15-381: AI: Representation and Problem Solving Spring 2019

Recitation 7 March 1

1 Forward chaining

In this section, we will be proving a statement using forward chaining.

There is currently a war going on and the United States is desperate to round up all the criminals. We
want to determine whether Colonel West is a criminal. Let’s start with what we know.

We know that it is a crime for an American to sell weapons to hostile nations. The country Nono is
an enemy of America. Furthermore, we know that Nono has some missiles, all of which were sold to it by
Colonel West, who is American.

(a) Represent your knowledge base using first order logic. You can use the following function predicates:
American(x), Criminal(x), Hostile(x), Missile(x), Weapon(x), Enemy(x,y), Owns(x,y), Sells(x,y,z).

1. A A A = Criminal(x)
2. Missile(x) =

3. Missile(m)

4. Owns(nono, m)

5. Missile(x) A = Sells(west, x, nono)

6. Enemy(x, america) =

7.

8.

(b) Fill in the blanks below using your knowledge base to prove that Colonel West is a criminal.

Criminal(west)

| Missile(m)] | Owns(nono, m) | |

15-381: AI: Representation and Problem Solving Spring 2019

Recitation 7 March 1

2 Planning Tower of Hanoi

In the Tower of Hanoi problem, you are given n disks, each of a distinct size, and 3 rods, A, B and C. The
disks start off stacked on top of each other on rod A, stacked from largest being the lowest to smallest being
the highest in a “tower”, and the goal is to move that tower to the rod C. You can only move a disk to an
empty rod or on top of a larger disks, and disks may only have one other disk on its surface (they must be
stacked linearly).

(a) Assume we have 3 disks. Formulate the problem as a graph-planning problem, specifying instances,
operators, and start/goal states.

(b) Draw the planning graph for the first 3 moves. You may use pictures instead of propositions.

(¢) Generalize the problem formulation for n disks.

15-381: AI: Representation and Problem Solving Spring 2019

Recitation 7 March 1

3 Discussion-Based Questions

Let us consider forward-chaining in both a first-order logic and propositional logic setting. Find someone
sitting near you to talk through the following questions with, and take some time to look through the following
pseudocode snippets from the textbook.

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count < a table, where count|c] is the number of symbols in ¢’s premise
inferred «— a table, where inferred|s] is initially false for all symbols
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < Pop(agenda)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] < true
for each clause ¢ in KB where p is in ¢.PREMISE do
decrement count[c]
if count[c] =0 then add ¢.CONCLUSION to agenda
return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps
track of symbols known to be true but not yet “processed.” The count table keeps track of
how many premises of each implication are as yet unknown. Whenever a new symbol p from
the agenda is processed, the count is reduced by one for each implication in whose premise
p appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P = Q and Q = P.

Figure 1: Forward-chaining algorithm for propositional logic, from p. 258 of the course textbook.

function FOL-FC-ASK(KB, «) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence
local variables: new, the new sentences inferred on each iteration

repeat until new is empty
new —{ }
for each rule in KB do
(prA...A pn = q) < STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(0,p1 A ... A p,)=SUBST(@,p; A ... A pl,)
for some pf,...,p), in KB
¢’ < SUBST(6, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢ — UNIFY(¢',)
if ¢ is not fail then return ¢
add new to KB
return false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo-
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one
step from the implication sentences and the atomic sentences already in KB. The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Figure 2: Forward-chaining algorithm for first-order logic, from p. 332 of the course textbook.

(a) First things first, what are some similarities and distinctions between propositional logic and first order
logic?

15-381: AI: Representation and Problem Solving Spring 2019

Recitation 7 March 1

(b) Compare and contrast these two algorithms. At a high level, what similarities can you identify, and
where are there differences?

(¢) Now, consider the forward-chaining algorithm presented in Figure 2. It is designed to be conceptually
straightforward, but is rather inefficient. What inefficiencies can you identify in this code?

	Forward chaining
	Planning Tower of Hanoi
	Discussion-Based Questions

