AI: Representation and Problem Solving

Game Theory

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: Ariel Procaccia, Fei Fang

Announcements

- Written homework due 4/25
- Electronic assignment due next week
- Programming assignment due 5/2
- Final exam 5/9 1-4pm (Rashid Auditorium)
- You're doing great!!!

Autonomous Agents 15-482

- Agent Architectures
- Task scheduling
- Reasoning under uncertainty
- Error monitoring
- Explanation
- Robotanist Project automated greenhouses

Nils Nilsson (1933-2019)

- Stanford Research Institute and Stanford University
- Inventor of A*
- Inventor of automated temporal planning
- Inventor of STRIPS classical planning framework
- Research interests in search, planning, knowledge representation, robotics, and more...

Representing Actions in the World

Tic Tac Toe

Navigating in GHC

Wheel Of Fortune

Wheel Of Fortune

15-381 Exam

Decision Theory and Game Theory

Decision Theory: pick a strategy to maximize utility **given** world outcomes

Game Theory: pick a strategy for player that maximizes *his* utility **given** the strategies of the other players

Models are essentially the same

Imagine the world is a player in the game!

History of Game Theory

- Game theory is the study of strategic decision making (of more than one player)
- Used in economics, political science etc.

John von Neumann

John Nash

Heinrich Freiherr von Stackelberg

Winners of Nobel Memorial Prize in Economic Sciences

Games: Extensive Form

Represent:

- 1) the players of a game
- 2) for every player, every opportunity they have to move
- 3) what each player can do at each of their moves
- 4) what each player knows when making every move
- 5) the payoffs received by everyone for all possible combo of moves

Decisions: Extensive Form

Represent:

1) the player(s) of a game

2) every opportunity they have to act

3) what the player can do at each of their turns

4) the uncertain outcomes of actions

5) what each player knows/observes for every turn

6) the payoffs received for all possible combo of actions

Alternative: Normal Form

- Approximate games as single shot
- Represent only actions and utilities
- Easier to determine particular properties of games

Studying – Normal Form Game

Studying – Normal Form Game

Studying - Actions and Utilities

Studying - Actions and Utilities

Action/Utility Notation

Questions you can ask...

What action should you take?

Questions you can ask...

What action should you take?

- Maximize the expected utility based on world probabilities

Questions you can ask...

What strategy (probability distribution over actions) should you use?

Strategies

Strategy for player = $s_k \in S$: probability distribution over actions

Pure vs Mixed Strategies

Strategy for player = $s_k \in S$: probability distribution over actions

Fure Strategy: deterministic (p=1) selection of actions

CRAM	DO HW	PLAY GAME
98	100	85
97	90	65

Strategy 1: Always cram

Strategy 2: Always do HW

Strategy 3: Always play games

Strategy 4: ½ cram, ½ do HW

. .

Mixed Strategy: randomized selection

Strategies

Strategy for player = $s_k \in S$: probability distribution over actions Goal: Pick a strategy that maximizes utility given exam probability

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

Strategy 1: Always cram

Strategy 2: Always do HW

Strategy 3: Always play games

Strategy 4: ½ cram, ½ do HW

. . .

What is the utility of pure strategy: cram?

$$E(cram) = p(e)u(cre) + p(h)u(crh)$$

. $2(98) + .8(97)$

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

$$P(EASY) = .2$$

 $P(HARD) = .8$

What is the utility of pure strategy: study?

$$u(cram) = u(cram, easy) * p(easy) + u(cram, hard) * p(hard)$$

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

$$P(EASY) = .2$$

General formula:

$$u(action) = \sum_{world} p(world) * u(action, world)$$

CRAM	DO HW	PLAY GAME
98	100	85
97	90	65

$$P(EASY) = .2$$

 $P(HARD) = .8$

What is the utility of pure strategy: do hw?

$$(186)(2) + 98(8) = 92$$

CRAM DO HW		PLAY GAME
98	100	85
97	90	65

$$P(EASY) = .2$$

What is the utility of pure strategy: play game?

CRAM	DO HW PLAY GAME	
98	100	85
97	90	65

P(EASY) = .2P(HARD) = .8

What is the utility of mixed strategy: ½ cram, ½ do hw?

CRAM	DO HW PLAY GAME	
98	100	85
97	90	65

P(EASY) = .2

P(HARD) = .8

What is the utility of mixed strategy: ½ cram, ½ do hw?

$$u(s) = \sum_{a \in s} \sum_{world} \underline{p(a, world)} * u(a, world)$$

CRAM	DO HW	PLAY GAME
98	100	85
97	90	65

$$P(EASY) = .2$$

$$P(HARD) = .8$$

What is the utility of mixed strategy: ½ cram, ½ do hw?

$$u(s) = \sum_{a \in s} p(a) * \sum_{world} p(world) * u(a, world)$$

CRAM	DO HW PLAY GAME	
98	100	85
97	90	65

$$P(EASY) = .2$$

 $P(HARD) = .8$

What is the utility of mixed strategy: ½ cram, ½ do hw?

$$\left[p(cram)\sum_{world}p(world)*u(cram,world)\right] + \left[p(hw)\sum_{world}p(world)*u(hw,world)\right]$$

CRAM	DO HW PLAY GAME	
98	100	85
97	90	65

$$P(EASY) = .2$$

 $P(HARD) = .8$

Grocery Shopping Transportation Decision

Suppose you want to decide how to get groceries from the store

SUN RAIN

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

Polls 1 and 2

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

How many pure strategies to do you have?

- A) 1 B) 2 C) 3 D) 4 E) Infinite

How many mixed strategies do you have?

- A) 4 B) 8 C) 16 D) 64 E) Infinite

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

What is your best pure strategy?

- A) bike B) walk

- C) bus D) drive E) it depends

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

What is your best pure strategy?

- A) bike B) walk

- C) bus D) drive E) it depends

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

What is the utility of a ¼ walk, ¼ bike, and ½ drive strategy?

$$A) - 1/8$$

$$C) -1/2$$

Game Theory

Game: Rock, Paper, Scissors

Each player simultaneously picks rock, paper, or scissors Rock beats scissors, scissors beats paper, paper beats rock

Game: Rock, Paper, Scissors

Each player simultaneously picks rock, paper, or scissors Rock beats scissors, scissors beats paper, paper beats rock

P1's Actions

 $A_1 = \{rock, paper, scissors\}$

P2's Actions

 $A_2 = \{rock, paper, scissors\}$

Joint Utilities

When both players choose their actions, they receive a utility based on both of their choices

Joint Utilities

When both players choose their actions, they receive a utility based on both of their choices

P2's ACTIONS PLAYER 2 **ROCK PAPER SCISSORS ROCK** -1,1 1,-1 **PAPER** 0,0 -1,1 **SCISSORS** -1,1 1,-1 0,0 JOINT UTILITIES

What is P1's utility of P1 picking rock and P2 picking scissors?

Normal Form Notation

Players 1...M Pure Strategies $S_i = \{s_{i,1}, s_{i,2}, \dots s_{i,n}\}$ for player i Utility functions $u_i(s_1, s_2, \dots, s_m)$ that maps a strategy per player to a reward for player i

		PLAYER 2		
		ROCK	PAPER	SCISSORS
	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Normal Form Notation

Players 1...M

Pure Strategies $S_i = \{s_{i,1}, s_{i,2}, ... s_{i,n}\}$ for player i Utility functions $u_i(s_1, s_2, ..., s_m)$ that maps a strategy per player to a reward for player i (not necessarily pure strategies)

Notation Alert!

We can write a strategy profile of one strategy per player as

 $\vec{s} = (s_1, s_2, \dots, s_m)$

and therefore i's utility as $u_i(\vec{s})$

		PLAYER 2				
		ROCK	PAPER	SCISSORS		
_	ROCK	0,0	-1,1	1,-1		
PLAYER 1	PAPER	1,-1	0,0	-1,1		
PI	SCISSORS	-1,1	1,-1	0,0		

Strategies for Games

Goal: pick a strategy for player *i* that maximizes *his* <u>utility</u> **given** the strategies of the other players

Pure Strategies:

P2 always picks rock
P1 should _____

P2 always picks paper P1 should ____

		PLAYER 2		
		ROCK PAPER SCISSORS		
_	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Strategies for Games

Goal: pick a strategy for player *i* that maximizes *his* <u>utility</u> **given** the strategies of the other players

Mixed Strategies:

P2 randomly chooses between 50% rock and 50% paper P1 should ___

		PLAYER 2		
		ROCK	PAPER	SCISSORS
<u></u>	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
l l	SCISSORS	-1,1	1,-1	0,0

Zero-Sum Games

If each cell in the table sums to 0, the game is zero-sum

$$\forall \vec{s} \sum_{i} u_i(\vec{s}) = 0$$

		PLAYER 2			
	,	ROCK PAPER SCISSORS			
<u></u>	ROCK	0,0	-1,1	1,-1	
PLAYER 1	PAPER	1,-1	0,0	-1,1	
	SCISSORS	-1,1	1,-1	0,0	

Zero-Sum Games

If each cell in the table sums to 0, the game is zero-sum

$$\forall \vec{s} \sum_{i} u_i(\vec{s}) = 0$$

Is Rock, Paper, Scissors zero-sum?

Is TicTacToe zero-sum?

11!		ROCK	PAPER	SCISSORS
1	ROCK	0,0	-1,1	1,-1
AYER	PAPER	1,-1	0,0	-1,1
Id	SCISSORS	-1,1	1,-1	0,0

PLAYER 2

A strategy for player i $s_{i,k}$ is strictly dominant if it is better than all other strategies for player i no matter the opponent j's strategy

$$\forall j, \forall n \neq k, u_i(s_{i,k}, s_j)$$

	А	В	С	D	E
i	2,10	4,7	4 ,6	5,2	3,8
ii	3,8	<mark>6</mark> ,4	5 ,2	1 ,3	2,6
iii	5 ,3	3,1	2,2	4,1	3,0
iv	6 ,7	9,5	<mark>7</mark> ,5	8,5	<mark>5</mark> ,5

A strategy for player i $s_{i,k}$ is weakly dominant if it is better than all other strategies for player i no matter the opponent j's strategy

$$\forall j, \forall n \neq k, u_i(s_{i,k}, s_j) \geq u_i(s_{i,n}, s_j)$$

	А	В	С	D	E
i	2,10	4,7	4 ,6	5,2	3,8
ii	3,8	<mark>6</mark> ,4	5 ,2	1 ,3	2,6
iii	5 ,3	3,1	<mark>2</mark> ,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

For player Alphabet, strategy A's utilities are the highest compared to B,C,D,E for all of RomanNum's strategies $\forall j \in \{i,ii,iii,iv\}, \forall n \neq A, u_{Alphabet}(s_A,s_i) > u_i(s_n,s_i)$

	А	В	С	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	<mark>6,4</mark>	5 ,2	1,3	<mark>2</mark> ,6
iii	5,3	3,1	<mark>2</mark> ,2	4,1	3,0
iv	6,7	<mark>9</mark> ,5	7,5	8,5	5 ,5

For player Alphabet, strategy A's utilities are the highest compared to B,C,D,E for all of RomanNum's strategies

Alphabet should always play A!

	А	В	С	D	E
i	2,10	4,7	4 ,6	5,2	3,8
ii	3,8	<mark>6,4</mark>	5 ,2	1 ,3	2,6
iii	5,3	3,1	<mark>2</mark> ,2	4,1	3,0
iv	6,7	9,5	7 ,5	8,5	5,5

For player RomanNum, strategy iv's utilities are the highest compared to i,ii,iii for all of Alphabet's strategies

$$\forall j \in \{A, B, C, D, E\}, \forall n \neq iv, u_{RomanNum}(s_{iv}, s_j) > u_i(s_n, s_j)$$

	А	В	С	D	E
i	<mark>2,10</mark>	· 4,7	4 ,6	5,2	3,8
ii	.3,8	· 6,4	5,2	1,3	2 ,6
iii	. <mark>5</mark> ,3	. 3,1	2,2	4,1	3,0
iv	 6,7	.9,5	7, 5	8,5	5,5

For player RomanNum, strategy iv's utilities are the highest compared to i,ii,iii for all of Alphabet's strategies

RomanNum should always play iv!

	А	В	С	D	E
i	2,10	4,7	4 ,6	5,2	3,8
ii	3,8	6,4	5 ,2	1 ,3	<mark>2</mark> ,6
iii	5 ,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

Poll 6: Is there always a dominant strategy?

Yes or No?

Is there always a dominant strategy?

No! There is no dominant strategy in Tic Tac Toe, for example.

		PLAYER 2		
		ROCK	PAPER	SCISSORS
_	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3,-3

Prisoner's Dilemma: Normal Form

2 Players {1,2}

Each as 2 actions (Cooperate, Defect)

Utilities in table:

.abie.		PRISONER 2		
		Cooperate	Defect	
VER 1	Cooperate	-1,-1	-6,0	
PRISONER 1	Defect	0,-6	-3,-3	

Prisoner's Dilemma Poll

Is there a dominant strategy?

		PRISONER 2	
		Cooperate	Defect
NER 1	Cooperate	<u>-</u> 1,- <u>1</u>	-6,0
PRISOI	Defect	<u></u> 0,- <u>6</u>	3,-3

Is there a dominant strategy? Yes!

		PRISONER 2	
		Cooperate	Defect
NER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3,-3

Is there a dominant strategy? Yes!

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3,-3

Is there a dominant strategy? Yes!

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3 ,-3

What is the best joint strategy for both prisoners?

		PRISONER 2		
		Cooperate	Defect	
NER 1	Cooperate	-1,-1	-6,0	
PRISO	Defect	0,-6	-3,-3	

Best joint strategy: prisoners cooperate

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3,-3

Measure of Social Welfare

The sum of the utilities of the players is the social welfare

$$SW(C,C) = -2$$

$$SW(C,D) = -6$$

$$SW(D,D) = -6$$

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
	Defect	0,-6	-3,-3

Goal: pick a strategy for player *i* that maximizes *his* <u>utility</u> **given** the strategies of the other players

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
PRISO	Defect	0,-6	-3,-3

Each prisoner would profit by switching to defection assuming that the other prisoner continues to cooperate

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1	-6,0
	Defect	0,-6	-3,-3

Each prisoner would profit by switching to defection assuming that the other prisoner continues to cooperate

		PRISONER 2	
		Cooperate	Defect
PRISONER 1	Cooperate	-1,-1 —	-6,0
	Defect	0,-6	-3,-3

Prisoner's Dilemma

If they both trust that the other prisoner will cooperate, each should defect. But both defecting results in lower scores!

		PRISONER 2		
		Cooperate	Defect	
PRISONER 1	Cooperate	-1,-1	-6,0	
PRISO	Defect	0,-6	-3,-3	

Tragedy of the Commons

Individuals act in their own self-interest contrary to the common good

Political Ads

Nuclear Arms Race

CO₂ Emissions

Nash Equilibrium

Nash Equilibria are strategy profiles \vec{s} where none of the participants benefit from unilaterally changing their decision.

	PRISO	NER 2
$\forall i \ u_i(\vec{s}) \ge u_i(neighbor(\vec{s}))$	Cooperate	Defect
Cooperate	-1,-1	-6,0
OSING Defect	Ø,-6	-3

Nash Equilibrium

Nash Equilibria are strategy profiles \vec{s} where none of the participants benefit from unilaterally changing their decision.

		PRISONER 2		
		Cooperate Defect		
NER 1	Cooperate	-1,-1	-6,0 1	
PRISONER 1	Defect	0,-6	-3,-3	

Nash Equilibrium

NOT A NASH EQUILIBRIUM - participants benefit from unilaterally changing their decision.

		PRISONER 2		
		Cooperate Defect		
Cooperate		-1	→ -6,0	
PRISONER 1	Defect	0,-6	-3,-3	

Strict Nash Equilibrium

Strict Nash Equilibria are Nash Equilibria where the "neighbor" strategy profiles have strictly less utility (<u)

			PRISONER 2		
$\forall i \ u_i(\vec{s}) u_i(neighbor(\vec{s}))$			Cooperate	Defect	
	NER 1	Cooperate	-1,-1	-6,0 ↑	
	PRISO	Defect	0,-6	-3,-3	

Professor's Dilemma!

		Student		
		Study	Games	
Professor	Effort	1000,1000	0,-10	
Profe	Slack	-10,0	0,0	

Poll 7: What is/are the Nash Equilibrium?

		Student		
		Study	Games	
Professor	Effort	1000,1000	0,-10	
Profe	Slack	-10,0	0,0	

Poll 7: Nash Equilibrium Example

		Student		
		Study	Games	
SSOF	Effort	1000,1000	0,-10	
Professor	Slack	-10,0	0,0	

Poll 7.5: Which are Strict Nash Equilibria?

Strict Nash Equilibria?

Effort/Study is a Strict NE, Slack/Games is not!

		Student		
		Study	Games	
SSOF	Effort	1000,1000	0,-10	
Professor	Slack	-10,0	0,0	

Pure Nash Equilibria have a pure strategy

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R
U	10,3	1,5	5,4
М	3,1	2,4	5,2
D	0,10	1,8	7,0

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R
U	10,3	1,5	5/4
М	3,1	2,4	5,2
D	0,10	1,8	7,0

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R		L	С
U	10,3	1,5	5,4	כ	10,3	1,5
М	3,1	2,4	5,2	М	3,1	2,4
D	0,10	1,8	7,0	D	0,10	1,8

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R		L	С
U	10,3	1,5	5,4	כ	10,3	1,5
М	3,1	2,4	5,2	М	3,1	2,4
D	0,10	1,8	7,0	D	0,10	1,8

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R		L	С			L	С
U	10,3	1,5	5,4	כ	10,3	1,5	1	כ	10,3	1,5
М	3,1	2,4	5,2	Μ	3,1	2,4		Μ	3,1	2,4
D	0,10	1,8	7,0	D	0,10	1,8				

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R		L	С			L	С
U	10,3	1,5	5,4	U	10,3	1,5	1	כ	10,3	1,5
М	3,1	2,4	5,2	М	3,1	2,4		Σ	3,1	2,4
D	0,10	1,8	7,0	D	0,10	1,8				

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	L	С	R		L	С			L	С			С
U	10,3	1,5	5,4	U	10,3	1,5	1	כ	10,3	1,5	1	J	1,5
M	3,1	2,4	5,2	М	3,1	2,4		Μ	3,1	2,4	7	М	2,4
D	0,10	1,8	7,0	D	0,10	1,8							

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	А	В	С	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	4,5

	Α	В	С	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	4,5

	А	В	С	D	E
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5

	А	В	С	D	E
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5

No longer strict dominant strategies!

	А	В	С	D	E
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5

	4	В	С	P	E
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5
	V		>	V	

D is strictly dominated by A

	А	B	С	9	E
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5
	,	V	(2)	V	

D is weakly dominated by B

	А	В	С	E
i	2,4	4,7	4,6	3,8
ii	3,8	6,4	5,2	2,6
iii	5,3	3,1	2,2	3,0
iv	6,7	9,5	5,5	4,5

	А	В	С	E	
i	2,4	4,7	4,6	3,8	
ii	3,8	6,4	5,2	2,6	
iii	5,3	3,1	2,2	3,0	
iv	6,7	9,5	5,5	4,5	

iii is strictly dominated by iv

	А	В	С	E	
i	2,4	4,7	4,6	3,8	
ii	3,8	6,4	5,2	2,6	
iii	5,3	3,1	2,2	3,0	
iv	6,7	9,5	5,5	4,5	

i is strictly dominated by iv

	А	В	С	E
ii	3,8	6,4	5,2	2,6
iv	6,7	9,5	4,5	4,5

E is strictly dominated by A

C is strictly dominated by A

B is strictly dominated by A

	А		
ii	3,8		
iv	6,7		

ii is strictly dominated by iv

Finding Nash Equilibrium Example 2

	А		
iv	6,7		

Rock, Paper, Scissors – Nash Equlibrium?

		PLAYER 2			
		ROCK	PAPER	SCISSORS	
<u> </u>	ROCK	0,0	-1,1	1,-1	
PLAYER 1	PAPER	1,-1	0,0	-1,1	
	SCISSORS	-1,1	1,-1	0,0	

Rock, Paper, Scissors – Not with pure strategies!

		PLAYER 2		
		ROCK	PAPER	SCISSORS
<u> </u>	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Nash Equilibria always exist in finite games

Nash 1950

If there are a finite number of players and each player has a finite number of actions, there always exists a Nash Equilibrium

The NE may be pure or it may be a mixed strategy

Calculating Utilities of Mixed Strategies

Decision Theory Version:

$$u(s) = \sum_{a \in s} \sum_{world} p(a, world) * u(a, world)$$

Calculating Utilities of Mixed Strategies

Game Theory Version:

$$u(\vec{s}) = \sum_{(s_1, s_2, \dots)} \underline{p}(\vec{s}) * u(\vec{s}) = \sum_{s} \underline{u}(\vec{s}) \prod_{player \ i} p_i(s_i)$$

P1 Utility of P1=(½, ½, 0), P2=(0, ½, ½) RB P(RR)+ RPP(RP)+ RSP(RS)

4PRP (PR)	t-			PLAYER 2	
	<i>J</i>		ROCK	PAPER	SCISSORS
00+ - /	/ —	ROCK	0,0	-1,1	1,-1
	AYER	PAPER	1,-1	0,0	-1,1
		SCISSORS	-1,1	1,-1	0,0

Poll 8: U1? P1=(1/3, 1/3, 1/3), P2=(1/3, 1/3, 1/3)

		PLAYER 2		
		ROCK	PAPER	SCISSORS
<u> </u>	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Poll 8: U1? P1=(1/3, 1/3, 1/3), P2=(1/3, 1/3, 1/3)

		PLAYER 2		
		ROCK	PAPER	SCISSORS
<u> </u>	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Is this a mixed strategy equilibrium?

$P1=(\frac{1}{2}, \frac{1}{2}, 0), P2=(0, \frac{1}{2}, \frac{1}{2})$	PLAYER 2		
	ROCK	PAPER	SCISSORS
$\begin{array}{c} \text{ROCK} \\ \text{U(s)} = 0 \end{array}$	0,0	-1,1	1,-1
₩ PAPER U(s) =25	1,-1	0,0	-1,1
SCISSORS U(s) = 0	-1,1	1,-1	0,0

Is this a mixed strategy equilibrium?

 $P1=(\frac{1}{2}, \frac{1}{2}, 0), P2=(0, \frac{1}{2}, \frac{1}{2})$

No! P1 doesn't want to play

paper because their utility is

lower

e their utility is		KOCK	FAFER	3CI33OK3
<u></u>	ROCK U(s) = 0	0,0	-1,1	1,-1
PLAYER 1	PAPER U(s) =25	1,-1	0,0	-1,1
	SCISSORS U(s) = 0	-1,1	1,-1	0,0

PLAYER 2

Finding the Mixed Strategy Nash Equilibrium

What features of a mixed strategy qualify it as a NE?

There is no reason for either player to deviate from their strategy, which occurs when the utilities of the weighted actions are equal!

Finding the Mixed Strategy Nash Equilibrium

What features of a mixed strategy qualify it as a NE?

There is no reason for either player to deviate from their strategy, which occurs when the utilities of the weighted actions are equal!

Finding the Mixed Strategy Nash Equilibrium

Another Mixed Strategy NE

Other Properties of Strategies

Correlated Equilibrium

Pareto Optimal/Dominated

Correlated Equilibrium

Suppose a mediator computes the best combined strategy (s1,s2) for p1 and p2, and shares s1 with p1 and s2 with p2

The strategy is a CE if $\forall s_1' \in S_1$

$$\sum_{a_1 \in s_1} \sum_{a_2 \in s_2} p(a_1, a_2) u(a_1, a_2) \ge \sum_{a'_1 \in s'_1} \sum_{a_2 \in s_2} p(a'_1, a_2) u(a'_1, a_2)$$

And the same for s2.

Solving for Correlated Equilibrium

We can solve for CE's using linear programs

Find (s1,s2) s.t.

$$\begin{split} \forall s_1, s_2, s'_1, s'_2 \sum_{a_1 \in s_1} \sum_{a_2 \in s_2} p(a_1, a_2) u(a_1, a_2) &\geq \sum_{a'_1 \in s'_1} \sum_{a_2 \in s_2} p(a'_1, a_2) u(a'_1, a_2) \,, \\ &\sum_{a_1 \in s_1} \sum_{a_2 \in s_2} p(a_1, a_2) u(a_1, a_2) &\geq \sum_{a'_1 \in s'_1} \sum_{a_2 \in s_2} p(a_1, a'_2) u(a_1, a'_2) \,, \\ &\sum_{a_1, a_2} p(a_1, a_2) = 1 \,, \forall a_1, a_2 \, p(a_1, a_2) \in [0, 1] \end{split}$$

Pareto Optimal and Pareto Dominated

- An outcome $u(\mathbf{s}) = \langle u_1(\mathbf{s}), ..., u_n(\mathbf{s}) \rangle$ is Pareto optimal if there is no other outcome that all players would prefer, i.e., each player gets higher utility
 - At least one player would be disappointed in changing strategy
- An outcome $u(\mathbf{s}) = \langle u_1(\mathbf{s}), ..., u_n(\mathbf{s}) \rangle$ is Pareto dominated by another outcome if all the players would prefer the other outcome

Summary

Vocabulary

- Pure/Mixed Strategies (and calculating them)
- Zero-Sum Games
- Dominant vs Dominated Strategies
- Strict/Weak Nash Equilibrium
- Tragedy of the Commons
- Correlated Equilibrium
- Pareto Optimal/Dominated
- Social Welfare