
15-411/15-611 Compiler Design

Seth Copen Goldstein

Register Allocation – 2

SSA-based Register Allocation

9/8 15-411  © Seth Copen Goldstein 2020 1

January 20, 2026



Today

• Iterated Register Allocation

− Coalescing

− Special registers

− Spilling

− Frame slot coalescing

− Implementation

• SSA-Based Register Allocation

− SSA

− -functions

− Chordal Graphs

− Perfect Elimination Order
15-411/611 © 2019 Goldstein 2



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 3

Build:
• construct interference graph
• Construct liveness information
• Add edge (u,v) to IG if at point of 

definition of u, v is live.



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 4

Simplify:
Repeat
• remove nodes with degree < K 
• And, which are not “move related”



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 5

Coalesce:
• For any move related nodes:

• if they pass conservative test
• briggs for temp<->temp
• preston for temp<->hard

• then, mark move to be deleted
• merge nodes
• update degree of neighbors, etc.
• back to simplify



15-411/611

Coalescing 

v

x w

u

t

w’ w’’

v  1

w  v + 3

M[]  w

w’  M[]

x  w’ + v

u  v

t  u + v

w”  M[]

   w” + x

   t

   u

Removing unnecessary 
moves.

Can u & v be coalesced?
Should u & v be coalesced?

© 2019-21 Goldstein 6



Coalescing

• Conservative or Aggressive?

• Aggressive:

− coalesce even if potentially causes spill

− Then, potentially undo

• Conservative:

− coalesce if it won’t make graph uncolorable

− How to detect?

15-411/611 © 2019-21 Goldstein 7



15-411/611

Briggs

• Can coalesce a and b if
 (# of neighbors of ab with degree  k) < k

• Why?

− Simplify removes all nodes with degree < k

− # of remaining nodes < k

− Thus, ab can be simplified
v

x w

u

t

w’ w’’

© 2019-21 Goldstein 8



15-411/611

Briggs

• Can coalesce a and b if
 (# of neighbors of ab with degree  k) < k

• Why?

− Simplify removes all nodes with degree < k

− # of remaining nodes < k

− Thus, ab can be simplified

x w

t

w’ w’’

uv

© 2019-21 Goldstein 9



15-411/611

Preston

• Can coalesce a and b if
 foreach neighbor t of a

−t interferes with b, or,

−degree of t < k

• Why?
− let S be set of neighbors of a with degree < k

− If no coalescing, simplify removes all nodes in S, call 
that graph G1

− If we coalesce we can still remove all nodes in S, call 
that graph G2

− G2 is a subgraph of G1

© 2019-21 Goldstein 10



15-411/611

Preston

a

b

S1

S2
S3

S4

x1

x2

a

b
x1

x2

No coalescing, 
after 

simplification

ab
x1

x2

After coalescing and 
simplification

© 2019-21 Goldstein 11



15-411/611

Why Two Methods?

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• As we will see, we will need to insert “hard” 
registers into graph and they have LOTS of 
neighbors

− RAX, RCX, RDI, …

− Called hard registers

− aka precolored nodes

© 2019-21 Goldstein 12



15-411/611

Briggs and Preston

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• Briggs
 Used when a and b are both temps

• Preston
 Used when either a or b is precolored

© 2019-21 Goldstein 13



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 14

Coalesce:
• For any move related nodes:

• if they pass conservative test
• briggs for temp<->temp
• preston for temp<->hard

• then, mark move to be deleted
• merge nodes
• update degree of neighbors, etc.
• back to simplify



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 15

Freeze:
• Mark any unremoved “move related” 

nodes as frozen
• E.g., treat them like regular nodes
• Go back to simplify



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 16

Potential Spill:
• Select a node to spill
• remove it and push to stack
• go back to simplify



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 17

Select:
• Pop nodes, coloring as you go
• If you can’t color, then do actual spill
• rewrite code

• Will have to undo at least some 
coalescing (can you keep some?)

• Insert spill code
• go back to build



“Details”

• How to choose a node to spill?

• How to limit size of stack frame?

• What about hard registers?

9/8 15-411  © Seth Copen Goldstein 2020 18



Spill Heuristics

• Choose a temp to map to stack frame

− will be used as infrequently as possible

− will be most likely to make IG colorable

• for each temp evaluate spillCost(t). Choose 
minimum to potentially spill

• For example:

− spillCost(t):

⚫ t.cost = 0

⚫ for every def of t and every use of t

− t.cost += 10N / t.degree

9/8 15-411  © Seth Copen Goldstein 2020 19



Choosing frame slots

• Want to minimize stack frame.

• if v and u need to be spilled,
they could go into same fame slot

• After register allocation is done, 
can use coloring method (k=) to 
color spill slots and use coalescing

− minimizes frame slots needed

− can help coalesce spill-spill moves

9/8 15-411  © Seth Copen Goldstein 2020 20

?



Choosing frame slots

• Want to minimize stack frame.

• if v and u need to be spilled,
they could go into same fame slot

• After register allocation is done, 
can use coloring method (k=) to 
color spill slots and use coalescing

− minimizes frame slots needed

− can help coalesce spill-spill moves

9/8 15-411  © Seth Copen Goldstein 2020 21

v  …

w  v + 3

…

   w + v

…

u  x + w

…

 w + u

…

//v dead

?



Choosing frame slots

• Want to minimize stack frame.

• if v and u need to be spilled,
they could go into same fame slot

• After register allocation is done, 
can use coloring method (k=) to 
color spill slots and use coalescing

− minimizes frame slots needed

− can help coalesce spill-spill moves

9/8 15-411  © Seth Copen Goldstein 2020 22



What about special registers?

• Precolored nodes/hard registers

• Instructions with register requirements

• Callee-save registers
− x86-64: RDI, RSI, RDX, RCX, R8, R9 must be 

saved by callee if callee wants to use them.

• Special registers: RSP or frame pointer

15-411/611 © 2019-21 Goldstein 23

d  a * b

ret x



Precolored Nodes

• Some temps are real registers

• Obviously they interfere with each other

− don’t add edges in IG

− just set degree to infinity

− they can’t be spilled. ☺

• Some interfere with all temps (e.g., frame pointer)

• Hope for coalescing 

• Start “select” phase when only precolored nodes 
remain in IG

9/8 15-411  © Seth Copen Goldstein 2020 24



What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 25

d  a * b

movl a, rax

 imul b      ; rdx,rax 

 movl rax, da

rax

d

b



What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 26

d  a * b

movl a, rax

 imul b      ; rdx,rax 

 movl rax, da

rax

d

b If all goes perfectly, then a & d will 

end up being coalesced with rax



What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 27

d  a * b

ret x

movl a, rax

 imul b      ; rdx,rax 

 movl rax, d

movl x, rax

 ret 



15-411/611

Preserving Callee-registers

• Move callee-reg to temp at start of proc

• Move it back at end of proc.  

• What happens if there is no register pressure?

• What happens if there is a lot of register pressure?

prologue: define r

  t1  r

  …

epilogue: r  t1

  use r

© 2019-21 Goldstein 28



15-411/611

Using Caller Save Registers

• Prefer not to use caller save registers across calls

• How can we make this happen with existing machinery?

© 2019-21 Goldstein 29



Iterated Register Coloring

15-411/611 © 2019-21 Goldstein 30



In practice

• Iterated Register Coloring does a good job

• Building Interference Graph is Expensive

− Calculating live ranges

− graph is O(n2)

− Need quick test for interference

− Need quick test for neighbors

• Coalescing is important

− Many passes generate extra temps and moves

− Aggressive requires fix-up (e.g., live range splitting)

• Spilling has biggest impact on generated code

15-411/611 © 2019-21 Goldstein 31



Today

• Iterated Register Allocation

• SSA-Based Register Allocation

− Def-Use chains

− SSA

− -functions (briefly)

− Chordal Graphs

− Perfect Elimination Order

15-411/611 © 2019 Goldstein 32



Def-Use Chains

• Common Analysis in support of optimizations, 
register allocation, etc.

− Find all the sites where a variable is used

− Find the definition of a variable in an expression

• Traditional Solution: def-use chains

− Link each triple defining a variable to all triples that 
use it

− Link each use of a variable to its definition

15-411/611 © 2019 Goldstein 33



Def-Use Chains

…

for (i=0; i++; i<10) {

 … = … i …;

 …

}

for (i=j; i++; i<20) {

 …  = i …

}

How is this related to 
register allocation?

Lecture 4 15-745  © Seth Copen Goldstein 2005-9 34

Unrelated uses of the same variable are mixed together 
– complicates analysis.



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Def-Use chains are expensive
foo(int i, int j) {

 …

 switch (i) {

 case 0: x=3;break;

 case 1: x=1; break;

 case 2: x=6; break;

 case 3: x=7; break;

 default: x = 11;

 }

 switch (j) {

 case 0: y=x+7; break;

 case 1: y=x+4; break; 

 case 2: y=x-2; break;

 case 3: y=x+1; break;

 default: y=x+9;

 }

 …

35



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Def-Use chains are expensive
foo(int i, int j) {

 …

 switch (i) {

 case 0: x=3;

 case 1: x=1;

 case 2: x=6;

 case 3: x=7;

 default: x = 11;

 }

 switch (j) {

 case 0: y=x+7;

 case 1: y=x+4; 

 case 2: y=x-2;

 case 3: y=x+1;

 default: y=x+9;

 }

 …

In general,
 N defs
 M uses
  O(NM) space and time

A solution is to limit each var to 
ONE def site

36



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Def-Use chains are expensive
foo(int i, int j) {

 …

 switch (i) {

 case 0: x=3; break;

 case 1: x=1; break;

 case 2: x=6;

 case 3: x=7;

 default: x = 11;

 }

 x1 is one of the above x’s

 switch (j) {

 case 0: y=x1+7;

 case 1: y=x1+4; 

 case 2: y=x1-2;

 case 3: y=x1+1;

 default: y=x1+9;

 }

 …

A possible solution is to limit 
each var to ONE def site

37



Basic Blocks & Control Flow Graph

• Control Flow

− what is potential sequence of instructions?

− Only interested in transfers of control
• jump

• conditional jump

• call

• label (target of a transfer)

• Group together non-jumps into Basic Block

− One entry point

− One point of exit

− When entered all instructions are executed

• Basic Blocks are nodes in Control Flow Graph
9/8 15-411  © Seth Copen Goldstein 2020 38



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

SSA

• Static single assignment is an IR where 
every variable has only ONE definition in 
the program text

− single static definition

− (Could be in a loop which is executed 
dynamically many times.)

39

Not in SSA form:
• i and s have two static def 

sites
• x has only one static def site, 

but may be dynamically defined 
many times in loop.

L0: i = 0
 1 s = 0

L2: x = m[i]
 3 s = s + x
 4 i = i + 4
 5 if i<N goto L2



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

SSA

• Static single assignment is an IR where 
every variable has only ONE definition in 
the program text

− single static definition

− (Could be in a loop which is executed 
dynamically many times.)

• Easy for a straight-line code:

− assign to a fresh variable at each stmt.

− Each use uses the most recently defined var.

40



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Advantages of SSA

• Makes du-chains explicit

• Makes dataflow optimizations

− Easier

− faster

• Improves register allocation

− Makes building interference graphs easier

− Easier register allocation algorithm

− Decoupling of spill, color, and coalesce

• For most programs reduces space/time 
requirements

41



SSA History

• Developed by Wegman, Zadeck, Alpern, 
and Rosen in 1988

• Today used in most production compilers, 
e.g., gcc, llvm, most JIT compilers, …

Lecture 4 15-745  © Seth Copen Goldstein 2005-9 42



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Straight-line SSA

a  x + y

b  a + x

a  b + 2

c  y + 1

a  c + a

43

• Straight forward to convert 
basic block into SSA

• Connect each use to its most 
recent definition



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Straight-line SSA

a  x + y

b  a + x

a  b + 2

c  y + 1

a  c + a

44

• Straight forward to convert 
basic block into SSA

• Connect each use to its most 
recent definition



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Straight-line SSA

a  x + y

b  a + x

a  b + 2

c  y + 1

a  c + a

45

for each variable a:

    count[a] = 0

    Stack[a] = [0]

rename_basic_block(B) =

    for each instruction S in block B:

        for each use of a variable x in S:

            i = top(Stack[x])

            replace the use of x with xi

        for each variable a that S defines

            count[a] = count[a] + 1

            i = count[a]

            push i onto Stack[a]

            replace definition of a with ai



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Straight-line SSA

a  x + y

b  a + x

a  b + 2

c  y + 1

a  c + a

46

count:

 a ->

 b -> 

 c ->

Stack:

 a:

 b:

 c:



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Straight-line SSA

a  x + y

b  a + x

a  b + 2

c  y + 1

a  c + a

a1  x + y

b1  a1 + x

a2  b1 + 2

c1  y + 1

a3  c1 + a2

47



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

SSA

• Static single assignment is an IR where 
every variable has only ONE definition in 
the program text

− single static definition

− (Could be in a loop which is executed 
dynamically many times.)

• Easy for a basic block:

− assign to a fresh variable at each stmt.

− Each use uses the most recently defined var.

• What about at joins in the CFG?

48



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

a1  x + y

b1  a1 + x

Merging at Joins

a2  b2 + 2

c2  y + 1

c  12

if (i) { 

   a  x + y

   b  a + x

} else {

   a  b + 2

   c  y + 1

}

a  c + a

c1  12

if (i)

a4  c? + a?

49



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

SSA

• Static single assignment is an IR where 
every variable has only ONE definition in 
the program text

− single static definition

− (Could be in a loop which is executed 
dynamically many times.)

• Easy for a basic block:

− assign to a fresh variable at each stmt.

− Each use uses the most recently defined var.

• What about at joins in the CFG?

• Use notional fiction: -functions
50



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

Merging at Joins

a2  b2 + 2

c2  y + 1

c1  12

if (i)

a1  x + y

b1  a1 + x

a3  (a1,a2)

c3  (c1,c2)

b2  (b1, ?)

a4  c3 + a3

51



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

The  function

•  merges multiple definitions along 
multiple control paths into a single 
definition.

• At a BB with p predecessors, there are p 
arguments to the  function.
xnew  (x1, x2, x3, … , xp) 

• How do we choose which xi to use?

− We don’t really care!

− If we care, use moves on each incoming edge

52



Lecture 4 15-745  © Seth Copen Goldstein 2005-9

“Implementing” * 

a2  b + 2

c2  y + 1
a3  a2
c3  c2

c1  12

if (i)

a1  x + y

b1  a1 + x

a3  a1
c3  c1

a3  (a1,a2)

c3  (c1,c2)

a4  c3 + a3

53

*Huge caveat here, 
discussed later.  
(e.g, lost-copy, 
swap-problem)



SSA-based Register Allocation

9/8 15-411  © Seth Copen Goldstein 2020 57

• SSA-based register allocation is a technique to perform 
register allocation on SSA-form.
− Simpler algorithm.

• Decoupling of spilling, coalescing, and register assignment

− Less spilling.
• Smaller live ranges

• Polynomial time minimum register assignment



Basis for Coloring Approach

9/8 15-411  © Seth Copen Goldstein 2020 58

Simplify – creating order in which to 
color nodes

Select – Uses “simplify” order to color 
nodes

Need heuristic because minimal coloring 
of general graph is NP-complete



• An undirected graph is chordal if every 
cycle of 4 or more nodes has a chord.

• A chord is an edge the connects two 
vertices in the cycle, but is not part of the 
cycle.

Chordal Graphs

9/8 15-411  © Seth Copen Goldstein 2020 60



Chordal Graphs

• An undirected graph is chordal if every 
cycle of 4 or more nodes has a chord.

 

9/8 15-411  © Seth Copen Goldstein 2020 61



Graph Facts

• Clique: fully connected subgraph

• Chromatic number of graph G: minimal k 
such that  G is k-colorable

• chromatic number of G  size of largest 
clique

• Perfect graph: chromatic number = size of 
largest clique

• All chordal graphs are perfect

• Can color perfect graph in poly-time

• Finally, IG of SSA programs is chordal!

9/8 15-411  © Seth Copen Goldstein 2020 62



Non-chordal example

9/8 15-411  © Seth Copen Goldstein 2020 63

a  0

b  1

c  a + b

d  b + c

a  c + d

b’ 7

d  a + b’

x  b’+ d

     ret x

a cb

xb’

d



Break up the live ranges

9/8 15-411  © Seth Copen Goldstein 2020 64

a  0

b  1

c  a + b

d  b + c

a’  c + d

b’ 7

d’  a’ + b’

x  b’+ d’

     ret x

a cb

xb’

d

a’ d’

Adding more temps → fewer registers!

BTW: now in SSA-form!



Simplical Elimination Ordering

• If G = (V, E) is a graph, then a vertex v ∈ V is 
called simplicial if, and only if, its 
neighborhood in G is a clique.

• b & d are simplical

9/8 15-411  © Seth Copen Goldstein 2020 66

a

c

b

d



Simplical Elimination Ordering

• If G = (V, E) is a graph, then a vertex v ∈ V is 
called simplicial if, and only if, its 
neighborhood in G is a clique.

• b & d are simplical

9/8 15-411  © Seth Copen Goldstein 2020 67

a

c

b

d



Simplical Elimination Ordering

• If G = (V, E) is a graph, then a vertex v ∈ V is 
called simplicial if, and only if, its 
neighborhood in G is a clique.

• b & d are simplical

• a & c are not

9/8 15-411  © Seth Copen Goldstein 2020 68

a

c

b

d



Simplical Elimination Ordering

• If G = (V, E) is a graph, then a vertex v ∈ V is 
called simplicial if, and only if, its 
neighborhood in G is a clique.

• A Simplicial Elimination Ordering of G is a 
bijection σ: V(G) → {1, …, |V|}, such that 
every vertex vi is a simplicial vertex in the 
subgraph induced by {v1, …, vi}.

9/8 15-411  © Seth Copen Goldstein 2020 69

a

c

b

d

b, a, c, d



Greedy Coloring using SEO is optimal

• If G = (V, E) is a graph, then a vertex v ∈ V is 
called simplicial if, and only if, its 
neighborhood in G is a clique.

• A Simplicial Elimination Ordering of G is a 
bijection σ: V(G) → {1, …, |V|}, such that 
every vertex vi is a simplicial vertex in the 
subgraph induced by {v1, …, vi}.

9/8 15-411  © Seth Copen Goldstein 2020 70

a

c

b

d

b, a, c, d



Maximal Cardinality Search

9/8 15-411  © Seth Copen Goldstein 2020 71

Maximum Cardinality Search
    input: G = (V, E) with |V| = n
    output: a simplicial elimination ordering σ = v1, …, vn

    for all v ∈ V do λ(v) ← 0
    for i ← 1 to n do
        let v ∈ V be a node such that ∀u ∈ V, λ(v) ≥ λ(u) in
            σ(i) ← v
            for all u ∈ V ∩ N(v) do λ(u) ← λ(u) + 1
            V = V \ {v}

Running Time: O(|V|+|E|)

Use Maximum Cardinality Search to generate SEO



9/8 15-411  © Seth Copen Goldstein 2020 72

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

0

0

0

0

0



9/8 15-411  © Seth Copen Goldstein 2020 73

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

0

1

1

1

0

SEO: t



9/8 15-411  © Seth Copen Goldstein 2020 74

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

1

2

2

1

0

SEO: t, x



9/8 15-411  © Seth Copen Goldstein 2020 75

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

2

3

2

1

0

SEO: t, x, u



9/8 15-411  © Seth Copen Goldstein 2020 76

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w



9/8 15-411  © Seth Copen Goldstein 2020 77

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



9/8 15-411  © Seth Copen Goldstein 2020 78

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



9/8 15-411  © Seth Copen Goldstein 2020 79

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



9/8 15-411  © Seth Copen Goldstein 2020 80

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



9/8 15-411  © Seth Copen Goldstein 2020 81

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



9/8 15-411  © Seth Copen Goldstein 2020 82

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

SEO: t, x, u, w, v



Using the SEO is optimal

Greedy coloring in the simplicial elimination 
ordering yields an optimal coloring.

• If we greedily color the nodes in the order given by 
the SEO, then, when we color the ith node this 
ordering, all the neighbors of vi that have been 
already colored form a clique.

• All the nodes in a clique must receive different 
colors.

• Thus, if vi has M neighbors already colored, we will 
have to give it color M+1.

I.e., The chromatic number of a chordal graph is the 
size of largest clique

9/8 15-411  © Seth Copen Goldstein 2020 83



An advantage of SSA-based RA

• Often no need to iterate

• Instead:

− Decoupled Spilling

− Use SEO greedy coloring

− Do best effort coalescing

9/8 15-411  © Seth Copen Goldstein 2020 84



Decoupling Coloring and Spilling

• In iterated register coloring we iterate for 
both coalescing and spilling.

• With chordal register coloring we can use a 
decoupled approach.

− find maximum clique, C, in IG

− Spill until |C| <= K

− Use MCS to find the SEO

− Color graph greedily

− Perform BestEffortCoalescing

9/8 15-411  © Seth Copen Goldstein 2020 85



Best Effort Coalescing

9/8 15-411  © Seth Copen Goldstein 2020 86

input: list L of copy instructions, G = (V, E), K
output: G', the coalesced graph G
    G' = G   
    for all x = y ∈ L do
        let Sx be the set of colors in N(x)
        let Sy be the set of colors in N(y)
        if ∃c, c < K, c ∉ Sx∪ Sy then
            let xy, xy ∉ V be a new node in
                add xy to G' with color c
                make xy adjacent to every v, v ∈ N(x) ∪ N(y)
                replace occurrences of x or y in L by xy
                remove x from G'
                remove y from G'



Can we Coalesce?

9/8 15-411  © Seth Copen Goldstein 2020 87

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + x

   w

   t

   u

3

3

2

1

0

N(v) = { x, w }
N(u) = { x, w, t }



Can we Coalesce?

9/8 15-411  © Seth Copen Goldstein 2020 88

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  v + x

   w

   t

   v

3

3

2

1

0

N(v) = { x, w }
N(u) = { x, w, t }



In practice

• pre-colored nodes break chordality

• Often assuming chordal is ok

• Have to get out of SSA sometime

• You will use SSA anyway, so register 
allocation on SSA seems logical

• Will revisit later

• For L1:

− Can use basic renaming to get into SSA

− Then, spill, color, coalesce

9/8 15-411  © Seth Copen Goldstein 2020 89


	Slide 1
	Slide 2: Today
	Slide 3: Iterated Register Coloring
	Slide 4: Iterated Register Coloring
	Slide 5: Iterated Register Coloring
	Slide 6: Coalescing 
	Slide 7: Coalescing
	Slide 8: Briggs
	Slide 9: Briggs
	Slide 10: Preston
	Slide 11: Preston
	Slide 12: Why Two Methods?
	Slide 13: Briggs and Preston
	Slide 14: Iterated Register Coloring
	Slide 15: Iterated Register Coloring
	Slide 16: Iterated Register Coloring
	Slide 17: Iterated Register Coloring
	Slide 18: “Details”
	Slide 19: Spill Heuristics
	Slide 20: Choosing frame slots
	Slide 21: Choosing frame slots
	Slide 22: Choosing frame slots
	Slide 23: What about special registers?
	Slide 24: Precolored Nodes
	Slide 25: What about special registers?
	Slide 26: What about special registers?
	Slide 27: What about special registers?
	Slide 28: Preserving Callee-registers
	Slide 29: Using Caller Save Registers
	Slide 30: Iterated Register Coloring
	Slide 31: In practice
	Slide 32: Today
	Slide 33: Def-Use Chains
	Slide 34: Def-Use Chains
	Slide 35: Def-Use chains are expensive
	Slide 36: Def-Use chains are expensive
	Slide 37: Def-Use chains are expensive
	Slide 38: Basic Blocks & Control Flow Graph
	Slide 39: SSA
	Slide 40: SSA
	Slide 41: Advantages of SSA
	Slide 42: SSA History
	Slide 43: Straight-line SSA
	Slide 44: Straight-line SSA
	Slide 45: Straight-line SSA
	Slide 46: Straight-line SSA
	Slide 47: Straight-line SSA
	Slide 48: SSA
	Slide 49: Merging at Joins
	Slide 50: SSA
	Slide 51: Merging at Joins
	Slide 52: The  function
	Slide 53: “Implementing” * 
	Slide 57: SSA-based Register Allocation
	Slide 58: Basis for Coloring Approach
	Slide 60: Chordal Graphs
	Slide 61: Chordal Graphs
	Slide 62: Graph Facts
	Slide 63: Non-chordal example
	Slide 64: Break up the live ranges
	Slide 66: Simplical Elimination Ordering
	Slide 67: Simplical Elimination Ordering
	Slide 68: Simplical Elimination Ordering
	Slide 69: Simplical Elimination Ordering
	Slide 70: Greedy Coloring using SEO is optimal
	Slide 71: Maximal Cardinality Search
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Using the SEO is optimal
	Slide 84: An advantage of SSA-based RA
	Slide 85: Decoupling Coloring and Spilling
	Slide 86: Best Effort Coalescing
	Slide 87: Can we Coalesce?
	Slide 88: Can we Coalesce?
	Slide 89: In practice

