
Warm-up:
The regions below visually enclose the set of models that satisfy the
respective sentence 𝛾 or 𝛿. For which of the following diagrams does
𝛾 entail 𝛿. Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)

Announcements
Midterm 1 Exam

▪ Grading should be finished tomorrow night

▪ Then we’ll let you know as soon as Canvas reflects your current grade

Assignments:

▪ P2: Optimization

▪ Due Thu 2/21, 10 pm

▪ HW5

▪ Out later tonight

Announcements
Index card feedback

▪ Thanks!

▪ Piazza with some responses tonight

Alita Class Field Trip!

▪ Saturday, 2/23, afternoon

▪ Details will be posted on Piazza

AI: Representation and Problem Solving

Logical Agents

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, http://ai.berkeley.edu

Piazza Poll 1
The regions below visually enclose the set of models that satisfy the
respective sentence 𝛾 or 𝛿. For which of the following diagrams does
𝛾 entail 𝛿. Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)

What about intersection feasible regions?
The regions below visually enclose the set of points that satisfy the
respective constraints 𝛾 or 𝛿. For which of the following diagrams is a
solution point for 𝛾 guaranteed to be feasible in 𝛿. Select all that apply.

A) B) C)

D) E)

δγ δγ
δ

γ

δγ
δ

γ

Piazza Poll 1
The regions below visually enclose the set of models that satisfy the
respective sentence 𝛾 or 𝛿. For which of the following diagrams does
𝛾 entail 𝛿. Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)

Entailment
Does the knowledge base entail my query?

▪ Query 1: ¬ 𝑃[1,2]

▪ Query 2: ¬ 𝑃[1,2]

Logical Agent Vocab
Model

▪ Complete assignment of symbols to True/False

Sentence

▪ Logical statement

▪ Composition of logic symbols and operators

KB

▪ Collection of sentences representing facts and rules
we know about the world

Query

▪ Sentence we want to know if it is provably True,
provably False, or unsure.

Logical Agent Vocab
Entailment

▪ Input: sentence1, sentence2

▪ Each model that satisfies sentence1 must also satisfy sentence2

▪ "If I know 1 holds, then I know 2 holds"

▪ (ASK), TT-ENTAILS, FC-ENTAILS

Satisfy

▪ Input: model, sentence

▪ Is this sentence true in this model?

▪ Does this model satisfy this sentence

▪ "Does this particular state of the world work?’

▪ PL-TRUE

Logical Agent Vocab
Satisfiable

▪ Input: sentence

▪ Can find at least one model that satisfies this sentence

▪ (We often want to know what that model is)

▪ "Is it possible to make this sentence true?"

▪ DPLL

Valid

▪ Input: sentence

▪ sentence is true in all possible models

Propositional Logical Vocab
Literal

▪ Atomic sentence: True, False, Symbol, Symbol

Clause

▪ Disjunction of literals: 𝐴 ∨ 𝐵 ∨ ¬𝐶

Definite clause

▪ Disjunction of literals, exactly one is positive

▪¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Horn clause

▪ Disjunction of literals, at most one is positive

▪ All definite clauses are Horn clauses

Propositional Logic

function PL-TRUE?(,model) returns true or false

if is a symbol then return Lookup(, model)

if Op() = then return not(PL-TRUE?(Arg1(),model))

if Op() = then return and(PL-TRUE?(Arg1(),model),

PL-TRUE?(Arg2(),model))

etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

Simple Model Checking, contd.

Same recursion as backtracking

O(2n) time, linear space

We can do much better!

P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?

Piazza Poll 2

Which would you choose?

▪ DFS

▪ BFS

P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?

Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

return TT-CHECK-ALL(KB, α, symbols(KB) U symbols(α),{})

function TT-CHECK-ALL(KB, α, symbols,model) returns true or false

if empty?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)

else return true

else

P ← first(symbols)

rest ← rest(symbols)

return and (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true})

TT-CHECK-ALL(KB, α, rest, model ∪ {P = false }))

Inference: Proofs
A proof is a demonstration of entailment between and

Method 1: model-checking
▪ For every possible world, if is true make sure that is true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
▪ Search for a sequence of proof steps (applications of inference rules) leading from to

▪ E.g., from P (P Q), infer Q by Modus Ponens

Properties

▪ Sound algorithm: everything it claims to prove is in fact entailed

▪ Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
▪ Given X1 X2 … Xn Y and X1, X2, …, Xn

▪ Infer Y

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
▪ (Conjunction of symbols) symbol; or

▪ A single symbol (note that X is equivalent to True X)

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise

inferred ← a table, where inferred[s] is initially false for all s

agenda ← a queue of symbols, initially symbols known to be true in KB

P Q

L M P

B L M

A P L

A B L

A

B

1

2

2

2

2

0

0

CLAUSES AGENDACOUNT

A false

B false

L false

M false

P false

Q false

INFERRED

Q

P

M

L

BA

Forward Chaining Example: Proving Q

P Q

L M P

B L M

A P L

A B L

A

B

1

2

2

2

2

0

0

A false

B false

L false

M false

P false

Q false

CLAUSES

AGENDA

A B

INFERREDCOUNT

Lx

xxxx true

// 1

// 1

x

xxxx true

// 1

// 0

x

xxxx true

// 1

// 0

Mx

xxxx true

// 0

Px

xxxx true

// 0

// 0

L Qx x

xxxx true

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise

inferred ← a table, where inferred[s] is initially false for all s

agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do

p ← Pop(agenda)

if p = q then return true

if inferred[p] = false then

inferred[p]←true

for each clause c in KB where p is in c.premise do

decrement count[c]

if count[c] = 0 then add c.conclusion to agenda

return false

Properties of forward chaining

Theorem: FC is sound and complete for definite-clause KBs

Soundness: follows from soundness of Modus Ponens (easy to check)

Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final inferred table as a model m, assigning true/false to symbols

3. Every clause in the original KB is true in m

Proof: Suppose a clause a1... ak b is false in m
Then a1... ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

A false

B false

L false

M false

P false

Q false

xxxx true

xxxx true

xxxx true

xxxx true

xxxx true

xxxx true

Satisfiability and Entailment
A sentence is satisfiable if it is true in at least one world (CSPs!)

Suppose we have a hyper-efficient SAT solver; how can we use it to test
entailment?
▪ Suppose |=

▪ Then is true in all worlds

▪ Hence () is false in all worlds

▪ Hence is false in all worlds, i.e., unsatisfiable

So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

Efficient SAT solvers operate on conjunctive normal form

Conjunctive Normal Form (CNF)

Every sentence can be expressed as a conjunction of clauses

Each clause is a disjunction of literals

Each literal is a symbol or a negated symbol

Conversion to CNF by a sequence of standard transformations:

▪ At_1,1_0 (Wall_0,1 Blocked_W_0)

▪ At_1,1_0 ((Wall_0,1 Blocked_W_0) (Blocked_W_0 Wall_0,1))

▪ At_1,1_0 v ((Wall_0,1 v Blocked_W_0) (Blocked_W_0 v Wall_0,1))

▪ (At_1,1_0 v Wall_0,1 v Blocked_W_0) (At_1,1_0 v Blocked_W_0 v Wall_0,1)

Replace biconditional by two implications

Replace by v

Distribute v over

Efficient SAT solvers

DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers

Essentially a backtracking search over models with some extras:
▪ Early termination: stop if

▪ all clauses are satisfied; e.g., (A B) (A C) is satisfied by {A=true}

▪ any clause is falsified; e.g., (A B) (A C) is satisfied by {A=false, B=false}

▪ Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

▪ E.g., A is pure and positive in (A B) (A C) (C B) so set it to true

▪ Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause

▪ E.g., if A=false, (A B) (A C) becomes (false B) (false C), i.e. (B) (C)

▪ Satisfying the unit clauses often leads to further propagation, new unit clauses,
etc.

DPLL algorithm
function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

P, value ←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

P ← First(symbols)
rest ← Rest(symbols)

return or(DPLL(clauses, rest, model∪{P=true}),
DPLL(clauses, rest, model∪{P=false}))

Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

Planning as Satisfiability
Given a hyper-efficient SAT solver, can we use it to make plans?

Yes, for fully observable, deterministic case: planning problem is
solvable iff there is some satisfying assignment for actions etc.

For T = 1 to infinity, set up the KB as follows and run SAT solver:

▪ Initial state, domain constraints

▪ Transition model sentences up to time T

▪ Goal is true at time T

▪ Precondition axioms: At_1,1_0 N_0 Wall_1,2 etc.

▪ Action exclusion axioms: (N_0 W_0) (N_0 S_0) .. etc.

Initial State

The agent may know its initial location:
▪ At_1,1_0

Or, it may not:
▪ At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

We also need a domain constraint – cannot be in two places at once!
▪ (At_1,1_0 At_1,2_0) (At_1,1_0 At_1,3_0) …

▪ (At_1,1_1 At_1,2_1) (At_1,1_1 At_1,3_1) …

▪ …

Transition Model

How does each state variable or fluent at each time gets its value?

State variables for PL Pacman are At_x,y_t , e.g., At_3,3_17

A state variable gets its value according to a successor-state axiom
▪ Xt [Xt-1 (some actiont-1 made it false)] v

[Xt-1 (some actiont-1 made it true)]

For Pacman location:
▪ At_3,3_17 [At_3,3_16 ((Wall_3,4 N_16) v (Wall_4,3 E_16) v …)]

v [At_3,3_16 ((At_3,2_16 Wall_3,3 N_16) v

(At_2,3_16 Wall_3,3 N_16) v …)]

