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Assign Red, Green, or Blue
Neighbors must be different

Sudoku

1) What is your brain doing to solve these?
2) How would you solve these with search (BFS, DFS, etc.)?



AI: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: Pat Virtue, http://ai.berkeley.edu



Announcements

• HW3 due Wednesday!

• P1 due Thursday, you can work in pairs!

• Watch your time management!



What is Search For?

• Planning: sequences of actions
• The path to the goal is the important thing

• Paths have various costs, depths

• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path

• All paths at the same depth (for some formulations)

• CSPs are specialized for identification problems



Constraint Satisfaction Problems



Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything



Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems

• State is defined by variables Xi with values from a 
domain D (sometimes D depends on i)

• Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables



Real-World CSPs

• Assignment problems: e.g., who teaches what class

• Timetabling problems: e.g., which class is offered when and where?

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Circuit layout

• Fault diagnosis

• … lots more!

• Many real-world problems involve real-valued variables…



Shelf Organization

The shelves that store products that 
will be shipped to you (e.g., Amazon) 
are optimized so that items that ship 
together are stored on the same shelf.



CSP Examples



Example: Map Coloring
• Variables:

• Domains:

• Constraints: adjacent regions must have different 
colors

• Solutions are assignments satisfying all constraints, 
e.g.:

Implicit:

Explicit:



Constraint Graphs



Constraint Graphs

• Binary CSP: each constraint relates (at most) two 
variables

• Binary constraint graph: nodes are variables, arcs 
show constraints

• General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Varieties of CSPs and Constraints



Example: N-Queens

• Formulation 1:
• Variables:

• Domains:

• Constraints



Example: N-Queens
• Formulation 2:

• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:



Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:



Example: Sudoku
▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



Varieties of CSPs
• Discrete Variables

• Finite domains

• Size d means O(dn) complete assignments

• E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations

• Linear constraints solvable in polynomial time by LP methods



Varieties of Constraints
• Varieties of Constraints

• Unary constraints involve a single variable (equivalent to 
reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)



Solving CSPs



Standard Search Formulation
• Standard search formulation of CSPs

• States defined by the values assigned 
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an 

unassigned variable
• Goal test: the current assignment is 

complete and satisfies all constraints

• We’ll start with the straightforward, 
naïve approach, then improve it



Breadth First Search

… All possible first variables
Check: Is there a solution?



Breadth First Search



Breadth First Search



Breadth First Search

…



Depth First Search

……



Demo



What is wrong with general search?

• When do you fail?



Backtracking Search



Backtracking Search
• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Depth-first search with these two improvements

is called backtracking search (not the best name)

• Can solve n-queens for n  25



Backtracking Example



Backtracking Search



Backtracking Search

General Search 
checks consistency 
on full assignment



Backtracking Search

Backtracking Search 
checks consistency 
at each assignment



Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the choice points?



Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the choice points?



Demo Coloring – Backtracking



Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?



Filtering



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the existing 
assignment
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• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking
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• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking
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SA

NT Q

NSW

V



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

FAIL – variable with no possible values



Demo Coloring – Backtracking with Forward Checking



• Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures

Filtering: Constraint Propagation

WA
SA

NT Q

NSW

V



• Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

Filtering: Constraint Propagation

WA
SA

NT Q

NSW

V



• Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation

WA
SA

NT Q

NSW

V



Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which 

could be assigned without violating a constraint

• Remove values in the domain of X if there isn’t a corresponding legal Y

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

WA
SA

NT Q

NSW

V



Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which 

could be assigned without violating a constraint

• Remove values in the domain of X if there isn’t a corresponding legal Y

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

WA
SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
SA->WA
NT->WA



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:

WA

SA

NT Q

NSW

V



POLL: What gets added to the Queue?
• A simple form of propagation makes sure all arcs are consistent:

WA
SA

NT Q

NSW

V

Queue:

WA

SA

NT Q

NSW

V

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
NT->Q
SA->Q
NSW->QWA

SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

WA

SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!
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NT->SA
Q->SA
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
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V

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
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Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

WA

SA

NT Q

NSW

V

!!!



Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

• Backtrack on the assignment of Q

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment 

• What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA
SA

NT Q

NSW

V

Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

WA

SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP

• Runtime: O(n2d3), can be reduced to O(n2d2)

• … but detecting all possible future problems is NP-hard – why?



Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and not 
know it)

• Arc consistency still runs inside a 
backtracking search!

What went 
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]



Demo Coloring – Backtracking with Forward Checking – Complex 
Graph



Demo Coloring – Backtracking with Arc Consistency – Complex 
Graph



Ordering



Demo: Coloring -- Backtracking + Forward Checking (+ 
MRV)



Ordering: Minimum Remaining Values
• Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering



Ordering: Least Constraining Value
• Value Ordering: Least Constraining Value

• Given a choice of variable, choose the least 
constraining value

• I.e., the one that rules out the fewest values in 
the remaining variables

• Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible



Demo: Coloring -- Backtracking + Arc Consistency + 
Ordering



Structure



Problem Structure
• Extreme case: independent subproblems

• Example: Tasmania and mainland do not interact

• Independent subproblems are identifiable as 
connected components of constraint graph

• Suppose a graph of n variables can be broken into 
subproblems of only c variables:
• Worst-case solution cost is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs
• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(n d2)  (why?)



Tree-Structured CSPs
• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced 
thereafter (because Y’s children were processed before Y)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

• Proof: Induction on position

• Why doesn’t this algorithm work with cycles in the constraint graph?

• Note: we’ll see this basic idea again with Bayes’ nets



Summary: CSPs

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure


