
Warm Up

How would you search for moves in Tic Tac Toe?
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Announcements

• Homework 2 due tonight!

• Homework 3 out this evening!

• P1 due 2/7, work in pairs!



Warm Up

How would you search for moves in Tic Tac Toe?



Warm Up

How is Tic Tac Toe different from maze search?



Warm Up

How is Tic Tac Toe different from maze search?

Multi-Agent, Adversarial, Zero Sum 

Single Agent



Single-Agent Trees
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Value of a State

8

2 0 2 6 4 6… …

Value of a state: 
The best achievable 

outcome (utility) 
from that state

Terminal States:
V(s) = known

Non-Terminal States:
V(s) =      max      V(s’)

s’  successors(s)



Multi-Agent Applications

Collaborative Maze Solving
Team: Collaborative
Competition: Adversarial

Adversarial

(Football)



How could we model multi-agent 
collaborative problems?



How could we model multi-agent problems?

Simplest idea: each agent plans their own actions separately from others. 



Many Single-Agent Trees

8

2 0 2 6 4 6… …

Non-Terminal States:
V(s) =      max      V(s’)

s’  successors(s)

Choose the best 
action for each 
agent independently



Idea 2: Joint State/Action Spaces

Combine the states and actions of the N agents

𝑆0 = (𝑆0
𝐴, 𝑆0

𝐵)



Idea 2: Joint State/Action Spaces

Combine the states and actions of the N agents

𝑆𝐾 = (𝑆𝐾
𝐴, 𝑆𝐾

𝐵)



Idea 2: Joint State/Action Spaces

Search looks through all combinations of all agents’ states and actions

Think of one brain controlling many agents

𝑆𝐾 = (𝑆𝐾
𝐴, 𝑆𝐾

𝐵)



Idea 2: Joint State/Action Spaces

Search looks through all combinations of all agents’ states and actions

Think of one brain controlling many agents

What is the size of 
the state space?

What is the size of 
the action space?

What is the size of 
the search tree?



Idea 3: Centralized Decision Making

Each agent proposes their actions and computer confirms the joint plan

Example: Autonomous driving through intersections

https://www.youtube.com/watch?v=4pbAI40dK0A



Idea 4: Alternate Searching One Agent at a Time

Agent 1

Agent 2

Agent 1

Search one agent’s actions from a state, search the next agent’s actions 
from those resulting states , etc…

Non-Terminal States:
V(s) =      max      V(s’)

s’  successors(s)

Choose the best 
cascading combination 
of actions



Idea 4: Alternate Searching One Agent at a Time

Search one agent’s actions from a state, search the next agent’s actions 
from those resulting states , etc…

What is the size of 
the state space?

What is the size of 
the action space?

What is the size of 
the search tree?



Multi-Agent Applications

Collaborative Maze Solving
Team: Collaborative
Competition: Adversarial

Adversarial

(Football)



Games



Types of Games

• Deterministic or stochastic?

• Perfect information (fully observable)?

• One, two, or more players?

• Turn-taking or simultaneous?

• Zero sum?



Standard Games

• Standard games are deterministic, observable, two-player, turn-
taking, zero-sum

• Game formulation:
• Initial state: s0

• Players: Player(s) indicates whose move it is

• Actions: Actions(s) for player on move

• Transition model: Result(s,a)

• Terminal test: Terminal-Test(s)

• Terminal values: Utility(s,p) for player p
• Or just Utility(s) for player making the decision at root



Zero-Sum Games

Zero-Sum Games
• Agents have opposite utilities 

• Pure competition: 
• One maximizes, the other minimizes

General Games
• Agents have independent utilities

• Cooperation, indifference, competition, 
shifting alliances, and more are all possible



Game Trees

Search one agent’s actions from a state, search the competitor’s 
actions from those resulting states , etc…



Tic-Tac-Toe Game Tree



Tic-Tac-Toe Game Tree

This is a zero-sum game, 
the best action for X is 
the worst action for O 
and vice versa

How do we define       
best and worst?



Tic-Tac-Toe Game Tree Instead of taking the 
max utility at every 
level, alternate max 
and min



Tic-Tac-Toe Minimax

MAX nodes: under Agent’s control
V(s) =      max      V(s’)

s’  successors(s)

MIN nodes: under Opponent’s control
V(s) =      min      V(s’)

s’  successors(s)



Small Pacman Example

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
V(s) =      max      V(s’)

s’  successors(s)

Terminal States:
V(s) = known

MIN nodes: under Opponent’s control
V(s) =      min      V(s’)

s’  successors(s)



Minimax Implementation

function max-value(s) returns value
if Terminal-Test(s) then return Utility(s)
initialize v = -∞
for each a in Actions(s):

v = max(v, min-value(Result(s,a)))
return v

function min-value(s) returns value
if Terminal-Test(s) then return Utility(s)
initialize v = +∞
for each a in Actions(state):

v = min(v, max-value(Result(s,a))
return v

function minimax-decision(s) returns action

return the action a in Actions(s) with the highest 
min-value(Result(s,a))

Result(s,a)→s’

V(s) =      max      V(s’)
s’  successors(s)

V(s) =      min      V(s’)
s’  successors(s)



Alternative Implementation

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) value(Result(s,a))

function minimax-decision(s) returns an action

return the action a in Actions(s) with the highest 
value(Result(s,a))



Minimax Example

12 8 5 23 2 144 6

3 2 2

3



Poll

What kind of search is Minimax Search?

A) BFS
B) DFS
C) UCS
D) A*



Minimax is Depth-First Search

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
V(s) =      max      V(s’)

s’  successors(s)

Terminal States:
V(s) = known

MIN nodes: under Opponent’s control
V(s) =      min      V(s’)

s’  successors(s)



Minimax Efficiency
• How efficient is minimax?

• Just like (exhaustive) DFS

• Time: O(bm)

• Space: O(bm)

• Example: For chess, b  35, m  100
• Exact solution is completely infeasible

• Humans can’t do this either, so how do 
we play chess?



Small Size Robot Soccer

• Joint State/Action space and search for our team

• Adversarial search to predict the opponent team

https://www.youtube.com/watch?v=YihJguq26ek



Generalized minimax
• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component
• Can give rise to cooperation and

competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1



Three Person Chess



Resource Limits



Resource Limits
• Problem: In realistic games, cannot search to leaves!

• Solution 1: Bounded lookahead
• Search only to a preset depth limit or horizon
• Use an evaluation function for non-terminal positions

• Guarantee of optimal play is gone

• More plies make a BIG difference

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• For chess, b=~35 so reaches about depth 4 – not so good

? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Depth Matters
• Evaluation functions are always 

imperfect

• Deeper search => better play 
(usually)

• Or, deeper search gives same 
quality of play with a less accurate 
evaluation function

• An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Evaluation Functions



Evaluation Functions
• Evaluation functions score non-terminals in depth-limited search

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

• EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
• E.g., w1 = 9,  f1(s) = (num white queens – num black queens), etc.

• Terminate search only in quiescent positions, i.e., no major 
changes expected in feature values



Evaluation for Pacman



Resource Limits
• Problem: In realistic games, cannot search to leaves!

• Solution 1: Bounded lookahead
• Search only to a preset depth limit or horizon
• Use an evaluation function for non-terminal positions

• Guarantee of optimal play is gone

• More plies make a BIG difference

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• For chess, b=~35 so reaches about depth 4 – not so good

? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Solution 2: Game Tree Pruning



Intuition: prune the branches that can’t be chosen

12 8 5 23 2 144 6

3 2 2

3



Alpha-Beta Pruning Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any 
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3

We can prune when: min node won’t be 
higher than 2, while parent max has seen 
something larger in another branch



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Quiz: Minimax Example
What is the value of the blue triangle?
A) 10
B) 8
C) 4
D) 50



Quiz: Minimax Example
What is the value of the blue triangle?
A) 10
B) 8
C) 4
D) 50

8 4

8



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = ∞
𝑣 = ∞



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = ∞
𝑣 = ∞



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = ∞
𝑣 = 10



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 10
𝑣 = 10



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 10
𝑣 = 8



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = −∞

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

8



Alpha-Beta Small Example
𝛼 = −∞
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

8



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

8



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = ∞

8



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = 4

8



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = 4

8 4



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = 4

8 4



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = 4

8 4



Alpha-Beta Small Example
𝛼 = 8
𝛽 = ∞
𝑣 = 8

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v𝛼 = −∞
𝛽 = 8
𝑣 = 8

𝛼 = 8
𝛽 = ∞
𝑣 = 4

8 4

8



Minimax Quiz
What is the value of the top node?
A) 10
B) 100
C) 2
D) 4



Alpha Beta Quiz
Which branches are pruned?
A) e, l
B) g, l
C) g, k, l
D) g, n



1

Alpha-Beta Quiz 2

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= v=

β =



Alpha-Beta Pruning Properties

• Theorem: This pruning has no effect on minimax value computed for the root!

• Good child ordering improves effectiveness of pruning
• Iterative deepening helps with this

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• 1M nodes/move => depth=8, respectable

• This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min



Games with uncertain outcomes



Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax



Minimax

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) value(Result(s,a))

function decision(s) returns an action

return the action a in Actions(s) with the highest 
value(Result(s,a))



Expectiminimax

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) value(Result(s,a))
if Player(s) = CHANCE then return suma in Actions(s) Pr(a) * value(Result(s,a))

function decision(s) returns an action

return the action a in Actions(s) with the highest 
value(Result(s,a))



Probabilities



• The expected value of a random variable is the average, 
weighted by the probability distribution over outcomes

• Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



Expectimax Pseudocode

suma in Action(s) Pr(a) * value(Result(s,a))

5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example

12 9 6 03 2 154 6



What Values to Use?

• For worst-case minimax reasoning, evaluation function scale doesn’t matter
• We just want better states to have higher evaluations (get the ordering right)
• Minimax decisions are invariant with respect to monotonic transformations on values

• Expectiminimax decisions are invariant with respect to positive affine transformations

• Expectiminimax evaluation functions have to be aligned with actual win probabilities!

0 40 20 30 x2 0 1600 400 900

x>y => f(x)>f(y) f(x) = Ax+B where A>0 



Summary

• Multi-agent problems can require more space or deeper trees to search

• Games require decisions when optimality is impossible
• Bounded-depth search and approximate evaluation functions

• Games force efficient use of computation
• Alpha-beta pruning

• Game playing has produced important research ideas
• Reinforcement learning (checkers)
• Iterative deepening (chess)
• Rational metareasoning (Othello)
• Monte Carlo tree search (Go)
• Solution methods for partial-information games in economics (poker)

• Video games present much greater challenges – lots to do!
• b = 10500, |S| = 104000, m = 10,000


