15-411: Compiler Design Spring 2025
Recitation 10: Optimizations |11 18 April

Tail Call Optimization

Tail Call Optimization (TCO) is an optimization that targets tail calls, those being function calls that
are the final computation of a function. Rather than generating a new stack frame for that function call,
the compiler can reuse the current stack frame.

For recursive functions, this is a simple process. If f is the name of a recursive function, and in it we have
a callf instruction followed immediately by a ret instruction, then we can replace the two instructions
with a gotof.

TCO is also possible with non-recursive functions, although this is harder since it's possible that registers
may be overwritten or spilled local variables would not be available on the stack frame.

This motivates the use of Continuation Passing Style (CPS). As a reminder from 15-150, a function is
written in CPS if:

e The function takes in continuations
e It calls functions with continuations (including itself) as tail calls

e |t calls its continuations and does so in tail calls

Note that some compilers (such as SMLNJ) do CPS conversion, which converts all functions to CPS.
This minimizes the usage of the stack for function calls via TCO.

Checkpoint 0

Write x86 for the following function, applying TCO. Assume that the first two argument registers are
%edi and %esi, respectively.

int sumacc (int n, int acc) {
if (n == 0)
return O;
}

return sumacc (n - 1, acc + n);

}

Partial Redundancy Elimination

Partial Redundancy Elimination (PRE) is a very powerful optimization that eliminates redundancies and
partial redundancies. Since it eliminates redundancies and moves loop invariant code outside of loops
(given the correct conditions), it can be thought of as a more powerful version of CSE/GVN and LICM.

The idea behind PRE is that we want to identify any redundant calculations and bring it up as far as it
can go without introducing any useless calculations (i.e. performing the calculation when the result is
not used). After bringing it up as far as it can go (it should appear only once now), it should then be
lowered as far as it can, such that it is still never calculated more than once along a given control flow
path. There will now be many calculations statically, but not dynamically.

Checkpoint 1

Identify any redundant calculations in the following code, and the highest place it should go, along with
the lowest place(s) it should go.

int f(int x);

int calculation (int n, int p) {
int x = 0;

int y =n - 1;
if (p < 50) {
f(y + 5);

} else {

for (int i = 0; 1 <= y; i++) {
if A1 +y+n>25 {
X++;
f(x);
f(y + n);
}
}
f(y + 5);
}

return 1;

¥

Loop Unrolling

Loop unrolling is a classic optimization with lots of benefits. It reduces branching cost, enables better
instruction scheduling, and open doors to more optimizations and analyses—more effective CCP/CSE,
vectorization, and better dependency analyses results.

Loop optimizations have many corner cases. To simplify their implementation, modern compilers like
LLVM first transforms loops into a canonical form:

e A pre-header.
e A single back edge with a single latch block (source of the back edge).
e All exits should have no predecessor from outside the loop.

e All live variable across loop boundary should be redefined at loop exits. This form is called Loop-
Closed SSA (LCSSA).

Loop canonicalization can be achieved via a "loop rotation" pass. Its effect can be visualized through the
following C code:

// Original loop // Rotated loop
for (int i = 0; i < n; ++1) { if (i <n) {
body () ; do {
h body () ;
} while (i < n);
}

Note: if you're sure this loop will be executed at least once (e.g. through loop-range analysis), you can
eliminate the first if check.

A word on LCSSA: Variables that are live across loop boundaries can make things difficult. To ensure
your loop transformations only affects program within the loop region, LLVM enforces Loops to be in

© O ~N O 0 b W N =

e e e = e e
© 0 N O O b W N = O

LCSSA form by inserting single entry ¢-nodes at loop exists to break apart those live variables’ def-use
chain.

Checkpoint 2

Convert the following loop into its canonical form using loop rotation (for simplicity ignore LCSSA for
this question):

define void @singleloop(ptr %p, i32 %k) {
entry:
br %loop.header

loop.header: ; preds = Yentry, %loop.body
%iter = phi i32 [O, %loop.header], [%iter.update, %loop.body]
%p.addr.04 = phi ptr [%p, %loop.header 1, [%incdec.ptr, %loop.body]
hemp3 = icmp slt i32 %iter, %k
br il %cmp3, label %loop.body, label %end

loop.body: ; preds = %loop.header
store 132 Yiter, ptr ’%p.addr.04, align 4
%hiter.update = add nsw 132 %iter, 1
hincdec.ptr = getelementptr inbounds i32, ptr %p.addr.04, i32 1
br label %loop.header !1lvm.loop !1

end: ; preds = %loop.header, Jentry
ret void

}

Now onto the real business. Loop unroll achieves something like this:

// Original loop: i = {0,+,1} // Fully Unrolled (tripcount: n = 4)
for (int 1 = 0; 1 < n; ++i) { // 1= {0,+,1}
body(1i); body(0 + 0 x 1); // clone 1
} body(®@ + 1 x 1); // clone 2
body(0 + 2 * 1); // clone 3
body(0 + 3 * 1); // clone 4
// Peeled (tripcount: n >= 4) // Partially Unrolled (tripcount: ?7?)
// 1 ={0,+1} // 1 =A{0,+,1}
body(06 + 0 x 1); // clone 1 int step = 1;
body(0 + 1 x 1); // clone 2 int tc = n / step; // tripcount (truncated)
body(06 + 2 *x 1); // clone 3 int factor = 4
body(0 + 3 x 1); // clone 4 int tc_floor = (tc/factor) * factor;
for (int i = 4; i < n; ++i) {
body(i); int i = 0;
} for (; i < tc_floor * step; i += 4 * step) {
body(0 + (i + @) * step); // clone 0
body(0 + (i + 1) * step); // clone 1
body(0 + (i + 2) * step); // clone 2
body(0 + (i + 3) * step); // clone 3
}

// epilogue: left over

for (; i < n; i += step) {
body(i);

}

Checkpoint 3

Perform loop peeling on your canonical loop from previous checkpoint by peeling off the first two itera-
tions. Assume you've already performed SCEV analysis on induction variable %k.

