Warm-up: Cryptarithmetic

How would we formulate this as a linear program?

Announcements

Assignments:

- HW4 (written)
 - Due Tue 2/12, 10 pm
- P2: Optimization
 - Released after lecture
 - Due Thu 2/21, 10 pm

Midterm 1 Exam

- Mon 2/18, in class
- Recitation Fri is a review session
- Practice midterm coming soon!

AI: Representation and Problem Solving

Integer Programming

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, http://ai.berkeley.edu

Linear Programming: What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Optimization Formulation

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

$$c = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \\ \end{array}$$

Representation & Problem Solving

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$

s.t. $Ax \leq b$

Cost Contours

Given the cost vector $[c_1, c_2]^T$ where will

Cost Contours

Given the cost vector $[c_1, c_2]^T$ where will

$$c^{T}x = 0$$
?
 $c^{T}x = 1$?
 $c^{T}x = 2$?
 $c^{T}x = -1$?
 $c^{T}x = -2$?

Piazza Poll 1

As the magnitude of c increases, the distance between the contours lines of the objective c^Tx :

A) Increases

B) Decreases

Piazza Poll 1

As the magnitude of c increases, the distance between

the contours lines of the objective $c^T x$:

A) Increases

C X X2

B) Decreases

Solving a Linear Program

Inequality form, with no constraints

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

Solving a Linear Program

Inequality form, with no constraints

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
s.t.
$$a_1 x_1 + a_2 x_2 \le b$$

Piazza Poll 2

True or False: An minimizing LP with exactly on constraint, will always have a minimum objective at $-\infty$.

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$a_1 x_1 + a_2 x_2 \le b$$

Piazza Poll 2

True of False: An minimizing LP with exactly on constraint, will always have a minimum objective at $-\infty$.

min.
$$c^T x$$

s.t. $a_1 x_1 + a_2 x_2 \le b$

Solutions are at feasible intersections of constraint boundaries!!

Algorithms

Check objective at all feasible intersections

But, how do we find the intersection between boundaries?

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \qquad b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

Calorie min Calorie max Sugar Calcium

$$A[(1,3),i] \cdot x = b[(3)]$$

Solutions are at feasible intersections of constraint boundaries!!

Algorithms

- Check objective at all feasible intersections
 - Simplex

Solutions are at feasible intersections

of constraint boundaries!!

Algorithms

- Check objective at all feasible intersections
- Simplex
- Interior Point

Figure 11.2 from Boyd and Vandenberghe, Convex Optimization

What about higher dimensions?

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$

s.t. $Ax \leq b$

"Marty, your not thinking fourth-dimensionally"

Shapes in higher dimensions

How do these linear shapes extend to 3-D, N-D?

ND

$$a_1 x_1 + a_2 x_2 = b_1$$

line

Plane

hyper plane

$$a_1 x_1 + a_2 x_2 \le b_1$$

halfplane

half space

half space

$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$a_{4,1} x_1 + a_{4,2} x_2 \le b_4$$

polygon

poly hedron

polytope

What are intersections in higher dimensions?

How do these linear shapes extend to 3-D, N-D?

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \qquad \boldsymbol{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

$$\boldsymbol{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

Calorie min Calorie max Sugar Calcium

How do we find intersections in higher dimensions?

Still looking at subsets of A matrix

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \qquad b = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \qquad \begin{array}{c} \text{Calorie} \\ \text{Sugar} \\ \text{Calciu} \end{array}$$

$$\boldsymbol{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

Calorie min Calorie max Calcium

Linear Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming -> Integer Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per bowl)	1	100	3	20
Boba (per glass)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming vs Integer Programming

Linear objective with linear constraints, but now with additional constraint that all values in x must be integers

We could also do:

- Even more constrained: Binary Integer Programming
- A hybrid: Mixed Integer Linear Programming

Notation Alert!

Integer Programming: Graphical Representation

Just add a grid of integer points onto our LP representation

 $\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & A\mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \in \mathbb{Z}^N
\end{array}$

Integer Programming: Cryptarithmetic

How would we formulate this as a integer program?

How would we could we solve it?

Relaxation

Relax IP to LP by dropping integer constraints

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

Remember heuristics?

Piazza Poll 3:

Let y_{IP}^* be the optimal objective of an integer program P.

Let x_{IP}^* be an optimal point of an integer program P.

Let y_{LP}^* be the optimal objective of the LP-relaxed version of P.

Let x_{LP}^* be an optimal point of the LP-relaxed version of P.

Assume that P is a minimization problem.

Which of the following are true?

$$\mathsf{A)} \quad \pmb{x}_{IP}^* = \pmb{x}_{LP}^*$$

$$B) \quad y_{IP}^* \leq y_{LP}^*$$

$$C) \quad y_{IP}^* \geq y_{LP}^*$$

$$y_{IP}^* = \min_{\boldsymbol{x}}.$$
 $c^T \boldsymbol{x}$
s.t. $A\boldsymbol{x} \leq \boldsymbol{b}$
 $\boldsymbol{x} \in \mathbb{Z}^N$
 $\boldsymbol{y}_{LP}^* = \min_{\boldsymbol{x}}.$ $c^T \boldsymbol{x}$
s.t. $A\boldsymbol{x} \leq \boldsymbol{b}$

Piazza Poll 3:

Let y_{IP}^* be the optimal objective of an integer program P.

Let x_{IP}^* be an optimal point of an integer program P.

Let y_{LP}^* be the optimal objective of the LP-relaxed version of P.

Let x_{LP}^* be an optimal point of the LP-relaxed version of P.

Assume that P is a minimization problem.

Which of the following are true?

$$\mathsf{B}) \quad y_{IP}^* \leq y_{LP}^*$$

$$C) \quad y_{IP}^* \geq y_{LP}^*$$

$$y_{IP}^* = \min_{\mathbf{x}}.$$
 $\mathbf{c}^T \mathbf{x}$
s.t. $A\mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \in \mathbb{Z}^N$

$$y_{LP}^* = \min_{\mathbf{x}}.$$
 $\mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \leq A$

Piazza Poll 4:

True/False: It is sufficient to consider the integer points around the corresponding LP solution.

Piazza Poll 4:

True False: It is sufficient to consider the integer points around the corresponding LP solution.

Branch and Bound algorithm

- Start with LP-relaxed version of IP
- If solution \mathbf{x}_{LP}^* has non-integer value at x_i ,

 Consider two branches with two different slightly more constrained LP problems:

Left branch: Add constraint $x_i \leq floor(x_i)$ Right branch: Add constraint $x_i \geq ceil(x_i)$

- Recursion. Stop going deeper:
 - When the LP returns a worse objective than the best feasible
 IP objective you have seen before (remember pruning!)
 - When you hit an integer result from the LP
 - When LP is infeasible

Branch and Bound Example

Branch and Bound Example

