
15-411: Compiler Design Spring 2025

Recitation 5: Calling Conventions Solutions 21 February

The L3 language adds support for function calls, type definitions, and header files with C interoperability.
In this recitation, we’ll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers
In Lab 3, your compiler’s code-generation and register allo-
cation phases will need to distinguish between callee-saved
and caller-saved registers:

• The values stored in callee-saved registers must
be preserved across function calls. This means that
your function must save and restore any callee-saved
registers that it modifies.

• The values stored in caller-saved registers may be
modified by any function call, so your compiler can-
not assume that they will retain their values after
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call.

To avoid having callee-saved registers occupy a very long
live range during register allocation, we can handle them
separately. Prioritize allocating caller-saved registers; if
they are insufficient, we assign assign callee-save registers
before we resort to spilling, but we make sure to save them
to the stack at the beginning of a function and restore them
at the end. This is more efficient than always saving and
restoring all callee-saved registers.

Tracing Function Calls in x86-64
In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

• The first six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(respectively).

• The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

• The return value of a function should be stored in %rax.

• The use of %rbp as a base pointer is not required (but you may find that using it simplifies your
compiler’s logic significantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in C0 (and thus in L3) has a fixed stack
size that can be computed at compile time. This observation allows you to make your compiler’s stack-
handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 0
Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

1 int f(int we, int dont, int care, int about, int these, int args, int a, int b) {
2 // assume that x is spilled on the stack
3 int x = a + b;
4 return 2 * x;
5 }
6
7 int main() {
8 return f(0,0,0,0,0,0,3,5);
9 }

Solution:
Value Pointers
Return address of _main()
Previous %rbp
b; Arg. 8 of f()
a; Arg. 7 of f()
Return address of f()
main’s %rbp ← %rbp
x ← %rsp

Checkpoint 1
Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately and that stack
grows downward!

Solution:

_c0_f:
push %rbp
movq %rsp, %rbp
subq $8, %rsp
movl 24(%rbp), %eax
addl 16(%rbp), %eax
movl %eax, (%rsp)
movl (%rsp), %eax
imull $2, %eax
addq $8, %rsp
pop %rbp
ret

_c0_main:
push %rbp
movq %rsp, %rbp
subq $16, %rsp
movl $0, %edi
movl $0, %esi
movl $0, %edx
movl $0, %ecx

movl $0, %r8d
movl $0, %r9d
movl $3, (%rsp)
movl $5, 8(%rsp)
call _c0_f
addq $16, %rsp
pop %rbp
ret

Tips and Hints for Lab3
• Header Files in L3: Unlike in C, header files in L3 (and above) are only used to declare types

and external functions. If a function is declared in a header file, then it may not be defined in the
program – it is declared as external. External functions are defined in C source files, which are
linked together with the assembly produced by your compiler.

• RBP: You are not required to use %rbp as a base pointer, so you are allowed to treat it like a
normal callee-saved register in your compiler.

• Code Review: Code Review happens one week after Lab3 is due. So if you haven’t polished
the style of your compiler and added a README describing the design of various passes of your
compiler, now would be a good time to start. We are looking for good coding style and comments,
modular design, and that both of you are familiar with all components of the implementation.

• Code Discussion: We are planning on offering Code Discussions to provide in-depth feedback
on your compiler. If you are interested in this, we ask that you take great care with thoroughly
commenting your code and including important design decisions as well as justification in your
README in addition to your description of your compiler passes.

