Warm-up: Cryptarithmetic

How would we formulate this as a linear program?

$$
\begin{array}{r}
T W O \\
+\quad \text { TWO } \\
\hline \mathrm{FOUR}
\end{array}
$$

Announcements

Assignments:

- HW4 (written)
- Due Tue 2/12, 10 pm
- P2: Optimization
- Released after lecture
- Due Thu 2/21, 10 pm

Midterm 1 Exam

- Mon 2/18, in class
- Recitation Fri is a review session
- Practice midterm coming soon!

AI: Representation and Problem Solving
 Integer Programming

Instructors: Pat Virtue \& Stephanie Rosenthal

Linear Programming: What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \leq$ Calories ≤ 2500
- Sugar $\leq 100 \mathrm{~g}$
- Calcium $\geq 700 \mathrm{mg}$

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Optimization Formulation
Diet Problem

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Representation \& Problem Solving

Problem
 Description

\section*{Optimization
 Representation
 | $\min _{\boldsymbol{x}}$ | $\boldsymbol{c}^{T} \boldsymbol{x}$ |
| :---: | :--- |
| s.t. | $A \boldsymbol{x} \leq \boldsymbol{b}$ |}

Graphical Representation

Cost Contours

Given the cost vector $\left[c_{1}, c_{2}\right]^{T}$ where will $\boldsymbol{c}^{T} \boldsymbol{x}=0$?

Cost Contours

Given the cost vector $\left[c_{1}, c_{2}\right]^{T}$ where will
$c^{T} \boldsymbol{x}=0$?
$c^{T} x=1$?
$c^{T} x=2$?
$c^{T} x=-1$?
$c^{T} x=-2$?

Piazza Poll 1

As the magnitude of \boldsymbol{c} increases, the distance between the contours lines of the objective $\boldsymbol{c}^{T} \boldsymbol{x}$:
A) Increases

B) Decreases

Piazza Poll 1

As the magnitude of \boldsymbol{c} increases, the distance between the contours lines of the objective $\boldsymbol{c}^{T} \boldsymbol{x}$:
A) Increases

Solving a Linear Program

Inequality form, with no constraints
$\min . \quad \boldsymbol{c}^{T} \boldsymbol{x}$
\boldsymbol{x}

Solving a Linear Program

 Inequality form, with no constraints \min. $\boldsymbol{c}^{T} \boldsymbol{x}$$x$
s.t. $\quad a_{1} x_{1}+a_{2} x_{2} \leq b$

Piazza Poll 2

True or False: An minimizing LP with exactly on constraint, will always have a minimum objective at $-\infty$.

min.	$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.	$a_{1} x_{1}+a_{2} x_{2} \leq b$

Piazza Poll 2

True of False: Ah minimizing LP with exactly on constraint, will always have a minimum objective at $-\infty$.

min.	$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.	$a_{1} x_{1}+a_{2} x_{2} \leq b$

Solving an LP

Solutions are at feasible intersections of constraint boundaries!!
Algorithms

- Check objective at all feasible intersections

Solving an LP

But, how do we find the intersection between boundaries?

Solving an LP

Solutions are at feasible intersections of constraint boundaries!!
Algorithms

- Check objective at all feasible intersections
- Simplex

Solving an LP

Solutions are at feasible intersections of constraint boundaries!!

Algorithms

- Check objective at all feasible intersections
- Simplex
- Interior Point

Figure 11.2 from Boyd and Vandenberghe, Convex Optimization

What about higher dimensions?

Problem
 Description

Optimization
 Representation
 $\min _{\boldsymbol{x}} \boldsymbol{c}^{T} \boldsymbol{x}$
 s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$

Graphical Representation

"Marty, your not thinking fourth-dimensionally"

Shapes in higher dimensions
How do these linear shapes extend to 3-D, N-D?

	$2 D$	PD	ND
$a_{1} x_{1}+a_{2} x_{2}=b_{1}$	line	plane	hyperplane
$a_{1} x_{1}+a_{2} x_{2} \leq b_{1}$	half plane	half space	half space
$a_{1,1} x_{1}+a_{1,2} x_{2} \leq b_{1}$	polygon	polyhedron	poly tope
$a_{2,1} x_{1}+a_{2,2} x_{2} \leq b_{2}$	poly		
$a_{3,1} x_{1}+a_{3,2} x_{2} \leq b_{3}$			
$a_{4,1} x_{1}+a_{4,2} x_{2} \leq b_{4}$			

What are intersections in higher dimensions?

How do these linear shapes extend to 3-D, N-D?

$\min _{\boldsymbol{x}}$	$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.	$A \boldsymbol{x} \leq \boldsymbol{b}$

100 \& 50

3 \& 4

-20 \& -70\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{c}-2000

2500

100

-700\end{array}\right] \quad\)\begin{tabular}{l}
Calorie min

Calorie max
Sugar
Calcium

\end{tabular}

How do we find intersections in higher dimensions?

Still looking at subsets of A matrix
$\min _{x}$
s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$

$$
A=\left[\begin{array}{cc}
-100 & -50 \\
100 & 50 \\
3 & 4 \\
-20 & -70
\end{array} \circlearrowright \quad \boldsymbol{b}=\left[\begin{array}{c}
-2000 \\
2500 \\
100 \\
-700
\end{array}\right]\right.
$$

Calorie min Calorie max Sugar Calcium

Linear Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \leq$ Calories ≤ 2500
- Sugar $\leq 100 \mathrm{~g}$
- Calcium $\geq 700 \mathrm{mg}$

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming \rightarrow Integer Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals

- $2000 \leq$ Calories ≤ 2500
- Sugar $\leq 100 \mathrm{~g}$
- Calcium $\geq 700 \mathrm{mg}$

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per bowl)	1	100	3	20
Boba (per glass)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming vs Integer Programming

Linear objective with linear constraints, but now with additional constraint that all values in \boldsymbol{x} must be integers

$$
\begin{array}{cc}
\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

We could also do:

$$
\begin{array}{cr}
\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathbb{Z}^{N}
\end{array}
$$

- Even more constrained: Binary Integer Programming
- A hybrid: Mixed Integer Linear Programming

Notation Alert!

Integer Programming: Graphical Representation

Integer Programming: Cryptarithmetic

How would we formulate this as a integer program?

Relaxation

Relax IP to LP by dropping integer constraints
min. $\boldsymbol{c}^{T} \boldsymbol{x}$
\boldsymbol{x}
s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$ $x \in \mathbb{Z}^{N}$

Remember heuristics?

Piazza Poll 3:

Let $y_{I P}^{*}$ be the optimal objective of an integer program P.
Let $\boldsymbol{x}_{I P}^{*}$ be an optimal point of an integer program P.
Let $y_{L P}^{*}$ be the optimal objective of the LP-relaxed version of P.
Let $\boldsymbol{x}_{L P}^{*}$ be an optimal point of the LP-relaxed version of P.
Assume that P is a minimization problem.

Which of the following are true?

$$
\begin{array}{cc}
y_{I P}^{*}=\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathbb{Z}^{N} \\
y_{L P}^{*}=\underset{\boldsymbol{m}}{\boldsymbol{\operatorname { m i n }} .} & \\
\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

A) $\boldsymbol{x}_{I P}^{*}=\boldsymbol{x}_{L P}^{*}$
B) $y_{I P}^{*} \leq y_{L P}^{*}$
C) $y_{I P}^{*} \geq y_{L P}^{*}$

Piazza Poll 3:

Let $y_{I P}^{*}$ be the optimal objective of an integer program P.
Let $\boldsymbol{x}_{I P}^{*}$ be an optimal point of an integer program P.
Let $y_{L P}^{*}$ be the optimal objective of the LP-relaxed version of P.
Let $\boldsymbol{x}_{L P}^{*}$ be an optimal point of the LP-relaxed version of P.
Assume that P is a minimization problem.

Which of the following are true?

$$
y_{I P}^{*}=\min _{\boldsymbol{x}} . \quad \boldsymbol{c}^{T} \boldsymbol{x}
$$

$$
\text { s.t. } \quad A \boldsymbol{x} \leq \boldsymbol{b}
$$

$$
x \in \mathbb{Z}^{N}
$$

$$
y_{L P}^{*}=\min _{\boldsymbol{x}} . \quad \boldsymbol{c}^{T} \boldsymbol{x}
$$

$$
\text { s.t. } \quad A \boldsymbol{x} \leq \boldsymbol{b}
$$

Piazza Poll 4:

True/False: It is sufficient to consider the integer points around the corresponding LP solution.

Piazza Poll 4:

True False: t is sufficient to consider the integer points around the corresponding LP solution.

Solving an IP

Branch and Bound algorithm

- Start with LP-relaxed version of IP
- If solution $\mathbf{x}_{L P}^{*}$ has non-integer value at x_{i},

Consider two branches with two different slightly more constrained LP problems:

Left branch: Add constraint $x_{i} \leq$ floor $\left(x_{i}\right)$
Right branch: Add constraint $x_{i} \geq \operatorname{ceil}\left(x_{i}\right)$

- Recursion. Stop going deeper:
- When the LP returns a worse objective than the best feasible IP objective you have seen before (remember pruning!)
- When you hit an integer result from the LP
- When LP is infeasible

Branch and Bound Example

Branch and Bound Example

