Warm-up: Cryptarithmetic

How would we formulate this as a linear program?
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Announcements

Assignments:

= HW4 (written)
= Due Tue 2/12, 10 pm

= P2: Optimization
= Released after lecture
= DueThu 2/21, 10 pm

Midterm 1 Exam

= Mon 2/18, in class

= Recitation Fri is a review session
" Practice midterm coming soon!
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Representation and Problem Solving

Integer Programming

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al, http://ai.berkeley.edu



Linear Programming: What to eat?

We are trying healthy by finding the optimal amount of food to purchase.
We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

= 2000 < Calories < 2500
= Sugar<100g

= Calcium = 700 mg Boba (per fl oz) 0.5 50 4 70

BT

Stir-fry (per oz) 1

What is the cheapest way to stay “healthy” with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Optimization Formulation

Diet Problem

min
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cl'x
Ax < b
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Representation & Problem Sol@

Problem Graphical Representation
Description \

Optimization .

Representation o

min c'x 0

X

S.L. Ax < b ™5 0 5 10 15 20 25 30

- Stir-fry (oz)




Cost Contours

Given the cost vector [cq, ¢,]T where will




Cost Contours

Given the cost vector [cq, ¢,]T where will
c'x=07?

clx=17?

c’x=27

clx=-17
T

c'x=-2"7



Piazza Poll 1

As the magnitude of ¢ increases, the distance between
the contours lines of the objective ¢! x:

A) Increases

B) Decreases




Piazza Poll 1

As the magnitude of ¢ increases, the distance between L
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Solving a Linear Program

Inequality form, with no constraints

min. clx
X



Solving a Linear Program

Inequality form, with no constraints

min. clx \

—

s.t. a;xqy+axx, <b




Piazza Poll 2

True or False: An minimizing LP with exactly on constraint, will
always have a minimum objective at —oo.

min. c’x
X
s.t. aixqy +azx, < b

4




Piazza Poll 2

minimizing LP with exactly on constraint, will
3 minimum objective at —oo.

min. c’x
X
s.t. aixqy +azx, < b




Solving an LP . 9
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Solving an LP

But, how do we find the intersection betw
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Solving an LP

Solutions are at feasible intersections
of constraint boundaries!!
Algorithms

Check objective at all feasible
Intersections

= Simplex
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Solving an LP

Solutions are at feasible intersections
of constraint boundaries!!
Algorithms

= Check objective at all feasible
Intersections

= Simplex
" [nterior Point

Figure 11.2 from Boyd and Vandenberghe, Convex Optimization



What about higher dimensions?

Problem
Description

Optimization
Representation

min c’x
X

st. Ax=<b

Graphical Representation

30

25+

20

151

Boba (fl 0z)

—5 0 5 10 15 20 25 30
Stir-fry (oz)




“Marty, your not thinking fourth-dimensionally”




Shapes in higher dimensions

How do these linear shapes extend to 3-D, N-D?

a, x; +a, x, = b,
a, xq1 +a, x, < by

11 X1+ a1 X < by
a1 X1+ Az, %Xy < by
a3 1 X1 + a3, Xy < b
Ay X1+ Ay Xy < by
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What are intersections in higher dimensions?

How do these linear shapes extend to 3-D, N-D?
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Ax<Db
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How do we |

Still looking at su

nsets of A matrix
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Linear Programming

We are trying healthy by finding the optimal amount of food to purchase.
We can choose the amount of stir-fry (ounce) and boba (fde ounces).

Healthy Squad Goals

= 2000 < Calories < 2500
= Sugar<100g

= Calcium = 700 mg Boba (per fl oz) 0.5 50 4 70

BT

Stir-fry (per oz) 1

What is the cheapest way to stay “healthy” with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Linear Programming =2 Integer Programming

We are trying healthy by finding the optimal amount of food to purchase.
We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals

= 2000 < Calories < 2500
= Sugar<100g

= Calcium = 700 mg Boba (per glass) 0.5 50 4 70

BT

Stir-fry (per bowl) 1

What is the cheapest way to stay “healthy” with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Linear Programming vs Integer Programming

Linear objective with linear constraints, but now with additional

constraint that all values in x must be integers

min. cl'x min. cl'x
X X
s.t. Ax<b s.t. Ax<b
x 7N
We could also do: T —

= Even more constrained: Binary Integer Programming
=" A hybrid: Mixed Integer Linear Programming

Notation Alert!



Integer Programming: Graphical Representation

Just add a grid of integer points onto our LP representation

min. clx
X

s.t. Ax < b
x 7N




Integer Programming: Cryptarithmetic

How would we formulate this as a integer program?
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How would we could we solve it? Eé



Relaxation
Relax IP to LP by dropping integer constraints

T

min. C' X
X

S.t. Ax < b Remember heuristics?
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Piazza Poll 3:

Let y,» be the optimal objective of an integer program P.

Let x}p
Let y/p

Let x; p be an optimal point of the LP-relaxed version of P.
Assume that P is a minimization problem.

y;p = min.
Which of the following are true? S_E
A) Xip = Xpp
B) Yip < Vip \ .
C) Yip 2 Vip Yip = T

be an optimal point of an integer program P.
oe the optimal objective of the LP-relaxed version of P.

S.t.



Piazza Poll 3:

Let y,» be the optimal objective of an integer program P.

Let x;p be an optimal point of an integer program P.
Let vy, » be the optimal objective of the LP-relaxed version of P.

Let x; p be an optimal point of the LP-relaxed version of P.

Assume that P is a minimization problem.

yp = min.
Which of the following are true? S.E
7SA) xpp = Xip
><B) Vip < Yip * :
S.t.




Piazza Poll 4:

True/False: It is sufficient to consider the integer points around the
corresponding LP solution.




Piazza Poll 4:

Truet is sufficient to consider the integer points around the

correspending LP solution.




Solving an IP 7@/ k

If solution X; p has non-integer value at x;,

Consider two branches with two different slightly more
constrained LP problems:

Left branch: Add constraint x; < floor(x;)
Right branch: Add constraint x; = ceil (x;)
=  Recursion. Stop going deeper:

= When the LP returns a worse objective than the best feasible
IP objective you have seen before (remember pruning!)

= When you hit an integer result from the LP
= When LP is infeasible

i
Branch and Bound algorithm +/ o
= Start with LP-relaxed version of IP //%




Branch and Bound Example
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Branch and Bound Example



