Register Allocation — 2
SSA-based Register Allocation

15-411/15-611 Compiler Design

Seth Copen Goldstein

January 20, 2026

Today

e |terated Register Allocation
— Coalescing
— Special registers
— Spilling
— Frame slot coalescing
— Implementation

e SSA-Based Register Allocation
— SSA
— ¢-functions
— Chordal Graphs
— Perfect Elimination Order

© 2019 Goldstein

Iterated Register Coloring

build O\
/N] Build:
K simplify | e construct interference graph
| l | * Construct liveness information
| Add edge (u,v) to |G if at point of

‘ conservative
I coalesce
definition of u, v is live.

II“\ potehtial |

— spill
TNy Y
select !
_—— || -
! | |
actual ;" |2
/ &

‘;plll /

© 2019-21 Goldstein

15-411/611

Iterated Register Coloring

~ build N
x?f%ﬁ] HII"'I . .
a S silnl)lif}* ",I Si mpllfy
- l | Repeat

conservative
|.| coalesce
A |
|I i

freeze

| _J |
|
|
IIII -I|I-
“\ potehtial |

— spill |

. |
TN TN |
select |
— | |

| * remove nodes with degree < K
* And, which are not “move related”

dO ne

15-411/611 © 2019-21 Goldstein

Iterated Register Coloring

Cbuld O\
x{//f%g] HII"II
“K silnl)lif} ",I Coalesce:
f l | * For any move related nodes:
| fﬂ::}ﬁ:;:;gi"f * if they pass conservative test

* briggs for temp<->temp

[\ .,',.
A } * preston for temp<->hard

|| \ freeze
| -
I * then, mark move to be deleted
"\ potehtial | * merge nodes

— spil | * update degree of neighbors, etc.

ahtd \‘ ||') * back to simplify

| i || Iu'l <
actual ;"

‘;plll / J. g
B ‘b

15-411/611 © 2019-21 Goldstein

Coalescing

v <« 1
wWe— Vv + 3

M[] &< w
w' <« MJ[]
X ¢« w +v
u < v
t<«< u+v

w’ <« MI[]

«— w' + x

«~— t

Can u & v be coalesced?
Should u & v be coalesced?

15-411/611 © 2019-21 Goldstein

Coalescing

e Conservative or Aggressive?

e Aggressive:
— coalesce even if potentially causes spill

— Then, potentially undo

e Conservative:
— coalesce if it won’t make graph uncolorable
— How to detect?

15-411/611 © 2019-21 Goldstein

Briggs

e Cancoalesceaandb if
(# of neighbors of ab with degree > k) < k
e Why?
— Simplify removes all nodes with degree < k]i %
— # of remaining nodes < k
— Thus, ab can be simplified

Briggs

e Can coalesceaandbif

e Why?
— Simplify removes all nodes with degree < k
— # of remaining nodes < k
— Thus, ab can be simplified

Preston

e Can coalesceaandbif

e Why?
— let S be set of neighbors of a with degree < k

— If no coalescing, simplify removes all nodes in S, call
that graph G

— If we coalesce we can still remove all nodes in S, call
that graph G2

— G?is a subgraph of G?!

15-411/611 © 2019-21 Goldstein

Preston

No coalescing,

after
S simplification

After coalescing and
simplification
ab

Why Two Methods?

e With Briggs one needs to look at:
neighborsof a & b

e \With Preston, only need to look at
neighbors of a.

e As we will see, we will need to insert “hard”
registers into graph and they have LOTS of
neighbors
— RAX, RCX, RDI, ...

— Called hard registers
— aka precolored nodes

Briggs and Preston

e With Briggs one needs to look at:
neighborsof a & b

e \With Preston, only need to look at
neighbors of a.
e Briggs
Used when a and b are both temps

e Preston
Used when either a or b is precolored

Iterated Register Coloring

‘l conservative
|.| coalesce

[/
' freeze
N,

|

| |
'“\ potehtial |
— spill |

| |

TN TN !

select !
— | \

actual ;

‘;plll / J. g
B ‘b

15-411/611

Coalesce:
* For any move related nodes:

* if they pass conservative test
* briggs for temp<->temp
e preston for temp<->hard
* then, mark move to be deleted

* merge nodes
* update degree of neighbors, etc.

* back to simplify

© 2019-21 Goldstein 14

15-411/611

Iterated Register Coloring

.
build N

/
¢

/i simplify
—

IIIII'II

Ill

| conservative

|.| coalesce

A |

| i
freeze

| _J|

|

|

|III -I|I-

“\ potehtial

— spill

]
Ny

select
— | |

A~

Freeze:
| * Mark any unremoved “move related”

| nodes as frozen
* E.g., treat them like regular nodes

* Go back to simplify

dO ne

© 2019-21 Goldstein

15

Iterated Register Coloring

/- . .

f(simplify \ Potential Spill:

- | * Select a node to spill

| e remove it and push to stack

e go back to simplify

‘l conservative
|.| coalesce

II“\ potehtial |

— spill |
| |
TNy ™ |
select |
— | III Il E:J
! || |
actual ;" |2
/ &

‘;plll /

15-411/611 © 2019-21 Goldstein

16

15-411/611

Iterated Register Coloring

Select:
* Pop nodes, coloring as you go

If you can’t color, then do actual spill

* rewrite code
e Will have to undo at least some

coalescing (can you keep some?)

* Insert spill code
* go back to build

II“\ potehtial
— spill |
| |

TNy ™

select
— II| |

|

actual

spill / |

© 2019-21 Goldstein

17

“Details”

e How to choose a node to spill?
e How to limit size of stack frame?
e \What about hard registers?

Spill Heuristics

e Choose a temp to map to stack frame
— will be used as infrequently as possible
— will be most likely to make 1G colorable

e for each temp evaluate sp|IICost(t) Choose
minimum to potentially spill”

e For example:
—spillCost(t): __ M@Srf

. t.cost=0 LCP@D (Q;@ﬂl
o for every def o@ every use @
~t.cost+=1 t.degree

Choosing frame slots

e \Want to minimize stack frame.

. it@an@)?eed to be spilled,

they could go into same fame slot

e After register allocation is done,
can use coloring method (k=7?) to
color spill slots and use coalescing
— minimizes frame slots needed
— can help coalesce spill-spill moves

Choosing frame slots

e \Want to minimize stack frame.

e if vand u need to be spilled,
they could go into same fame slot

e After register allocation is done,
can use coloring method (k=7?) to
color spill slots and use coalescing

— minimizes frame slots needed

— can help coalesce spill-spill moves

Choosing frame slots

e \Want to minimize stack frame.

e if vand u need to be spilled,
they could go into same fame slot

e After register allocation is done,
can use coloring method (k=o0) to
color spill slots and use coalescing
— minimizes frame slots needed
— can help coalesce spill-spill moves

What about special registers?

e Precolored nodes/hard registers
e |nstructions with register requirements

d < a *b

ret x

e Callee-save registers

— x86-64: RDI, RSI, RDX, RCX, R8, R9 must be
saved by callee if callee wants to use them.

e Special registers: RSP or frame pointer

© 2019-21 Goldstein

Precolored Nodes

e Some temps are real registers

e Obviously they interfere with each other
— don’t add edges in IG
— just set degree to infinity
— they can’t be spilled. ©

e Some interfere with all temps (e.g., frame pointer)
e Hope for coalescing

e Start “select” phase when only precolored nodes
remain in |G

What about special registers?

e |nstructions with register requirements

=) movl a@gx
Q ; rdx, rax
movl rax, d

What about special registers?

e |nstructions with register requirements

d < a *b

=) movl a, rax
imul b ; rdx,rax
movl rax, d

rax b If all goes perfectly, then a & d will

N\,
N,
\,
N
N\,
N\,
\
N\,
\:

15-411/611 © 2019-21 Goldstein 26

end up being coalesced with rax

What about special registers?

e |nstructions with register requirements

d < a *b

==) movl a, rax
imul b ; rdx,rax
movl rax, d

Preserving Callee-registers

e [Move callee-reg to temp at start of proc

e Move it back at end of proc.

e What happens if there is no register pressure?

e What happens if there is a lot of register pressure?

T

epilogue: %ﬁ . o

15-411/611 © 2019-21 Goldstein

prologue:

Using Caller Save Registers

e Prefer not to use caller save registers across calls
e How can we make this happen with existing machinery?

15-411/611 © 2019-21 Goldstein

29

Iterated Register Coloring

conservative
coalesce

\ pﬂt{s'{]tial |
— spill |
!
[selec \
\‘-J | I'll || g
)T
f |
actual | &
spill / £
S
— &

© 2019-21 Goldstein

Ko,
AL

7

In practice

e |terated Register Coloring does a good job

e Building Interference Graph is Expensive
— Calculating live ranges
— graph is O(n?)
— Need quick test for interference
— Need quick test for neighbors

e Coalescing is important

— Many PaSSesS generate extra temps and moves

— Aggressive requires fix-up (e.g., live range splitting)
e Spilling has biggest impact on generated code

Today

e |terated Register Allocation

e SSA-Based Register Allocation
— Def-Use chains
— SSA
— ¢-functions (briefly)
— Chordal Graphs
— Perfect Elimination Order

Def-Use Chains

e Common Analysis in support of optimizations,
register allocation, etc.

— Find all the sites where a variable is used
— Find the definition of a variable in an expression

e Traditional Solution: def-use chains

— Link each triple defining a variable to all triples that
use it

— Link each use of a variable to its definition

Def-Use Chains

How is this related to
register allocation?

Unrelated uses of the same variable are mixed together
— complicates analysis.

Lecture 4 15-745 © Seth Copen Goldstein 2005-9

34

Lecture

Def-Use chains are expensive

foo(int i, int j) {

sw:Ltch (i) {

4 15-745 © Seth Copen Goldstein 2005-9

35

Detf-Use chains are expensive

foo(int i, int j) {

In general,
N defs
M uses
= O(NM) space and time

sw1tch (1) {

A solution is to limit each var to
ONE def site

Lecture 4 15-745 © Seth Copen Goldstein 2005-9

36

Def-Use chains are expensive

foo(int i, int j) {

switch (1) {
case 0: x=3; break;
: break;

11;

the above x’s

A possible solution is to limit
each var to ONE def site

default:
}

Lecture 4 15-745 © Seth Copen Goldstein 2005-9 37

Basic Blocks & Control Flow Graph

e Control Flow
— what is potential sequence of instructions?

— Only interested in transfers of control
® jump
e conditional jump
e call
e label (target of a transfer)

e Group together non-jumps into Basic Bl

-_—

— One entry point

— One point of exit

—"When entered all instructions are executed

e Basic Blocks are nodes in-Control Flow Grﬂ

9/8 15-411 © Seth Copen Goldstein 2020

38

SSA

e Static single assignment is an IR where

r——

every variable has only ONE definition in
the program text

— single static definition
— (Could be in a loop which is executed
dy‘__r]\amically many times.)

Lo: (=0

1 /530
T

La:

3
4
5

X > ml[i]
S + X
i#zi+4
if i<N goto L

Lecture

4

l

Not in SSA form:
e i and s have two static def

sites

* x has only one static def site,
but may be dynamically defined
many times in loop.

15-745 © Seth Copen Goldstein 2005-9 39

SSA

e Static single assignment is an IR where
every variable has only ONE definition in
the program text

— single static definition

— %% Ee in a loop which is executed

dynamically many times.)

e Easy for a straight-line code:
— assign to a fresh variable at each stmt.
— Each use uses the most recently defined var.

15-745 © Seth Copen Goldstein 2005-9

Advantages of SSA

Makes du-chains explicit
Makes dataflow optimizations

— Easier

— faster

Improves register allocation

— Makes building interference graphs easier
— Easier register allocation algorithm

— Decoupling of spill, color, and coalesce

For most programs reduces space/time
requirements

15-745 © Seth Copen Goldstein 2005-9

SSA History

e Developed by Wegman, Zadeck, Alpern,
and Rosen in 1988

e Today used in most production compilers,
e.g., gcc, llvm, most JIT compilers, ...

Straight-line SSA

e Straight forward to convert
basic block into SSA

@,%;‘ + Y Connect each use to its most
bR «— \ + x recent definition

15-745 © Seth Copen Goldstein 2005-9

43

o O
L N N
ol o o X

Straight-line SSA

e Straight forward to convert
basic block into SSA

* Connect each use to its most
recent definition

+ + + + +
RN MK

15-745 © Seth Copen Goldstein 2005-9

Lecture

Straight-line SSA

,31(_32.+
b(—a@ﬁ
a < b +
cC <y +
a < c +

for each variable a:
countfa] =0,
“Stack[a] = [0]
renMsic_block(B) =
for each instruction _§__i_n block B:
for each use of a Variablgn_)_c in S:
@ top(Stack[x])
replace t?l-e-u?e- of x with x;

for each variable a that S defines

DJI—‘NNQ'?!

count[a] = count[a] + 1

count[a]

L

push i onto Stack[a] |,

replace definition of a with a;

15-745 © Seth Copen Goldstein 2005-9 45

Straight-line SSA

count:
/a._j_ﬂ_(— xiO'|' Yﬁ 3 —>@§_Z;
b<a+x b—>;j,_
a,« b+ 2 c ->= L
22
C{Lf_ﬁ_j'_ﬁl Stack: é_
a_<«< c. + a a: ¥xX
3‘ b4 b: @;L/_‘;
c:&‘{

--"""‘"".-’

M op Do
TTT 1T

Straight-line SSA

X +y a; €
a + x b, «
b+2jl> a, €«
y + 1 C, <«
c + a a; €«

X + Yy
a,; + x
b, + 2
y + 1
c, + a,

SSA

e Static single assignment is an IR where
every variable has only ONE definition in
the program text

— single static definition

— (Could be in a loop which is executed
dynamically many times.)

e Easy for a basic block:
— assign to a fresh variable at each stmt.
— Each use uses the most recently defined var.

e \What about at joins in the CFG?

Merging at Joins

c « 12 c; « 12
if (i) { if (1)

Q& x ty /\

b« atx a, ¢« x+y |a, ¢« b, + 2
} else { b, < a;, + x|c, <y + 1

a. < b + 2
2 \/
c <y +1

e, M) a, <« c, + a,
S Fc@%&@(\c&#h&}zd%hh)

Lecture 4 15-745 © Seth Copen Goldstein 2005-9

SSA

e Static single assignment is an IR where
every variable has only ONE definition in
the program text

— single static definition

— (Could be in a loop which is executed
dynamically many times.)

e Easy for a basic block:
— assign to a fresh variable at each stmt.
— Each use uses the most recently defined var.

e What about at joins in the CFG?

e Use notional fictionctions

15-745 © Seth Copen Goldstein 2005-9

Lecture

Merging at Joins

—

c, «< 12

T~

if (1)
a; < x +y a2(—}? + 2
B, « a, + x —y+1

Co
;1! w-?
a; « ®(a;,a,)

C; ¢« P(cy,c,)

b, « CD(Ql_,@_

a4(_C3+a3

15-745 © Seth Copen Goldstein 2005-9 51

The @ function

e O merges multiple definitions along
multiple control paths into a single
definition.

e At a BB with p predecessors, there are p
arguments to the @ function.

X «— D(x;, %, X3, .. , X)

new

e How do we choose which x. to use?

—d@’ﬂf)n’t really care! \

— |f we care, use moves on each incoming edge

“Implementing” ®*

c, « 12

if (1)
a;, < x +y a, < b + 2
b, « a; + x c, < y+1

(@(— a; (

O!j
wlw
Q
NN

I(:3 (_ Cl
a;<—dlara,)
C3 <= (D(Cl c2)
*Huge caveat here, a, < c; + a;

discussed later.
(e.g, lost-copy,
swap-problem)

Lecture 4 15-745 © Seth Copen Goldstein 2005-9

SSA-based Register Allocation

e SSA-based register allocation is a technique to perform
register allocation on SSA-form.
— Simpler algorithm.
e Decoupling of spilling, coalescing, and register assignment
— Less spilling.
e Smaller live ranges
e Polynomial time minimum register assignment

Traditional Register Allocation

Source SaA A-form S5A ,Post-83A Register _ Executable
Program Convertion Program Elimination Program Adlocation Program
r—‘_ r” —— p

S5A-Based Register Allocation

Source S84 - B5A-form Register
Program Convertion - Proaram Allocation

9/8 15-411 © Seth Copen Goldstein 2020 57

9/8

Basis for Coloring Approach

Cbuld O\
(N | Simplify — creating order in which to
f |
| l | s—===— color nodes
| conservative |
|'. coalesce
I\ |
|I] 'y
N
l.ll |
'“\ potehtial |
— spill | “_: N
. [P | Select — Uses “simplify” order to color
i \' |¢ =" nodes
! | S
actual /| | Z
spill / / &
é-a Need heuristic because minimal coloring
of general graph is NP-complete

15-411 © Seth Copen Goldstein 2020

Chordal Graphs

e An undirected graph is chordal if every
cycle of 4 or more nodes has a chord.

e A chord is an edge the connects two
vertices in the cycle, but is not part of the
cycle.

Chordal Graphs

e An undirected graph is chordal if every
cycle of 4 or more nodes has a chord.

(a)

Graph Facts

e Clique: fully connected subgraph

e Chromatic number of graph G: minimal k
such that G is k-colorable

e chromatic number of G > size of largest
clique

e Perfect graph: chromatic number = size of
largest clique

e All chordal graphs are perfect

e Can color perfect graph in poly-time

e Finally, IG of SSA programs is chordal!

Non-chordal example

A~ ¢ t

\.\b €

—

\;
\\%

Break up the live ranges

e o [0

¢ £ © &
< ol

(—c+d —

b« 7
. , |
4 (_@+ o Adding more temps — fewer registers!

X <« b’'+ d’

BTW: now in SSA-form!

ret x

Simplical Elimination Ordering

e IfG=(V, E)is agraph, then a vertex VEVis
called si mgl:aal if, and only if, its
neighborhood in G is a clique.

e b & d are simplical

Simplical Elimination Ordering

e IfG=(V, E)is agraph, thenavertexv €Vis
called simplicial if, and only if, its
neighborhood in G is a clique.

e b & d are simplical

15-411 © Seth Copen Goldstein 2020

Simplical Elimination Ordering

e IfG=(V, E)is agraph, thenavertexv €Vis
called simplicial if, and only if, its
neighborhood in G is a clique.

e b & d are simplical
e 3 & c are not

a

e

Simplical Elimination Ordering

e IfG=(V, E)is agraph, thenavertexv €Vis
called simplicial if, and only if, its
neighborhood in G is a clique.

o ASimplicial Elimination Order/ng_gf Gisa
buectlon o:V(G) =2 {1, ..., |V|}, such that
every vertex v, is a S|mpI|ciaI vertex in the
subgraph induced by {v,, ..., vi}.

b, a, c, d

Greedy Coloring using SEO is optimal

e IfG=(V, E)is agraph, thenavertexv €Vis
called simplicial if, and only if, its
neighborhood in G is a clique.

e A Simplicial Elimination Ordering of G is a
bijection o: V(G) = {1, ..., |V|}, such that
every vertex v, is a simplicial vertex in the
subgraph induced by {v,, ..., vi}.

b, a, c, d

9/8

Maximal Cardinality Search

Use Maximum Cardinality Search to generate SEO

Maximum Cardinality Search
input: G = (V, E) with |V| =n
outpuf: a simplicial elimination ordering 6 = v,, ..., v,
forallveVdoA(v) <0 —
fori< 1tondo

let v € V be a node such that Vu € V, Au) in
gr allue Vn N(v)do A(u) €< A(u) +1

V=V\{v}

Running Time: O(|V|+]|E|)

15-411 © Seth Copen Goldstein 2020 71

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

15-411 © Seth Copen Goldstein 2020

72

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t

15-411 © Seth Copen Goldstein 2020

73

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x

15-411 © Seth Copen Goldstein 2020

74

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u

15-411 © Seth Copen Goldstein 2020

75

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w

15-411 © Seth Copen Goldstein 2020

76

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w, v

15-411 © Seth Copen Goldstein 2020

77

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO:_E, X, U, w,’v>

15-411 © Seth Copen Goldstein 2020

78

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w, v

15-411 © Seth Copen Goldstein 2020

79

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w, v

15-411 © Seth Copen Goldstein 2020

80

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w, v

15-411 © Seth Copen Goldstein 2020

81

9/8

+ 8 X = Jd

rtT7rTrT Tt 1T

+ & £ S ¥ 9 B

o

SEO: t, x, u, w, v

15-411 © Seth Copen Goldstein 2020

82

Using the SEO is optimal

Greedy coloring in the simplicial elimination
ordering yields an optimal coloring.

e If we greedily color the nodes in the order given by
the SEO, then, when we color the ith node this
ordering, all the neighbors of v, that have been
already colored form a clique.

e All the nodes in a clique must receive different
colors.

e Thus, if v. has M neighbors already colored, we will
have to give it color M+1.

l.e., The chromatic number of a chordal graph is the
Size Of IargeSt Clique 15-411 © Seth Copen Goldstein 2020

An advantage of SSA-based RA

e Often no need to iterate

e |nstead:
— Decoupled Spilling
— Use SEO greedy coloring
— Do best effort coalescing

Decoupling Coloring and Spilling

e |n iterated register coloring we iterate for
both coalescing and spilling.

e \With chordal register coloring we can use a
decoupled approach.
— find maximum clique, C, in IG
— Spill until |C| <=K
— Use MCS to find the SEO
— Color graph greedily
— Perform BestEffortCoalescing

9/8

Best Effort Coalescing

input: list L of copy instructions, G =(V, E), K
output: G', the coalesced graph G
G'=G
forallx=y € Ldo
let S, be the set of colors in N(x)
let S, be the set of colors in N(y)
if Ic, c<K,c &S,US, then
let xy, xy € V be a new node in
add xy to G' with color c
make xy adjacent to every v, v € N(x) U N(y)
replace occurrences of x ory in L by xy
remove x from G'
remove y from G'

15-411 © Seth Copen Goldstein 2020

86

v <« 1
W
X <
u <« v
t <« u
«— W
«— t
<« u

Can we Coalesce?

N(u) = {x,

Can we Coalesce?

v <« 1
W< v+ 3
X << W+ v
U < Vv
t¢«< Vv + x
«— W
«— t
«— Vv

N(u) = {x,

15-411 © Seth Copen Goldstein 2020

In practice

e pre-colored nodes break chordality
e Often assuming chordal is ok
e Have to get out of SSA sometime

e You will use SSA anyway, so register
allocation on SSA seems logical

o Will revisit later

e For L1:

— Can use basic renaming to get into SSA
— Then, spill, color, coalesce

	Slide 1
	Slide 2: Today
	Slide 3: Iterated Register Coloring
	Slide 4: Iterated Register Coloring
	Slide 5: Iterated Register Coloring
	Slide 6: Coalescing
	Slide 7: Coalescing
	Slide 8: Briggs
	Slide 9: Briggs
	Slide 10: Preston
	Slide 11: Preston
	Slide 12: Why Two Methods?
	Slide 13: Briggs and Preston
	Slide 14: Iterated Register Coloring
	Slide 15: Iterated Register Coloring
	Slide 16: Iterated Register Coloring
	Slide 17: Iterated Register Coloring
	Slide 18: “Details”
	Slide 19: Spill Heuristics
	Slide 20: Choosing frame slots
	Slide 21: Choosing frame slots
	Slide 22: Choosing frame slots
	Slide 23: What about special registers?
	Slide 24: Precolored Nodes
	Slide 25: What about special registers?
	Slide 26: What about special registers?
	Slide 27: What about special registers?
	Slide 28: Preserving Callee-registers
	Slide 29: Using Caller Save Registers
	Slide 30: Iterated Register Coloring
	Slide 31: In practice
	Slide 32: Today
	Slide 33: Def-Use Chains
	Slide 34: Def-Use Chains
	Slide 35: Def-Use chains are expensive
	Slide 36: Def-Use chains are expensive
	Slide 37: Def-Use chains are expensive
	Slide 38: Basic Blocks & Control Flow Graph
	Slide 39: SSA
	Slide 40: SSA
	Slide 41: Advantages of SSA
	Slide 42: SSA History
	Slide 43: Straight-line SSA
	Slide 44: Straight-line SSA
	Slide 45: Straight-line SSA
	Slide 46: Straight-line SSA
	Slide 47: Straight-line SSA
	Slide 48: SSA
	Slide 49: Merging at Joins
	Slide 50: SSA
	Slide 51: Merging at Joins
	Slide 52: The  function
	Slide 53: “Implementing” *
	Slide 57: SSA-based Register Allocation
	Slide 58: Basis for Coloring Approach
	Slide 60: Chordal Graphs
	Slide 61: Chordal Graphs
	Slide 62: Graph Facts
	Slide 63: Non-chordal example
	Slide 64: Break up the live ranges
	Slide 66: Simplical Elimination Ordering
	Slide 67: Simplical Elimination Ordering
	Slide 68: Simplical Elimination Ordering
	Slide 69: Simplical Elimination Ordering
	Slide 70: Greedy Coloring using SEO is optimal
	Slide 71: Maximal Cardinality Search
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Using the SEO is optimal
	Slide 84: An advantage of SSA-based RA
	Slide 85: Decoupling Coloring and Spilling
	Slide 86: Best Effort Coalescing
	Slide 87: Can we Coalesce?
	Slide 88: Can we Coalesce?
	Slide 89: In practice

