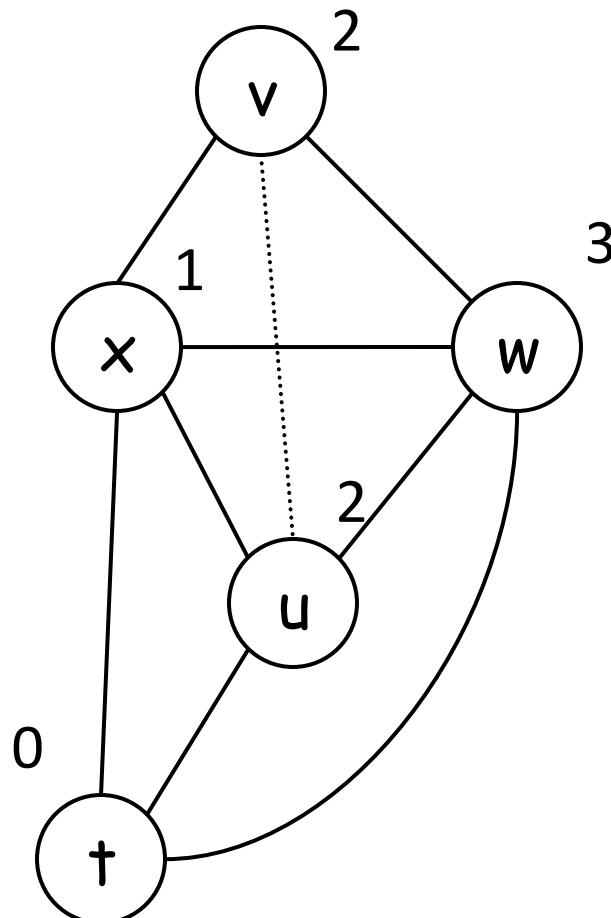
SEO: t

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + x
← w
← t
← u
```



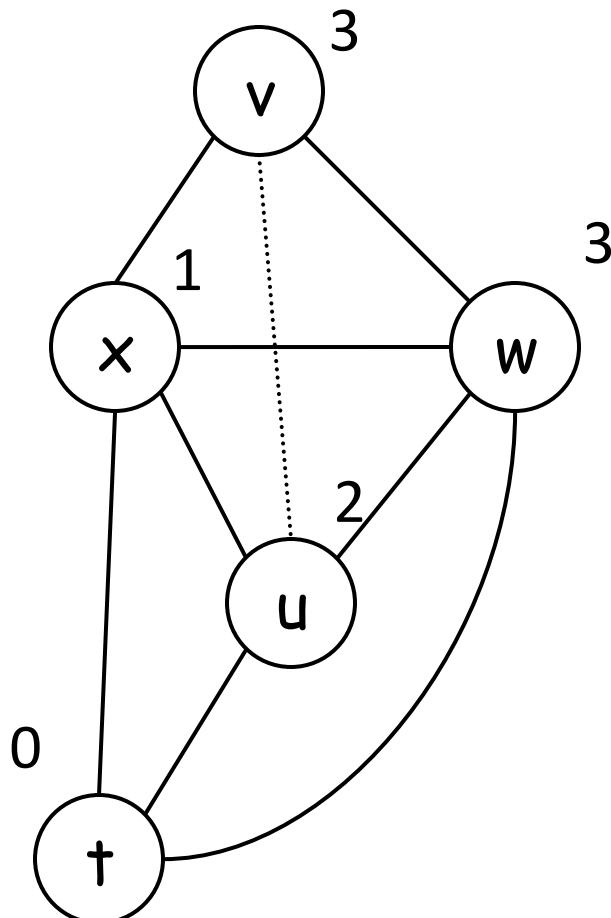
SEO: t, x

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



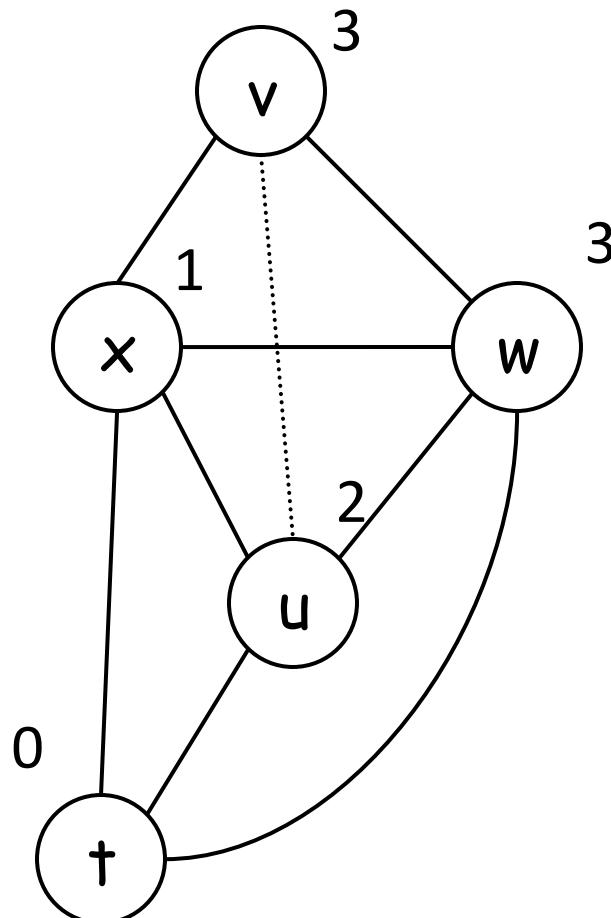
SEO: t, x, u

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



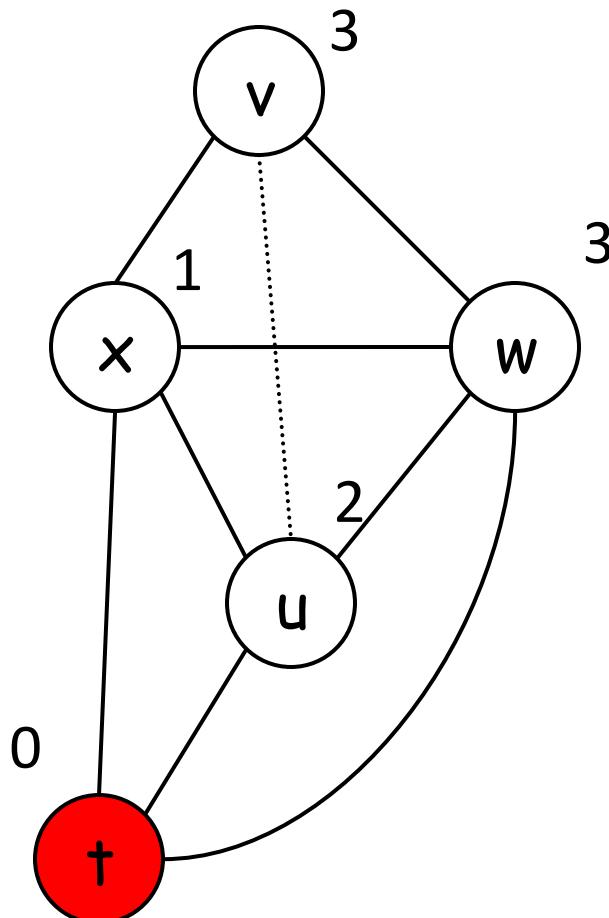
SEO: t, x, u, w

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



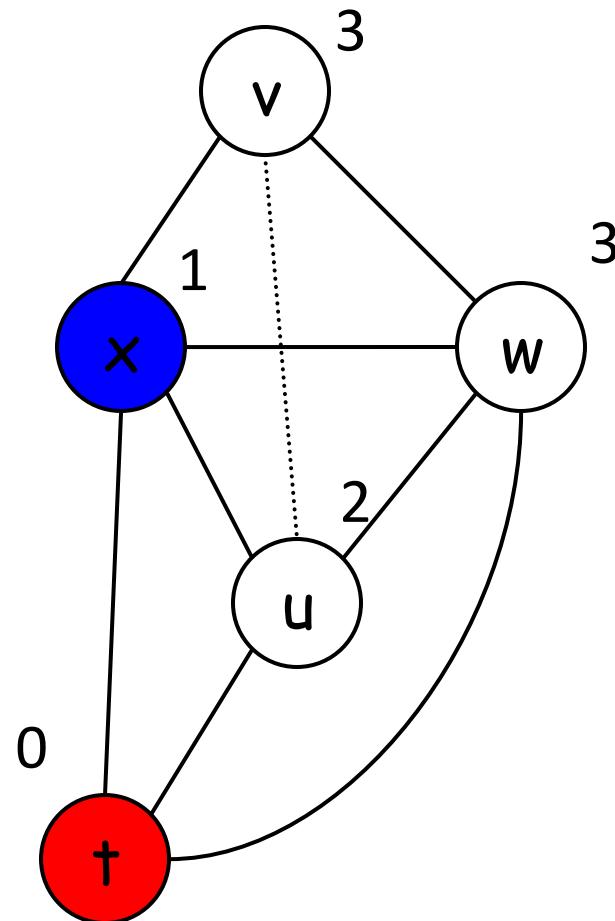
SEO: t, x, u, w, v

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



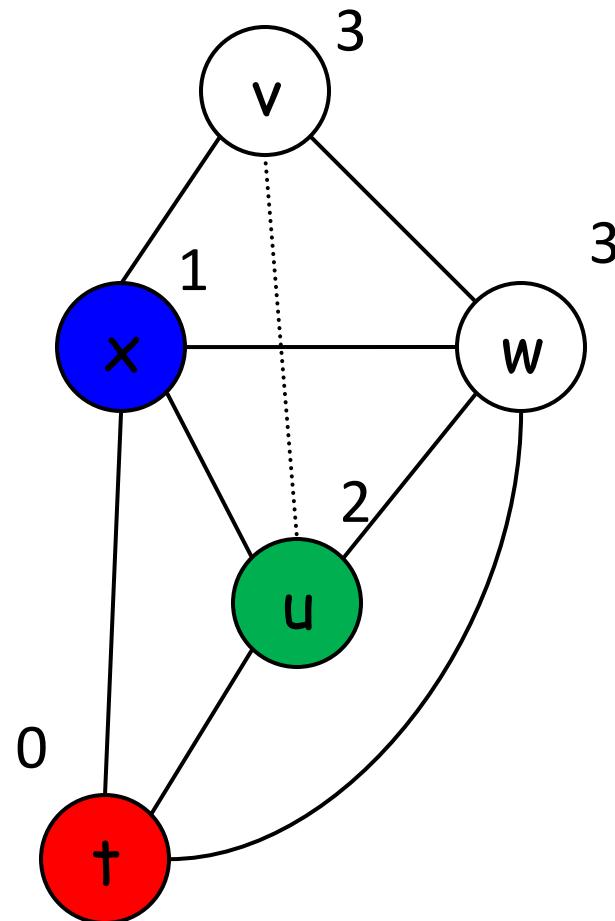
SEO: t, x, u, w, v

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



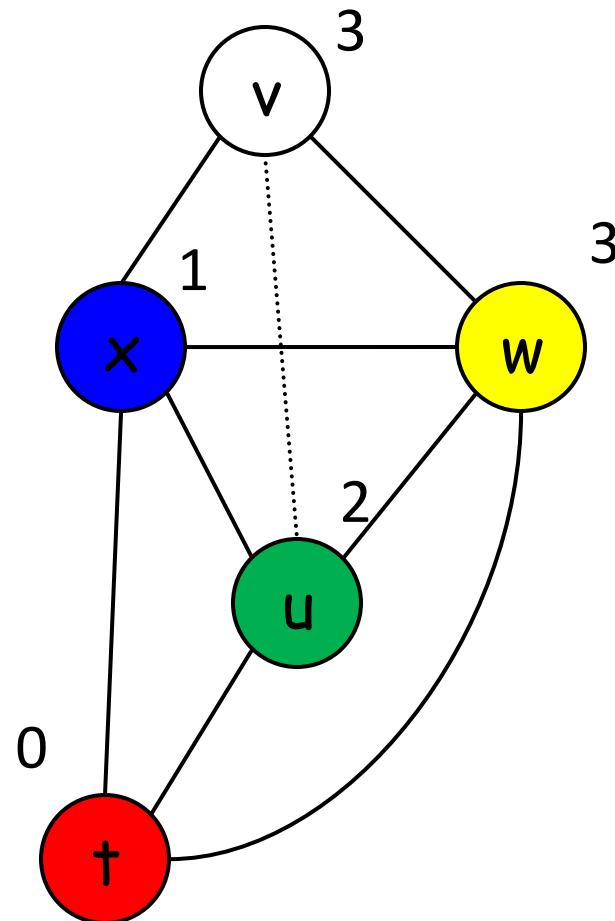
SEO: t, x, u, w, v

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



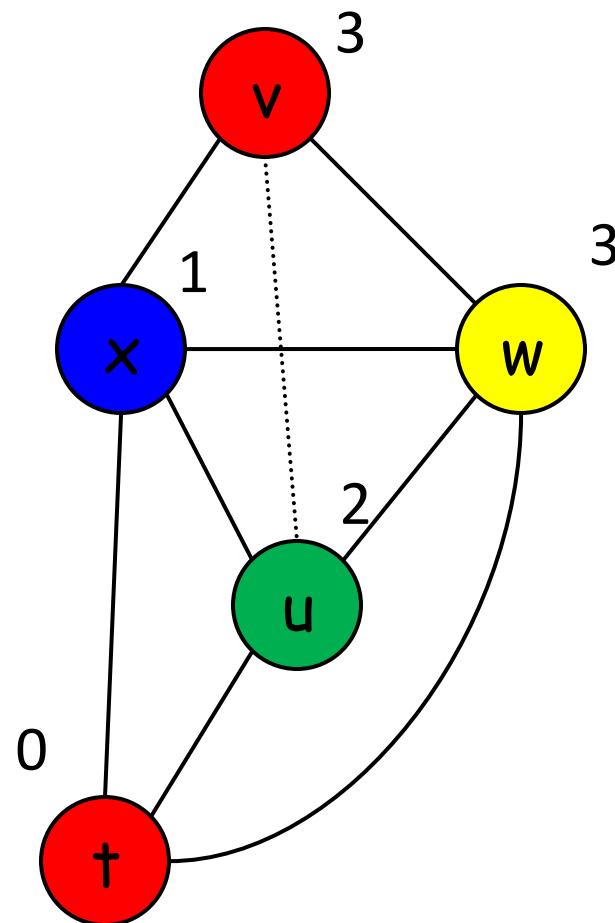
SEO: t, x, u, w, v

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



SEO: t, x, u, w, v

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



SEO: t, x, u, w, v

Using the SEO is optimal

Greedy coloring in the simplicial elimination ordering yields an optimal coloring.

- If we greedily color the nodes in the order given by the SEO, then, when we color the i^{th} node this ordering, all the neighbors of v_i that have been already colored form a clique.
- All the nodes in a clique must receive different colors.
- Thus, if v_i has M neighbors already colored, we will have to give it color $M+1$.

i.e., The chromatic number of a chordal graph is the size of largest clique

An advantage of SSA-based RA

- Often no need to iterate
- Instead:
 - Decoupled Spilling
 - Use SEO greedy coloring
 - Do best effort coalescing

Decoupling Coloring and Spilling

- In iterated register coloring we iterate for both coalescing and spilling.
- With chordal register coloring we can use a decoupled approach.
 - find maximum clique, C , in IG
 - Spill until $|C| \leq K$
 - Use MCS to find the SEO
 - Color graph greedily
 - Perform BestEffortCoalescing

Best Effort Coalescing

input: list L of copy instructions, $G = (V, E)$, K

output: G' , the coalesced graph G

$G' = G$

for all $x = y \in L$ **do**

let S_x be the set of colors in $N(x)$

let S_y be the set of colors in $N(y)$

if $\exists c, c < K, c \notin S_x \cup S_y$ **then**

let $xy, xy \notin V$ be a new node **in**

 add xy to G' with color c

 make xy adjacent to every $v, v \in N(x) \cup N(y)$

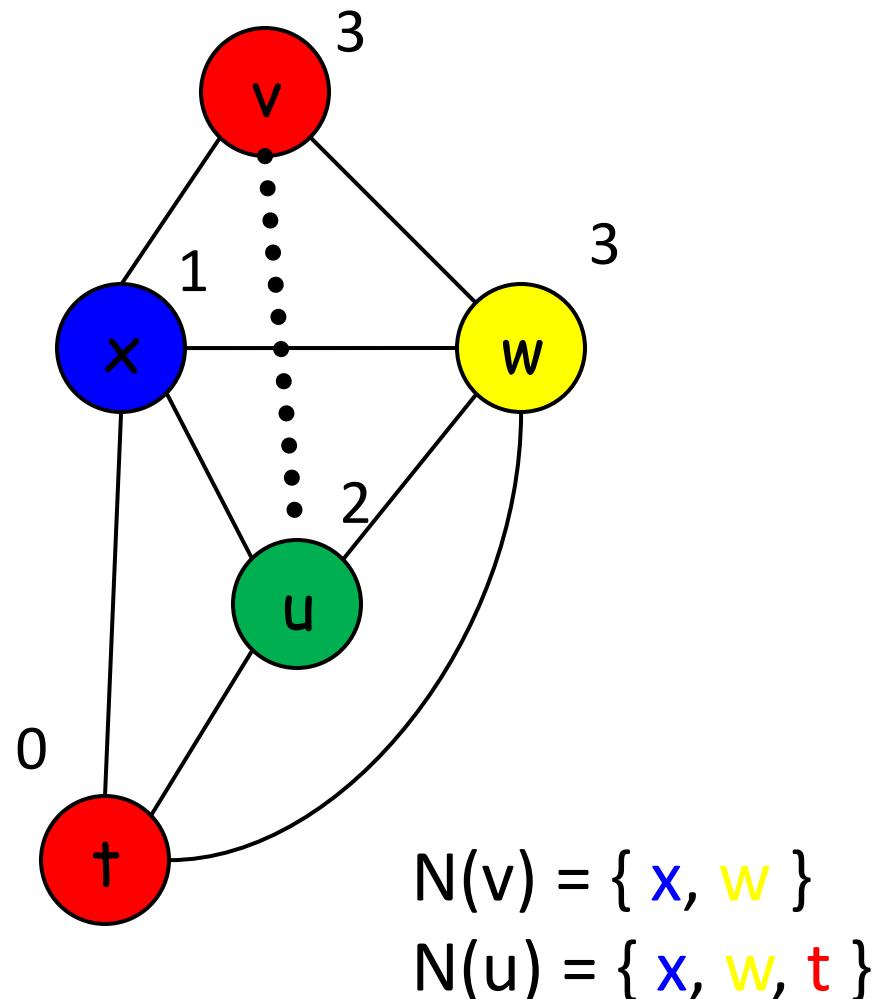
 replace occurrences of x or y in L by xy

 remove x from G'

 remove y from G'

Can we Coalesce?

$v \leftarrow 1$
 $w \leftarrow v + 3$
 $x \leftarrow w + v$
 $u \leftarrow v$
 $t \leftarrow u + x$
 $\leftarrow w$
 $\leftarrow t$
 $\leftarrow u$



Can we Coalesce?

$v \leftarrow 1$

$w \leftarrow v + 3$

$x \leftarrow w + v$

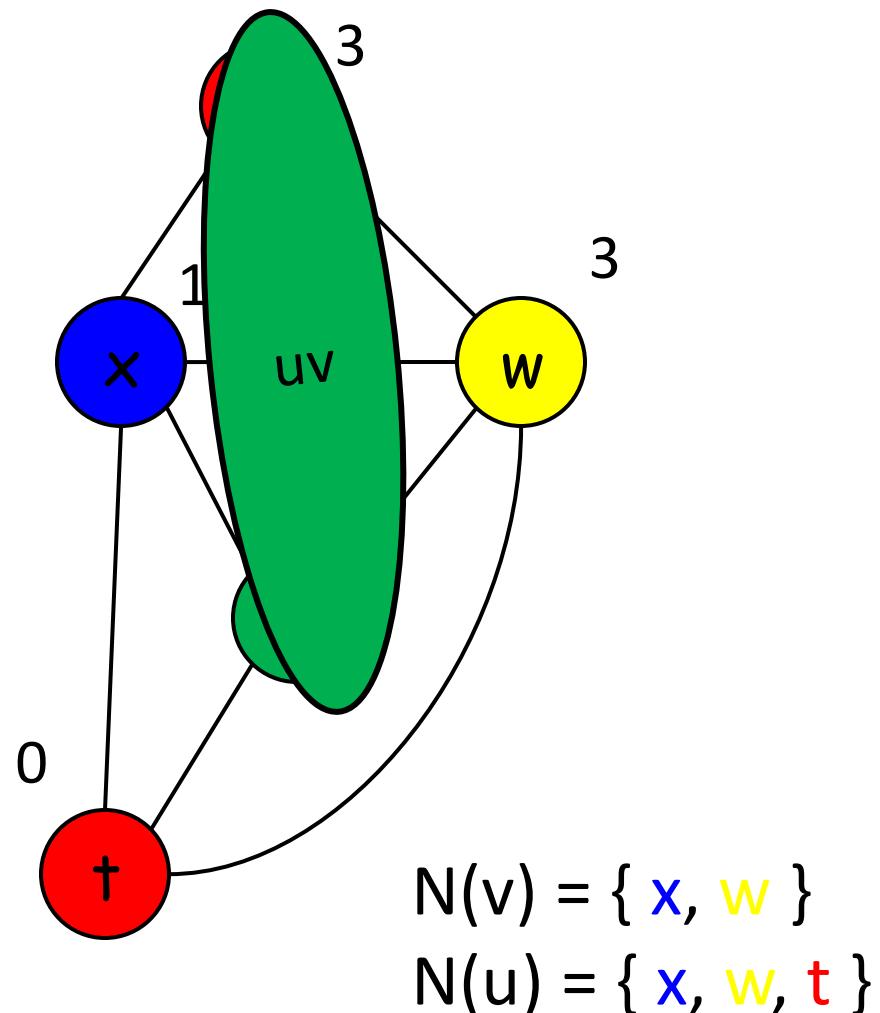
$u \leftarrow v$

$t \leftarrow v + x$

$\leftarrow w$

$\leftarrow t$

$\leftarrow v$



In practice

- pre-colored nodes break chordality
- Often assuming chordal is ok
- Have to get out of SSA sometime
- You will use SSA anyway, so register allocation on SSA seems logical
- Will revisit later
- For L1:
 - Can use basic renaming to get into SSA
 - Then, spill, color, coalesce