
15-411: Compiler Design Spring 2025

Recitation 2: SSA 31 January

Constructing the Dominator Tree
In order to enter SSA, we first require a dominator tree in order to effectively determine where Φ-functions
should be inserted. We introduce some important definitions here:

• Node x dominates node y if every possible execution path from the CFG entry point to y includes
x.

• Node x strictly dominates node y if x dominates y and x ̸= y.

• The immediate dominator of a node x is the unique node that strictly dominates x but doesn’t
strictly dominate any other node that strictly dominates x.

• The dominance frontier of a node x is the set of nodes S such that for each node y ∈ S, x
dominates a predecessor of y but x doesn’t strictly dominate y. A more intuitive definition is the
border of the CFG region that is dominated by x.

We construct the dominator tree by drawing an directed edge from node x to node y if x immediately
dominates y.

Checkpoint 0
Given the following CFG, draw its corresponding dominator tree. Then, list out the dominance frontiers
for each node.

0

1

2 3

4

5

SSA Construction
We go about a more systematic way to construct SSA. We require the Dominance-Frontier Criterion:
Whenever node x contains a definition of some variable a, then any node z ∈ DF (x), z needs some
Φ-function for a.



Applying this criterion, we insert Φ-functions where necessary:

• Gather all the defsites (basic block where variable has been defined) of every variable

• For each variable:

– For each defsite:

∗ For each node in DF(defsite):
· If we don’t have Φ() in node, put one in
· If the node didn’t previously define the variable, add this node to defsites

Note that the last step is necessary since the added Φ-function is considered a new definition for the
variable.

Then, we need to rename variables so that each variable is defined once. To do this:

• Maintain a stack for each variable

• For each basic block BB in depth-first search preorder traversal through the dominator tree:

– For each instruction in BB:

∗ For each used variable in non-Φ-function, remove from variable’s stack until topmost
definition dominates current instruction

∗ Replace each variable use by non-Φ-function with topmost stack definition
∗ Add each variable definition to their corresponding stack

– For each Φ-function in direct successors of BB:

∗ For each used variable, remove from variable’s stack until topmost definition dominates
BB’s exit point

∗ Replace each variable use with topmost stack definition

– Restore original states of variable stacks (before the current basic block was entered)

Checkpoint 1
Given the following abstract assembly, first add Φ-instructions to the abstract assembly above as neces-
sary. Then, rename variables so that the program is in SSA form.

1 main:
2 x <− 1
3 if (x >= 2) then goto L1 else goto L2
4 L1:
5 x <− x + 2
6 goto L3
7 L2:
8 x <− 3
9 goto L3

10 L3:
11 %eax <− x
12 return



SSA Deconstruction
Once we are finished working in SSA, we need to deconstruct it before converting the abstract assembly to
x86, since Φ-functions are not executable machine instructions. To do this, we want to make conventional
SSA (where the variables in Φ-functions never interfere). This is a form that we naturally receive from
SSA construction, but certain optimizations may make the SSA non-conventional.

To fix this, we introduce the idea of splitting critical edges. A critical edge is an edge x→ y such that
x has more than one successor and y has more than one predecessor. To split such a critical edge, we
insert a new node z, then replace the previous edge with x→ z and z → y.

Once we do have conventional SSA, SSA deconstruction is easy – for every Φ-function assignment
x0 ← Φ(B1 : x1, B2 : x2, . . . , Bn : xn) (where Bi : xi refers to the definition of xi arriving from a direct
predecessor Bi), we insert the move x0 ← xi to the parallel copy PCi in Bi.

Checkpoint 2
Given the following abstract assembly, draw the CFG. Then, redraw the CFG, splitting any critical edges.

1 main:
2 x_0 <− 1
3 goto L1
4 L1:
5 x_2 <− phi(x_0, x_1)
6 x_1 <− x_2
7 if (true) then goto L1 else goto L2
8 L2:
9 %eax <− x_1

10 return

Checkpoint 3
As x86 doesn’t support parallel copies, we need to replace them with sequential copies. Given a parallel
copy, so long as there exists a move b← a such that there aren’t any c← b, we can add b← a to the
list of sequential copies, removing the move from the PC. Otherwise, the parallel copy only consists of
cycles, so we need to break one by introducing a fresh temp. We do this by picking a move b ← a in
the PC, adding a′ ← a to the sequential moves, and replacing b← a in the PC with b← a′ (such that
a′ is fresh).

Given the parallel copy PC(b← a, c← b, a← c, d← c), convert it to sequential moves, breaking cycles
as necessary.

SSA Resources
As Lab 2 onwards require that you implement SSA, these references may be helpful to read about SSA
implementation intricacies in more detail:

(a) https://link.springer.com/book/10.1007/978-3-030-80515-9

(b) https://homepages.dcc.ufmg.br/~fernando/publications/papers/CC09.pdf

Lab 2 Hints
• For the expression if (a < 0) if (b < 0) x = 4 else x = 5, x is not assigned if a ≥ 0

(else binds to the most recent if)

https://link.springer.com/book/10.1007/978-3-030-80515-9
https://homepages.dcc.ufmg.br/~fernando/publications/papers/CC09.pdf


• You have to add support for Boolean variables now, and you will have to add support for pointers
in lab 4. Plan ahead when making design decisions to support different types in type checking and
instruction selection.

• We suggest adding support for a -O0 flag that disables register allocation and places all temps on
the stack. Interference bugs fail in subtle, hard to understand ways.

• You can step through your programs with gdb. Place a breakpoint with break _c0_main, then
use step to advance the program.


