15-381: AI: Representation and Problem Solving Spring 2019

Recitation 13 May 3
1 Game Theory Search
(a) What are the differences between extensive form and normal form games?
An extensive form game is one where every player is represented, as well as every opportunity that each

of those players has to make a move, what moves they can make at that time, what information they
have at the time, and the possible payoffs to be received.

GAME TREE

YOUR KNOWLEDGE

ACTIONS

TEST
DIFFICULTY

On the other hand, a normal form game is one where games are approximated as a single shot. It
represents only actions and utilities. This is the table format that we're used to using at this point.

World outcomes

ACTIONS
[ . \
CRAM DO HW PLAY GAME
EASY 98 100 85
HARD 97 ) 65
UTILITIES

(b) What is a strategy? What is the difference between a pure and a mixed strategy?

A strategy is a probability distribution over actions. A pure strategy is one that is deterministic (e.g.
chosen with probability 1), whereas a mixed strategy is one that uses randomized selection.

(¢c) We can practice computing utilities using this example that was given in lecture:

CRAM DO HW PLAY GAME
98 100 85 P(EASY) = .2
97 90 65 P(HARD) = .8
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e What is the utility of the pure strategy: cram?
98 * 0.2 + 97 * 0.8 = 97.2
e What is the utility of the pure strategy: do HW?
100 * 0.2 + 90 * 0.8 = 92
e What is the utility of the mixed strategy: % cram, % do HW?

$%97.2+ 1 %92 =946

(d) What is a Nash Equilibrium?

A Nash Equilibrium is a strategy profile where none of the participants benefit from unilaterally chang-
ing their decision (in other words, their utility would strictly decrease by doing so).

There exist pure and mixed Nash Equilibriums (a pure Nash Equilibrium is built on a pure strategy).

(e) Does a Nash Equilibrium always exist?

If there are a finite number of players and a finite number of actions, then there always exists a Nash
Equilibrium (Nash, 1950). This strategy can be either pure or mixed (consider Rock-Paper-Scissors as
an example of a game that doesn’t have a pure strategy but does have a mixed one).

(f) Consider a two player game, where each player must simultaneously choose a number from {2, 3, ...,;99, 100}.
Let x1 represent the value chosen by player 1, and x5 represent the value chosen by player 2. The rules
of the game are such that the utility for a player 1 can be given as:

T T = T2
u(pl): To—2 I > X9
To+2 x1 <X
Because the rules of the game for everyone are the same, the utility function for player 2 is symmetric

to u(pl). Does there exist a pure Nash Equilibrium for this game? It may help to try to play a few
rounds of this game with someone next to you.

Yes. If x1 = x5 = 2, then neither player has any incentive to unilaterally change their strategy. There
is no option to choose a lower number, and any player who chooses to change their number to anything
greater than 2 will then receive a utility of 0, which is strictly worse than their current utility of 2.

(g) What is a Correlated Equilibrium? What is its relationship to a Nash Equilibrium?
A correlated equilibrium is a distribution over action profiles @ such that after a profile @ is selected,

playing @ is a best response for player i conditioned on seeing d, given that everyone else will play
according to d.

In other words, suppose a mediator computes the best joint strategy for p; and ps, and shares a selected
a1 with p; and ao, with ps. Then, neither p; nor ps has incentive to unilaterally switch their strategy.

Every Nash Equilibrium is also a Correlated Equilibrium.

(h) Let us consider several voting strategies:

e Plurality



15-381: AI: Representation and Problem Solving Spring 2019

Recitation 13 May 3

Each voter gets one vote for their top-ranked preference. Alternative with the most votes wins.

e Borda Count

Each voter awards m — k points to their rank k. Alternative with the most votes wins.

e Single Transferable Vote

Each voter gets 1 vote per round. In each round, the alternative with the least number of plurality
votes is eliminated. Alternative left standing is winner

e Pairwise Elections

Alternative x beats y in pairwise election if majority of voters prefer x to y.

e Plurality with Runoff

First Round: Top 2 plurality winners advance to second round. Second Round: Pairwise election
between two winners.

e Condorcet Winner

Alternative = beats y in pairwise election if majority of voters prefer x to y. Condorcet winner
x beats every other alternative y in pairwise election. Condorcet paradox is a cycle in majority
preferences.

(i) Which voting rule (Plurality, Borda Count, Both, Neither) is Condorcet consistent? Consider the fol-
lowing voting example:

3 voters | 2 voters 3 voters | 2 voters | 2 voters
a b a b c
b C b C b
¢ a C a a

Neither! In the first case, the plurality vote is A; borda count is B; condorcet is A. In the second case,
the plurality vote is A; the borda count is B; and the condorcet is B.

(j) Which voting rule is the best?

Hard to say! [Mao, Procaccia, Chen 2013] Compared ranking strategies Plurality, Borda, Condorcet.
Found that Borda finds the winners most consistently even with noisy human responses, and Plurality
performs the worst.
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2 RL: Treasure Hunting

While Pacman is busting ghosts, Ms. Pacman goes treasure hunting on GridWorld Island. She has a map
showing where the hazards are, and where the treasure is. From any unmarked square, Ms. Pacman can
take any of the deterministic actions (N, S, E, W) that doesn’t lead off the island. If she lands in a hazard
square or a treasure square, her only action is to call for an airlift (X), which takes her to the terminal Done
state; this results in a reward of -64 if she’s escaping a hazard, or +128 if she reached the treasure. There is
no living reward.

T

*

M
-,

(a) Let v = 0.5. What are the optimal values V* of each state in the grid above?

128 | 64 32
-64 | -64 16
2 4 8

(b) How would we compute the Q-values for each state-action pair?

Run Q-value iteration (Q-iteration on the MDP/RL notation sheet) until convergence.

(¢) What’s the optimal policy?

X W W
X X N
E E N

Call this policy .

Ms. Pacman realizes that her map might be out of date, so she uses Q-learning to see what the island
is really like. She believes g is close to correct, so she follows an e-random policy, ie., with probability
e she picks a legal action uniformly at random (otherwise, she does what my recommends). Call this
policy ..

. is known as a stochastic policy, which assigns probabilities to actions rather than recommending a
single one. A stochastic policy can be defined with 7 (s, a), the probability of taking action a when the
agent is in state s.
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(d)

Write a modified Bellman update equation for policy evaluation when using a stochastic policy 7 (s, a)
(this is similar to a problem seen on midterm 2).

We'll keep most of the original evaluation formula, but additionally sum over all possible actions
recommended by the policy, each weighted by the probability of taking that action via the policy:

Vii(s) = ) m(s,a) Y P(s' | s,a)[R(s,a,8") + Vi (s))]

If the original map and our assumptions about the transitions and rewards are correct, what relationship
will hold for all states s?7

VTo(s) < V7e(s) Vmo(s) = V7e(s) Vmo(s) > V7e(s)

V7o (s) > V™(s), because 7y would be optimal if our map is correct.

As it turns out, Ms. Pacman’s map is mostly correct, but some of the fire pits seem to have fizzled out.
She observes the following episodes during her Q-learning:

{(0, 0), N, 0}, {(0, 1), N, 0}, {(0, 2), X, 128}, Done

{(0, 0), N, 0}, {(0, 1), N, 0}, {(0, 2), X, 128}, Done

{(0, 0), N, 0}, {(0, 1), E, 0}, {(1, 1), X, -64}, Done

What are her Q-values after observing these episodes? Assume Ms. Pacman initialized her Q-values
all to 0 and used a learning rate of 0.1. You may omit any Q-states that were unaffected.

Now let’s review a couple problems we’ve seen before.

For each of the following functions, write which MDP /RL value the function computes, or none if none
apply. We are given an MDP (S, A, T, v, R), where R is only a function of the current state s. We are
also given an arbitrary policy .

Possible choices: V*, Q*, n*, V™ Q™.
(i) f(s) = R(s)+ > AT (s,7(s),5)f(5)
f = V7. This is only different from the given formula for V7 (s) on the formula sheet in that the

reward function only depends on s here. Thus, we consider R(s) outside the summation over s’ -
and do not discount it (because the reward is wrt. our current state).

(i) g(s) = max 3" T(s,a, ) [R(s) + 7 max Q*(s', )

g = V*. What this function does is essentially extract optimal values from optimal Q-values. Of
our possible actions, we take the actions that yields the max sum of reward + future discounted
rewards given by Q*, summed over all possible successor states (each weighted by the successor’s
probability).

(i) A(s,a) =D T(s,m(s), s)[R(s) + vh(s',a)]



15-381: AI: Representation and Problem Solving Spring 2019

Recitation 13 May 3

None. Looking at the types, we can first rule out any functions computing V' because h takes an
action as a parameter. This also wouldn’t be a policy because policy functions require taking an
argmax over a.

Looking at what h is trying to compute, we are summing over successor states (presumably of
s, after taking the action dictated by policy 7) and computing the reward in state s + future
discounted rewards. The last term h(s’,a) (which, in the usual Bellman equations, computes the
discounted future rewards), doesn’t make sense because we're passing into the recursive call our
current action with the successor state.

(h) We are given a pre-existing table of Q-values (and its corresponding policy), and asked to perform
e-greedy Q-learning. Individually, what effect does setting each of the following constants to 0 have on
this process?

(i)

Q(s,a) = Q(s,a) + afr + ymax, Q(s',a’) — Q(s, a)] becomes Q(s,a).

We put 0 weight on newly observed samples, never updating the Q-values we already have.
(i) ~:

Q(s,a) = Q(s,a) + afr + ymax, Q(s',a’) — Q(s,a)] becomes (1 — a)Q(s,a) + ar.
Our valuation of reward becomes short-sighted, as we weight Q-values of successor states with 0.
It is interesting to note setting o = 0 has a similar effect.

(iii) e

By definition of an e-greedy policy, we randomly select actions with probability 0 and select our
policy’s recommended action with probability 1; we exclusively exploit the policy we already have.

i) Why can’t we use the MDP policy extraction formula to extract a policy in TD-learning or Q-learning?
y

We TD- or Q-learn in the context of online learning, meaning we don’t have access to the transition or
reward functions.
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In this problem, you are given a 3 x 3 grid with some numbers filled in. The squares can only be filled with
the numbers {2,3,...,10}, with each number being used once and only once. The grid must be filled such
that adjacent squares (horizontally and vertically adjacent, but not diagonally) are relatively prime.

1 T2 T3
T4 T5 3
4 Te 2

We will use backtracking search to solve the CSP with the following heuristics:

e Use the Minimal Remaining Values (MRV) heuristic when choosing which variable to assign next.

e Break ties with the Most Constraining Variable (MCV) heuristic.

o If there are still ties, break ties between variables x;,z; with ¢ < j by choosing ;.

e Once a variable is chosen, assign the minimal value from the set of feasible values.

e For any variable x;, a value v is infeasible if and only if: (i) v already appears elsewhere in the grid, or
(ii) a variable in a neighboring square to z; has been assigned a value u where ged(v, u) > 1, which is
to say, they are not relatively prime.

Fill out the table below with the appropriate values.

e Give initial feasible values in set form; x; has already been filled out for you.

e Assignment order refers to the order in which the final value assignments are given. If z; is the j**
variable on the path to the goal state, then the assignment order for x; is j.

e In the branching column, write “yes” if the algorithm branches (considers more than one value) at
that node in the search tree, and write “B” if the algorithm backtracks at that node, meaning it is the
highest node in its subtree that fails for a value, and has to be chosen again. Also write the values it
tried then failed.

Variable

T

T2

T3

T4

Zs

L6

Initial Feasible Values

{5,6,7,8,9,10}

{5,6,7,8,9,10}

{5,7,8,10}

{5,7,9}

{5,7,8,10}

{5,7,9}

Assignment Order

Final Value

Branch or Backtrack?

5 6 No
4 7 No
6 10 No
1 ) Yes
2 8 B:7
3 9 B:7
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4 Bayes Nets

(a) For the following graphs, explicitly state the minimum size set of edges that must be removed such that
the corresponding independence relations are guaranteed to be true.
Mark the removed edges with an ‘X’ on the graphs.
Note: this question relies on a method using d-separation, which is out of scope for this class. If you're
curious, you can read about d-separation here. For that reason, this problem would be out of scope
for the final exam. However, you are still responsible for understanding the conditional independence
relationships outlined in lecture and practiced in homework assignments.

(i)

@ ALB |F
ALF |D
Bl C

1 edge: AD,BD, or BF.

Al B FandB 1 C already hold in the original BN. B and C' are (unconditionally) independent
because they are both parents (not of each other). A and B are also unconditionally independent
of one another because of this same reason, and since F' is not their shared child, they are still
independent even given the value of F.

A 1L F | D does not initially hold, because knowing the value of D allows us to make inferences
about B based on A (makes A and B conditionally dependent), which further allows us to make
inferences about F'.

Thus we need to eliminate any edge(s) which sever all paths of inference from A to F that goes
through D. This can done by removing any one of the above edges.

(i)

ALD |B
ALF |C
ClLD |B

2 edges: AD and (EF or AB).

In the original BN, A and D are not independent, even given B, since D is a child of A.
Similarly, A and F' are not independent because F' is a descendant of A (even given C, since the
paths of inference ADEF, ABDEF, ABEF still exist).

Since C' and D are children of the same parent, knowing the value of that parent (B) leaves them
independent (see common cause slide in Lecture 19) - so C 1L D | B already holds.

Thus to satisfy all 3 relationships, we need to cut the edge between A and D to remove their
parent-child relationship, and we need to sever all paths of inference between A and F. The most
efficient way to do this is by removing FF or AB (since we’ve already removed AD).

oo


http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html
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(b) You're performing variable elimination over a Bayes Net with variables A, B,C, D, E. So far, you've
finished joining over (multiplying all factors containing C' into one factor), but not summing out C,
when you realize you've lost the original Bayes Net!

Your current factors are f(A), f(B), f(B, D), f(A,B,C, D, E). Note: these are generic factors, NOT
joint distributions. You don’t know which variables are conditioned or unconditioned.

(i) What’s the smallest number of edges that could have been in the original Bayes Net? Draw out
one such Bayes Net below.

5 edges.

The original Bayes net must have had 5 factors, 1 for each node.

f(A) and f(B) must have corresponded to nodes A and B, and indicate that neither A nor B
have any parents (otherwise A’s parent would appear in A’s factor, and likewise for B).

f(B, D), then, must correspond to node D, and indicates that D has only B as a parent.

Since there is only one factor left, f(A, B,C, D, E), for the nodes C and F, those two nodes
must have been joined while you were joining C'. From this we can infer two things:

1) E must have had C' as a parent. (If E didn’t have C' as a parent, then there would be a separate
factor containing E but not C.)

2) If A, B, D all appear in this big factor containing C' and E, they must have either been in a
probability table of the form P(C | ...) or P(C | E,...). Thus each of A, B, and D must have
been a parent of either C' or FE.

The below figure is one possible solution that uses the fewest possible edges to satisfy the above.

(c) What’s the largest number of edges that could have been in the original Bayes Net? Draw out one such
Bayes Net below.

8 edges.

The constraints are the same as outlined in part b.i. To maximize the number of edges, we make each
of A, B, and D a parent of both C' and E, as opposed to a parent of one of them. The below figure is
the only possible solution.
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(a) In the following optimization problem, plot the boundary lines for the three inequality constraints.

T

minc” x
s.t. Az <b
1 4 5
A=12 —-1|,b= (8
—4 -1 8
-10 XZ
—5
X1
10 5 0 5 10
-5
-10

(b) In your graph from part (a), mark the feasible region with an ‘F’

See graph on the following page.

(¢) In your graph from part (a), draw in a cost vector such that the optimal solution is the point (0, -8).

See graph on the following page. (0, -8) should correspond to the minimum cost point within the

feasible region.

10
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(b) Feasible
Region

\/ I (€) Cost Vector

7l

(d) List three cost vectors (that are not scaled versions of each other) that will lead to an infinite number
of solutions.

RN

(e) Now, let us look at at the following constraint graphs. One inequality constraint has been drawn in.

For each:
-Choose a feasible region and mark it with an 'F’
-Draw two additional constraint boundaries such that the given conditions are met
-Draw a cost vector such that the given conditions are met

(i) The point 7 p is the linear programming solution and z7p is the integer programming solution.

*

Xip

11
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(ii) The minimum objective for the linear program is —oo and the integer program is infeasible.

12
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Feasible Region

Cost Vector

(f) What is the outcome of running the branch and bound algorithm on each of the graphs from part (e)?
(i)
Returns X7p.
(i)

Throws an error, return infeasible, or never returns (implementation dependent).

13
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