Warm Up

How would you search for moves in Tic Tac Toe?

\mathbf{X}	\mathbf{O}	\mathbf{X}				
	\mathbf{O}	\mathbf{X}				
	\mathbf{O}			\mathbf{X}	\mathbf{O}	\mathbf{X}
:---	:---	:---				
\mathbf{O}	\mathbf{O}	\mathbf{X}				
\mathbf{X}	\mathbf{X}	\mathbf{O}		\mathbf{X}	\mathbf{O}	\mathbf{X}
:---	:---	:---				
\mathbf{X}	\mathbf{O}	\mathbf{O}				

AI: Representation and Problem Solving Adversarial Search

Instructors: Pat Virtue \& Stephanie Rosenthal
Slide credits: Pat Virtue, http://ai.berkeley.edu

Announcements

- Homework 2 due tonight!
- Homework 3 out this evening!
- P1 due 2/7, work in pairs!

Warm Up

How would you search for moves in Tic Tac Toe?

\mathbf{X}	\mathbf{O}	\mathbf{X}				
	\mathbf{O}	\mathbf{X}				
	\mathbf{O}			\mathbf{X}	\mathbf{O}	\mathbf{X}
:---	:---	:---				
\mathbf{O}	\mathbf{O}	\mathbf{X}				
\mathbf{X}	\mathbf{X}	\mathbf{O}		\mathbf{X}	\mathbf{O}	\mathbf{X}
:---	:---	:---				
\mathbf{X}	\mathbf{O}	\mathbf{O}				

Warm Up

How is Tic Tac Toe different from maze search?

\mathbf{X}	\mathbf{O}	\mathbf{X}
	\mathbf{O}	\mathbf{X}
	\mathbf{O}	

\mathbf{X}	\mathbf{O}	\mathbf{X}
\mathbf{O}	\mathbf{O}	\mathbf{X}
\mathbf{X}	\mathbf{X}	\mathbf{O}

\mathbf{X}	\mathbf{O}	\mathbf{X}
	\mathbf{X}	
\mathbf{X}	\mathbf{O}	\mathbf{O}

Warm Up

How is Tic Tac Toe different from maze search?

\mathbf{X}	\mathbf{O}	\mathbf{X}
	\mathbf{O}	\mathbf{X}
	\mathbf{O}	

\mathbf{X}	\mathbf{O}	\mathbf{X}
\mathbf{O}	\mathbf{O}	\mathbf{X}
\mathbf{X}	\mathbf{X}	\mathbf{O}

X	O	X
	X	
X	\mathbf{O}	\mathbf{O}

Multi-Agent, Adversarial, Zero Sum

Single-Agent Trees

Value of a State

Multi-Agent Applications

Collaborative Maze Solving

Adversarial
(Football)

Team: Collaborative Competition: Adversarial

How could we model multi-agent collaborative problems?

How could we model multi-agent problems?

Simplest idea: each agent plans their own actions separately from others.

Many Single-Agent Trees

Idea 2: Joint State/Action Spaces

Combine the states and actions of the N agents

Idea 2: Joint State/Action Spaces

Combine the states and actions of the N agents

Idea 2: Joint State/Action Spaces

Search looks through all combinations of all agents' states and actions Think of one brain controlling many agents

Idea 2: Joint State/Action Spaces

Search looks through all combinations of all agents' states and actions Think of one brain controlling many agents

What is the size of the state space?

What is the size of the action space?

What is the size of
 the search tree?

Idea 3: Centralized Decision Making

Each agent proposes their actions and computer confirms the joint plan Example: Autonomous driving through intersections

Idea 4: Alternate Searching One Agent at a Time

Search one agent's actions from a state, search the next agent's actions from those resulting states , etc...

Idea 4: Alternate Searching One Agent at a Time

Search one agent's actions from a state, search the next agent's actions from those resulting states , etc...

What is the size of the state space?

What is the size of the action space?

What is the size of
 the search tree?

Multi-Agent Applications

Collaborative Maze Solving

Adversarial
(Football)

Team: Collaborative Competition: Adversarial

Games

Types of Games

- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

Standard Games

- Standard games are deterministic, observable, two-player, turntaking, zero-sum
- Game formulation:
- Initial state: s_{0}
- Players: Player(s) indicates whose move it is
- Actions: Actions(s) for player on move
- Transition model: Result(s,a)
- Terminal test: Terminal-Test(s)
- Terminal values: Utility(s, p) for player p
- Or just Utility(s) for player making the decision at root

Zero-Sum Games

Zero-Sum Games

- Agents have opposite utilities
- Pure competition:
- One maximizes, the other minimizes

General Games

- Agents have independent utilities
- Cooperation, indifference, competition, shifting alliances, and more are all possible

Game Trees

Search one agent's actions from a state, search the competitor's actions from those resulting states , etc...

Tic-Tac-Toe Game Tree

Tic-Tac-Toe Game Tree

This is a zero-sum game, the best action for X is the worst action for O and vice versa

How do we define best and worst?

Tic-Tac-Toe Game Tree

MIN (O)

Instead of taking the max utility at every level, alternate max and min

Tic-Tac-Toe Minimax
 -

MAX nodes: under Agent's control

$$
V(s)=\max _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)
$$

MIN nodes: under Opponent's control $V(s)=\min \quad V\left(s^{\prime}\right)$

[^0]| x | 0 | x |
| :---: | :---: | :---: |
| | X | |
| x | 0 | 0 |

$s^{\prime} \in$ successors(s)

Small Pacman Example

MAX nodes: under Agent's control
$V(s)=\max _{s^{\prime} \in \text { successors }(s)} V\left(s^{\prime}\right)$

MIN nodes: under Opponent's control

$$
V(s)=\min _{s^{\prime} \in \text { successors }(s)} V\left(s^{\prime}\right)
$$

Terminal States:

$$
V(s)=\text { known }
$$

Minimax Implementation

function minimax-decision(s) returns action return the action a in Actions(s) with the highest min-value(Result(s,a))
function max-value(s) returns value if Terminal-Test(s) then return Utility(s) initialize $v=-\infty$
for each a in Actions(s):
$v=\max (v, \min -v a l u e(\operatorname{Result}(s, a)))$
return v

$$
V(s)=\max _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)
$$

function min-value(s) returns value
if Terminal-Test(s) then return Utility(s) initialize $v=+\infty$ for each a in Actions(state):

$$
v=\min (v, \max -\text { value }(\operatorname{Result}(\mathrm{s}, \mathrm{a}))
$$

return v

$$
V(s)=\min _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)
$$

Alternative Implementation

function minimax-decision(s) returns an action

 return the action a in Actions(s) with the highest value(Result(s,a))function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return max a in Actions(s) value $(\operatorname{Result}(\mathrm{s}, \mathrm{a}))$
if Player(s) = MIN then return $\min _{\mathrm{a} \text { in Actions(s) }}$ value(Result($\left.\mathrm{s}, \mathrm{a}\right)$)

Minimax Example

Poll

What kind of search is Minimax Search?
A) BFS
B) DFS
C) UCS
D) A^{*}

Minimax is Depth-First Search

MAX nodes: under Agent's control
$V(s)=\max _{s^{\prime} \in \text { successors }(s)} V\left(s^{\prime}\right)$

MIN nodes: under Opponent's control
$V(s)=\min _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)$

Terminal States:
$V(s)=$ known

Minimax Efficiency

- How efficient is minimax?
- Just like (exhaustive) DFS
- Time: O(b ${ }^{m}$)
- Space: O(bm)
- Example: For chess, $b \approx 35, m \approx 100$
- Exact solution is completely infeasible
- Humans can't do this either, so how do we play chess?

Small Size Robot Soccer

- Joint State/Action space and search for our team
- Adversarial search to predict the opponent team

Generalized minimax

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

00 m

Three Person Chess

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution 1: Bounded lookahead
- Search only to a preset depth limit or horizon
- Use an evaluation function for non-terminal positions
- Guarantee of optimal play is gone
- More plies make a BIG difference
- Example:
- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1 M nodes per move
- For chess, $b=\sim 35$ so reaches about depth 4 - not so good

Depth Matters

- Evaluation functions are always imperfect
- Deeper search => better play (usually)
- Or, deeper search gives same
 quality of play with a less accurate evaluation function
- An important example of the tradeoff between complexity of features and complexity of computation

Evaluation Functions

Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:
- EVAL $(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)$
- E.g., $w_{1}=9, f_{1}(s)=$ (num white queens - num black queens), etc.
- Terminate search only in quiescent positions, i.e., no major changes expected in feature values

Evaluation for Pacman

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution 1: Bounded lookahead
- Search only to a preset depth limit or horizon
- Use an evaluation function for non-terminal positions
- Guarantee of optimal play is gone
- More plies make a BIG difference
- Example:
- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1 M nodes per move
- For chess, $b=\sim 35$ so reaches about depth 4 - not so good

Solution 2: Game Tree Pruning

Intuition: prune the branches that can't be chosen

Alpha-Beta Pruning Example

$\boldsymbol{\alpha}=$ best option so far from any
MAX node on this path

We can prune when: min node won't be higher than 2, while parent max has seen something larger in another branch

The order of generation matters: more pruning is possible if good moves come first

Alpha-Beta Implementation

$\alpha:$ MAX's best option on path to root
$\beta:$ MIN's best option on path to root
def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$ return v

$$
\alpha=\max (\alpha, v)
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Quiz: Minimax Example

Quiz: Minimax Example

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$
return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$\mathbf{v}=\boldsymbol{\operatorname { m i n }}(\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$\mathbf{v}=\boldsymbol{\operatorname { m i n }}(\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

```
v=max(v, value(successor, \alpha, \beta))
if v\geq\beta
            return v
        \alpha=max(\alpha,v)
```

 return v
 def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$\mathbf{v}=\max (\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$
return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$
return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

```
v=max(v, value(successor, \alpha, \beta))
if v\geq\beta
            return v
        \alpha=max(\alpha,v)
```

 return v
 def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$\mathbf{v}=\boldsymbol{\operatorname { m i n }}(\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

```
v=max(v, value(successor, \alpha, \beta))
if v\geq\beta
            return v
        \alpha=max(\alpha,v)
```

 return v
 def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$\mathbf{v}=\boldsymbol{\operatorname { m i n }}(\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v, \text { value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \\
& \quad \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \boldsymbol{\alpha}$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$\mathbf{v}=\max (\mathbf{v}$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$
return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$
return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Small Example

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

```
        v=max(v, value(successor, \alpha, \beta))
        if v\geq\beta
            return v
        \alpha=max(\alpha,v)
```

 return v
 def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$
return v
$\beta=\min (\beta, v)$
return v

Minimax Quiz
What is the value of the top node?

Alpha Beta Quiz

Which branches are pruned?

Alpha-Beta Quiz 2 $\alpha=10$

Alpha-Beta Pruning Properties

- Theorem: This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- Iterative deepening helps with this
- With "perfect ordering":
- Time complexity drops to $O\left(b^{m / 2}\right)$
- Doubles solvable depth!
- 1 M nodes/move => depth=8, respectable

- This is a simple example of metareasoning (computing about what to compute)

Games with uncertain outcomes

Chance outcomes in trees

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly Expectiminimax

Minimax

function decision(s) returns an action

 return the action a in Actions(s) with the highest value(Result(s,a))
1

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX \quad then return $\max _{\text {a in Actions(s) }}$ value(Result(s,a))
if Player(s) $=$ MIN \quad then return $\min _{\text {a in Actions(s) }}$ value $(\operatorname{Result}(s, a))$

Expectiminimax

function decision(s) returns an action

 return the action a in Actions(s) with the highest value(Result(s,a))
\$

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX \quad then return max $_{\text {a in Actions(s) }}$ value(Result(s,a))
if Player(s) = MIN then return $\min _{\mathrm{a}}$ in Actions(s) value (Result((s, a))
if Player $(s)=$ CHANCE then return sum a in Actions $(s)^{\operatorname{Pr}(a)}$ * value $($ Result $(s, a))$

Probabilities

Reminder: Expectations

- The expected value of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

Expectimax Pseudocode

sum $_{\mathrm{a} \text { in Action(s) }} \operatorname{Pr}(\mathrm{a})$ * value(Result($\left.(\mathrm{s}, \mathrm{a})\right)$

$$
v=(1 / 2)(8)+(1 / 3)(24)+(1 / 6)(-12)=10
$$

Expectimax Example

What Values to Use?

$$
x>y=>f(x)>f(y)
$$

$$
f(x)=A x+B \text { where } A>0
$$

- For worst-case minimax reasoning, evaluation fun \quad scale doesn't ma'
- We just want better states to have higher evalua ns (get the ord right)
- Minimax decisions are invariant with respect to mbnotonic trap frmations on values
- Expectiminimax decisions are invariant with respect to positiv affine transformations
- Expectiminimax evaluation functions have to be aligned with actual win probabilities!

Summary

- Multi-agent problems can require more space or deeper trees to search
- Games require decisions when optimality is impossible
- Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
- Alpha-beta pruning
- Game playing has produced important research ideas
- Reinforcement learning (checkers)
- Iterative deepening (chess)
- Rational metareasoning (Othello)
- Monte Carlo tree search (Go)
- Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges - lots to do!
- $b=10^{500},|S|=10^{4000}, m=10,000$

[^0]: | X | O |
 | :--- | :--- |
 | O | O |
 | X | X |
 | | 0 |

