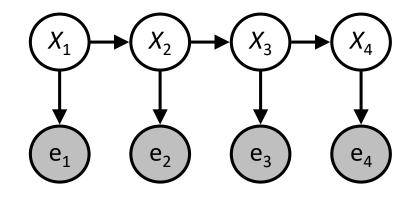
Warm-up as you walk in

For the following Bayes net, write the query P(X₄ | e_{1:4}) in terms of the conditional probability tables associated with the Bayes net.

 $P(X_4 \mid e_1, e_2, e_3, e_4) =$



Announcements

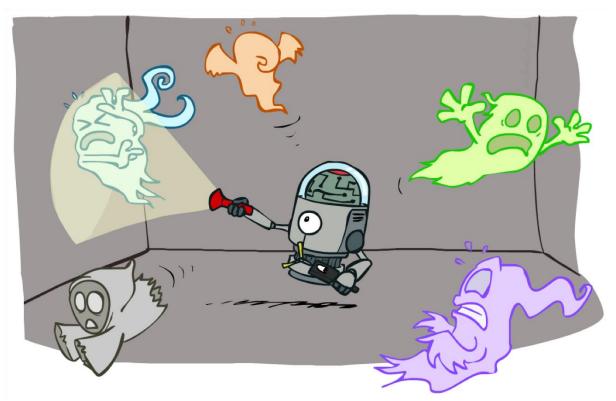
Assignments

- HW11
 - Due Thur 4/25
- P5
 - Due Thur, 5/2

In-class Polls

Denominator capped after midterm 2, 56 polls

Al: Representation and Problem Solving HMMs and Particle Filters



Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

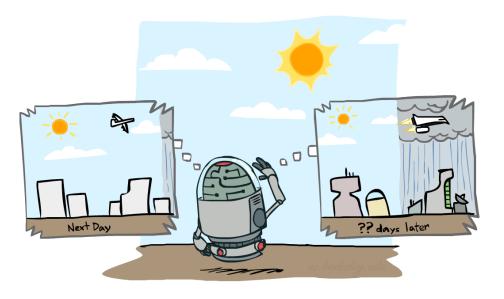
Markov chain warm-up

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_{5}) = \sum_{\substack{x_{4} \\ x_{4}}} P(X_{4} = x_{4}, X_{5})$$

=
$$\sum_{\substack{x_{4} \\ x_{4}}} P(X_{5} | X_{4}) P(X_{4})$$



Markov chain warm-up

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

Markov chain warm-up

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

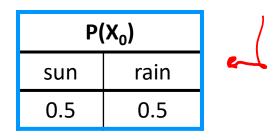
If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)$$

$$= \sum_{x_1, x_2, x_3, x_4} \underbrace{P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)}_{= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)}_{= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)}_{= \sum_{x_4} P(X_5 \mid x_4) P(x_4)}$$

Weather prediction

- States {rain, sun}
- Initial distribution P(X₀)



Wed

Tue

Mon

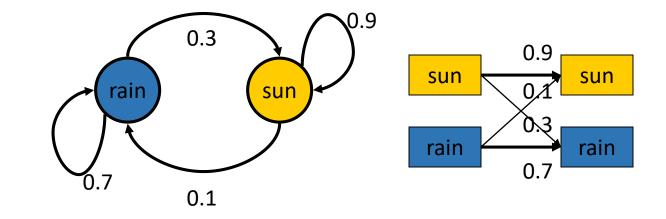
Two new ways of representing the same CPT

Fri

Thu

• Transition model $P(X_t | X_{t-1})$

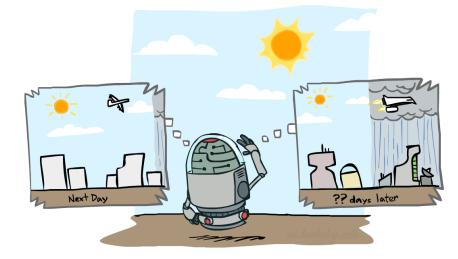
X _{t-1}	P(X		
	sun	rain	7
sun	0.9	0.1	
rain	0.3	0.7	



Weather prediction

Time 0: *P*(*X*₀) =<0.5,0.5>

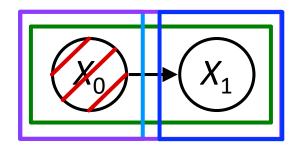
X _{t-1}	P(X _t X _{t-1})			
	sun	rain		
sun	0.9	0.1		
rain	0.3	0.7		



What is the weather like at time 1?

 $P(X_1) = \sum_{x_0} P(X_0 = x_0, X_1)$ = $\sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$ = 0.5<0.9,0.1> + 0.5<0.3,0.7>

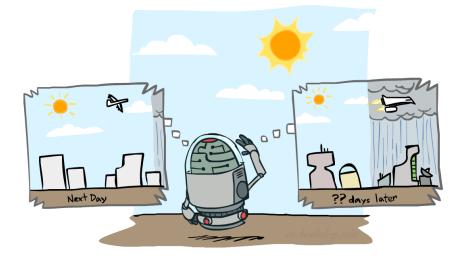
= <0.6,0.4>



Weather prediction, contd.

Time 1: *P*(*X*₁) =<0.6,0.4>

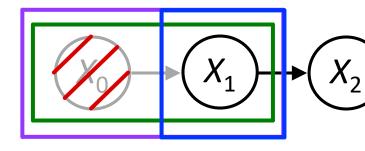
X _{t-1}	P(X _t X _{t-1})			
	sun	rain		
sun	0.9	0.1		
rain	0.3	0.7		



What is the weather like at time 2?

$$P(X_2) = \sum_{x_1} P(X_1 = x_1, X_2)$$

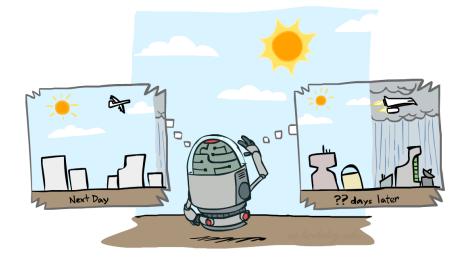
= $\sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1)$
= 0.6<0.9,0.1> + 0.4<0.3,0.7>
= <0.66,0.34>



Weather prediction, contd.

Time 2: *P*(*X*₂) =<0.66,0.34>

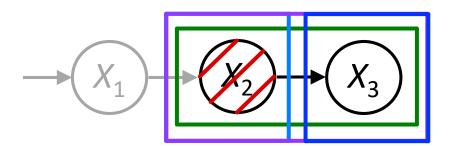
X _{t-1}	P(X _t X _{t-1})			
	sun	rain		
sun	0.9	0.1		
rain	0.3	0.7		



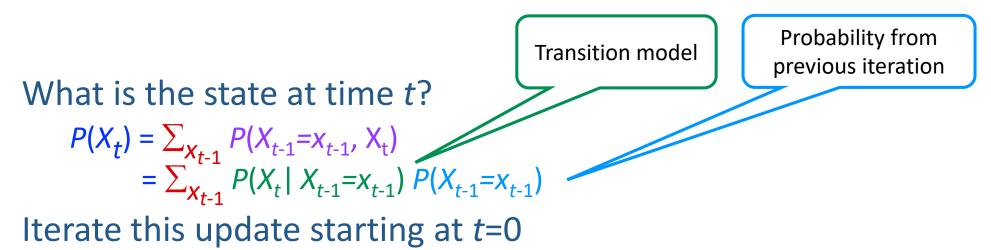
What is the weather like at time 3?

 $P(X_3) = \sum_{x_2} P(X_2 = x_2, X_3)$ = $\sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$ = 0.66<0.9,0.1> + 0.34<0.3,0.7>

= <0.696,0.304>

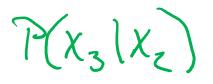


Forward algorithm (simple form)



Hidden Markov Models

HMM as a Bayes Net Warm-up



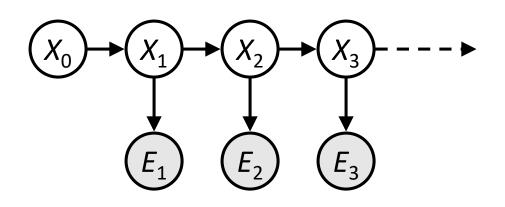
For the following Bayes net, write the query P(X₄ | e_{1:4}) in terms of the conditional probability tables associated with the Bayes net.

Hidden Markov Models

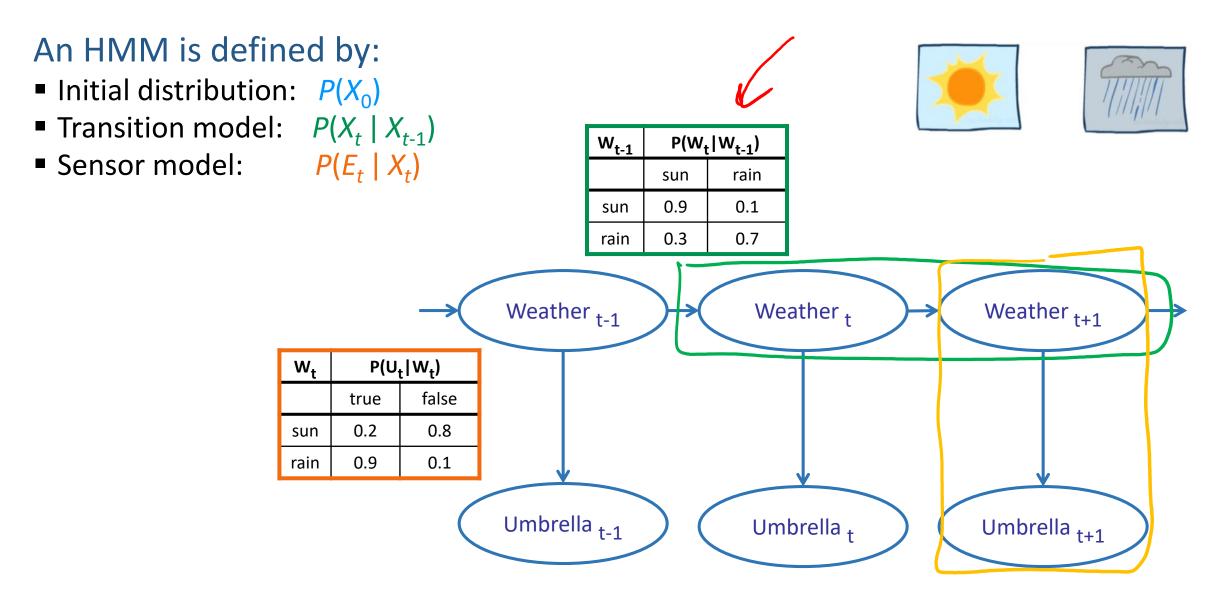
Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence *E* at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables

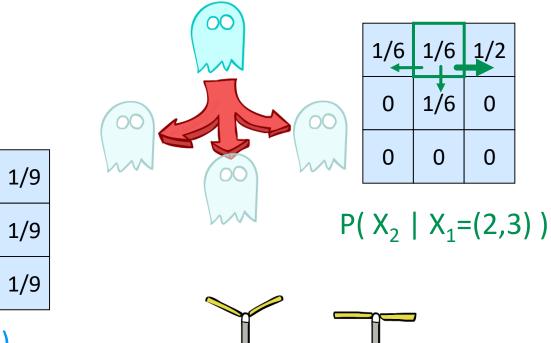


Example: Weather HMM



Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0)$ = uniform
- P(X_t | X_{t-1}) = usually move clockwise, but sometimes move randomly or stay in place
- $P(C_{tij} \mid X_t)$ = same sensor model as before: red means close, green means far away.



1/9 1/9

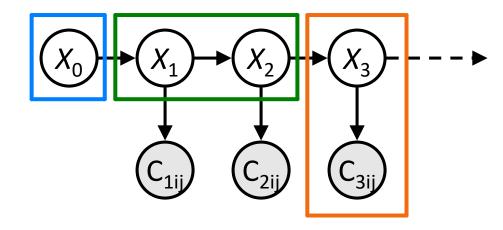
1/9

1/9

 $P(X_1)$

1/9

1/9



[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

HMM as Probability Model

Joint distribution for Markov model:

$$P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

$$(X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots \rightarrow (E_1 \rightarrow E_2 \rightarrow E_3)$$

Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b

For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

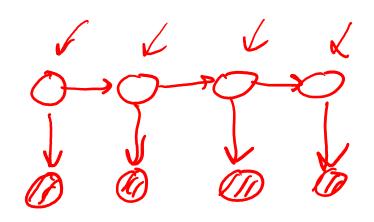
- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

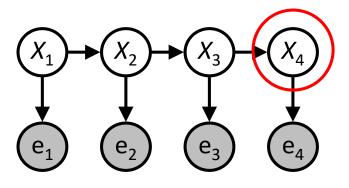
Molecular biology:

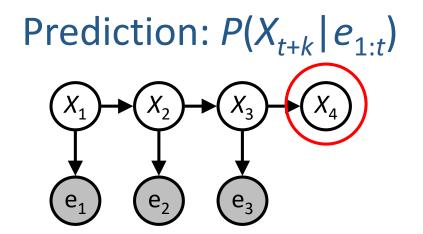
- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.



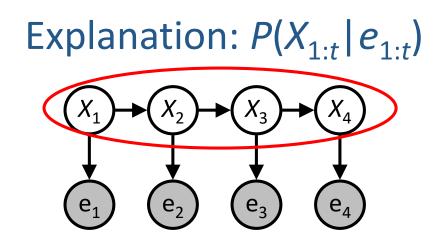
Other HMM Queries

Filtering: $P(X_t | e_{1:t})$





Smoothing: $P(X_k | e_{1:t}), k < t$ $(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4)$ $(e_1 \quad e_2 \quad e_3 \quad e_4)$



Inference Tasks

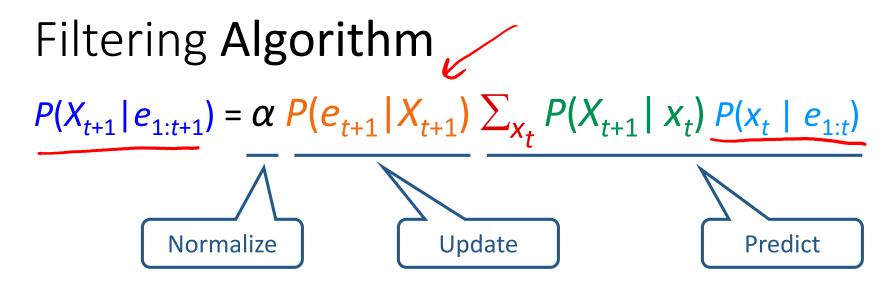
Filtering: $P(X_t | e_{1:t})$

belief state—input to the decision process of a rational agent

- Prediction: $P(X_{t+k} | e_{1:t})$ for k > 0
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
- better estimate of past states, essential for learning
- Most likely explanation: $\operatorname{argmax}_{X_{1:t}} P(x_{1:t} | e_{1:t})$
- speech recognition, decoding with a noisy channel

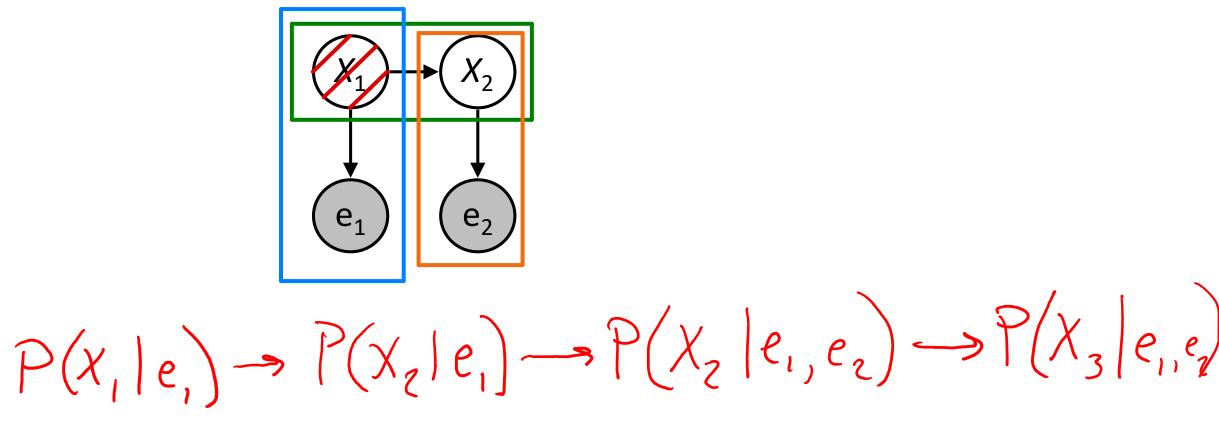
Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

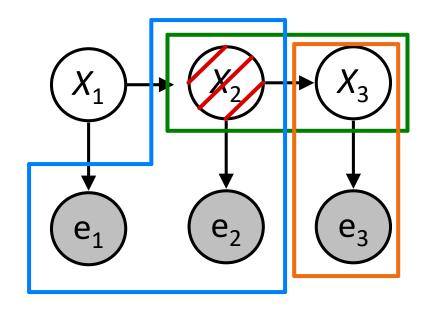


 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, e_{t+1})$

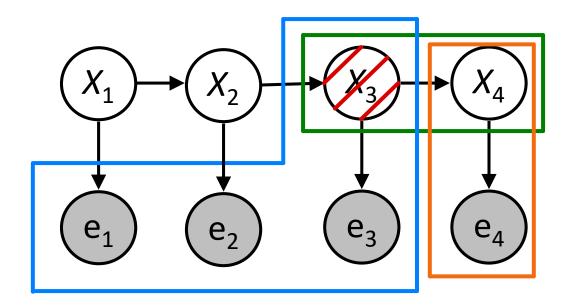
Query: What is the current state, given all of the current and past evidence?



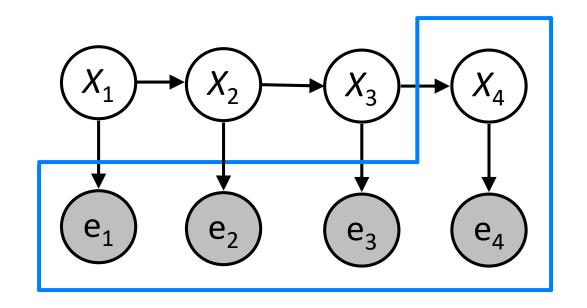
Query: What is the current state, given all of the current and past evidence?



Query: What is the current state, given all of the current and past evidence?



Query: What is the current state, given all of the current and past evidence?



Example: Prediction step

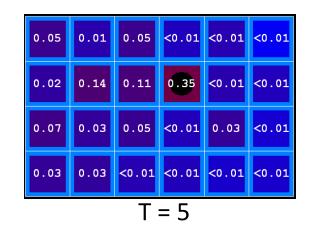
As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
<0.01	<0.01	1.00	<0.01	<0.01	<0.01	
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
T = 1						

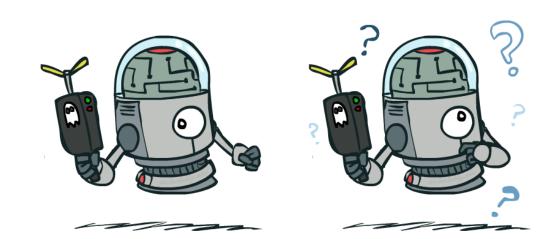
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

T = 2

(Transition model: ghosts usually go clockwise)







Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

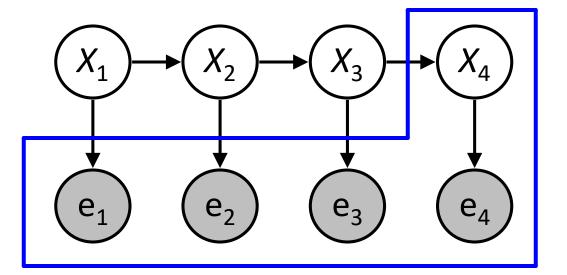
After observation

Demo Ghostbusters – Circular Dynamics -- HMM

Query: What is the current state, given all of the current and past evidence?

$$P(X_t \mid \underline{e_{1:t}}) = P(X_t \mid \underline{e_t}, e_{1:t-1})$$

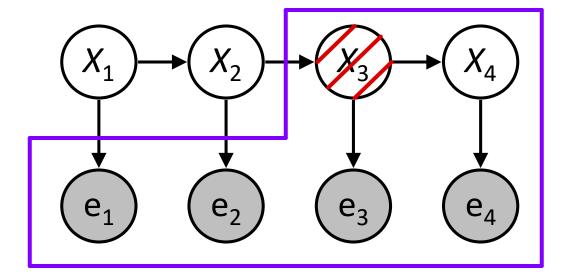
= $\alpha P(X_t, e_t \mid e_{1:t-1})$



Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$



Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

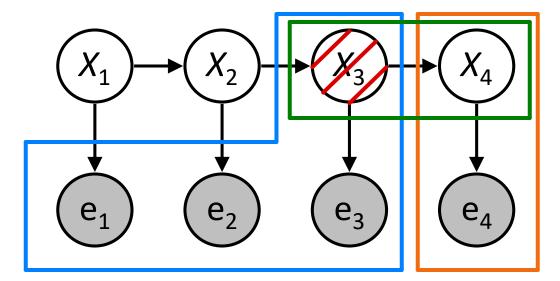
$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

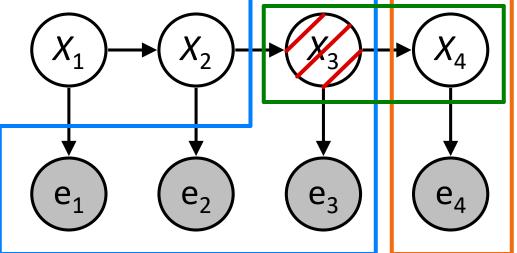


$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net $P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$ = $\alpha P(X_t, e_t | e_{1:t-1})$ X_1 $= \alpha \sum_{k=1}^{\infty} P(x_{t-1}, X_t, e_t | e_{1:t-1})$ **e**₁ x_{t-1} $= \alpha \sum_{t=1}^{\infty} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$ x_{t-1} $= \alpha P(e_t|x_t) \sum P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$

 x_{t-1}



Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

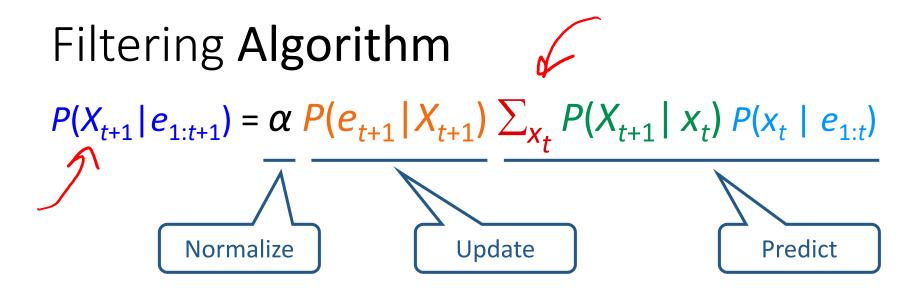
$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion



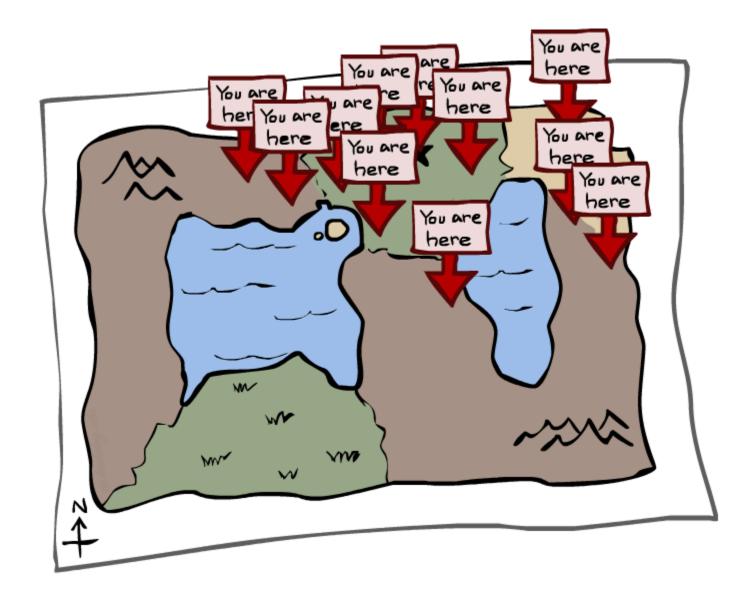
 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

Cost per time step: $O(|X|^2)$ where |X| is the number of states

Time and space costs are *constant*, independent of t

 $O(|X|^2)$ is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms

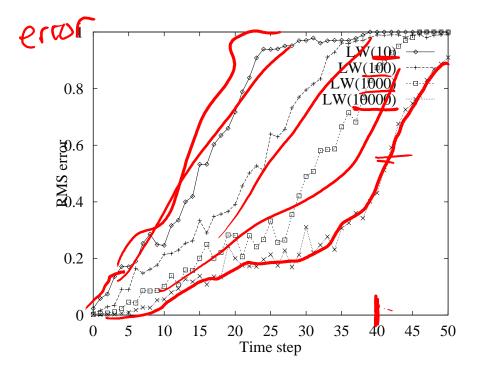
Particle Filtering

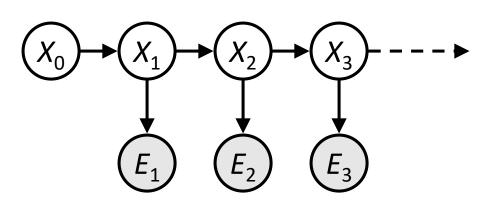


We need a new algorithm!

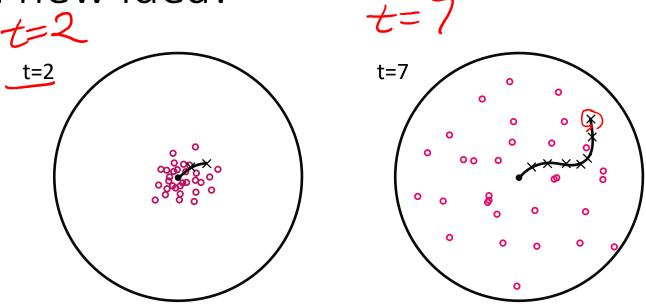
When |X| is more than <u>10⁶</u> or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible

Likelihood weighting fails completely – number of samples needed grows *exponentially* with *T*





We need a new idea!



The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples

Solution: kill the bad ones, make more of the good ones

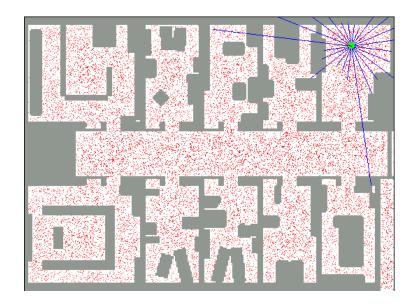
This way the population of samples stays in the high-probability region

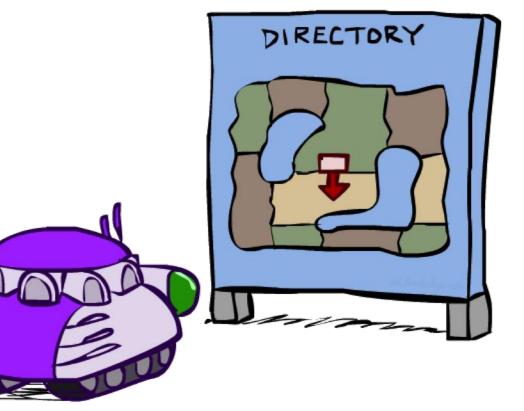
This is called **resampling** or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique





Particle Filter Localization (Sonar)

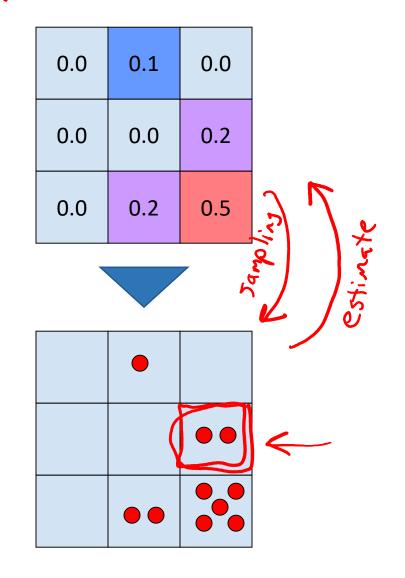
[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering

Represent belief state by a set of samples

- Samples are called *particles*
- Time per step is linear in the number of samples
- But: number needed may be large
- This is how robot localization works in practice



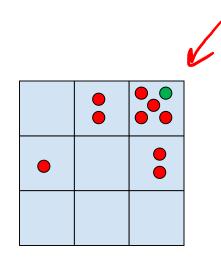
Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
- Generally, N << |X|</p>
- Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x

- So, many x may have P(x) = 0!
- More particles, more accuracy
- Usually we want a low-dimensional marginal
 - E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?"

For now, all particles have a weight of 1



Particles: (3,3)

(3,3

3,2

(3,3) (3,2) (1,2) (3,3)

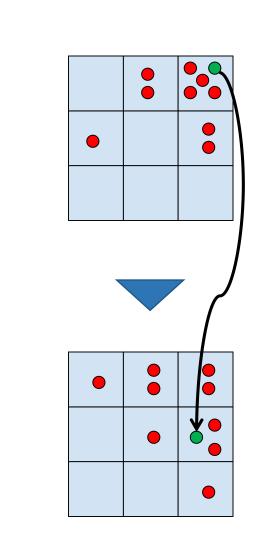
(3,3) (2,3)

Particle Filtering: Propagate forward

 A particle in state x_t is moved by sampling its next position directly from the transition model:

• $x_{t+1} \sim P(X_{t+1} | x_t)$

- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



Particles:

(3,3) (2,3)

(3,3)

(3,2)

(3,3) (3,2)

(1,2) (3,3)

(3,3) (2,3)

Particles:

(3,2) (2,3)

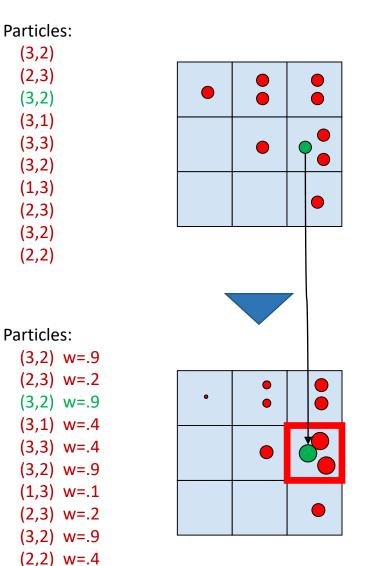
(3,2)

(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence
 - $W = P(e_t | x_t)$
- Normalize the weights: particles that fit the data better get higher weights, others get lower weights



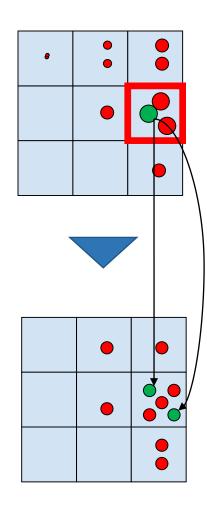
Particle Filtering: Resample

Rather than tracking weighted samples, we *resample*

N times, we choose from our weighted sample distribution (i.e., draw with replacement)

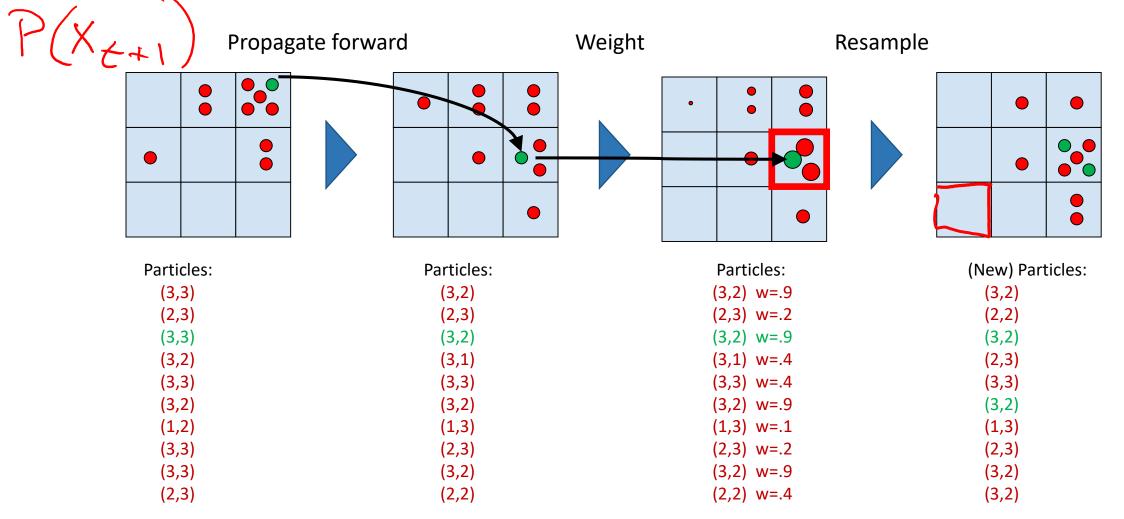
Now the update is complete for this time step, continue with the next one

Particles:	
(3,2)	w=.9
(2,3)	w=.2
(3,2)	w=.9
(3,1)	w=.4
(3,3)	w=.4
(3,2)	w=.9
(1,3)	w=.1
(2,3)	w=.2
(3,2)	w=.9
(2,2)	w=.4
(New) F	Particles:
(3,2)	
(2,2)	
(3,2)	
(2,3)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(3,2)	
(3,2)	



Summary: Particle Filtering

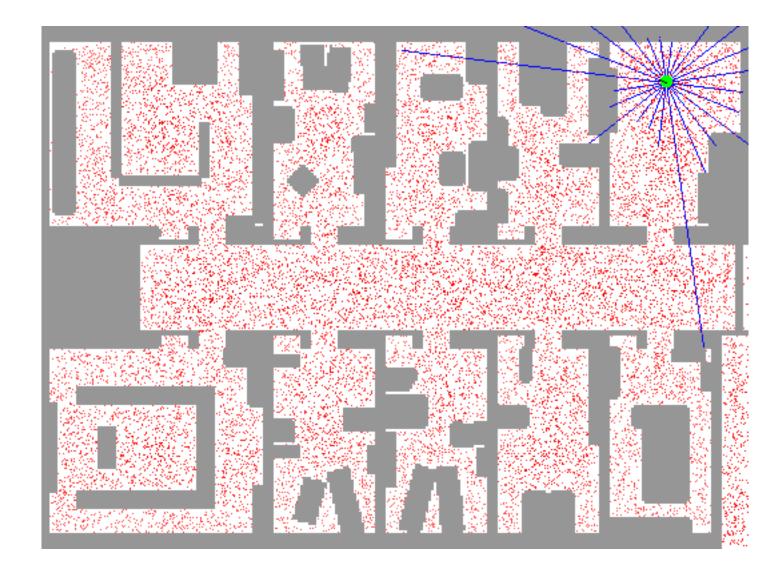
Particles: track samples of states rather than an explicit distribution



Consistency: see proof in AIMA Ch. 15

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Particle Filter Localization (Laser)



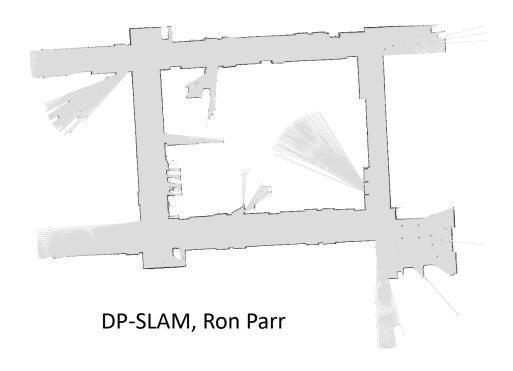
[Dieter Fox, et al.]

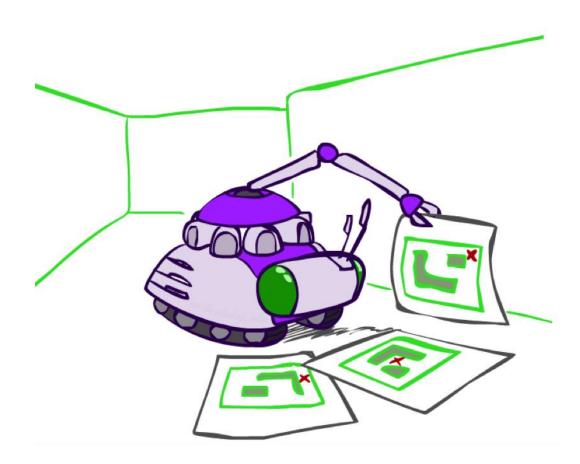
[Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping

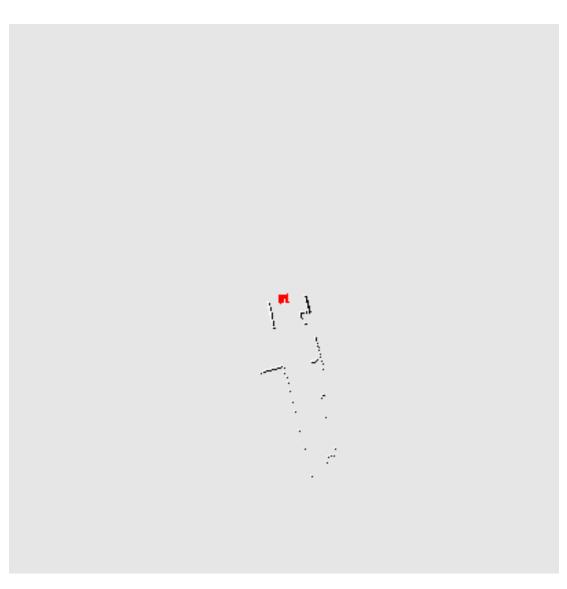
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods





[Demo: PARTICLES-SLAM-mapping1-new.avi]

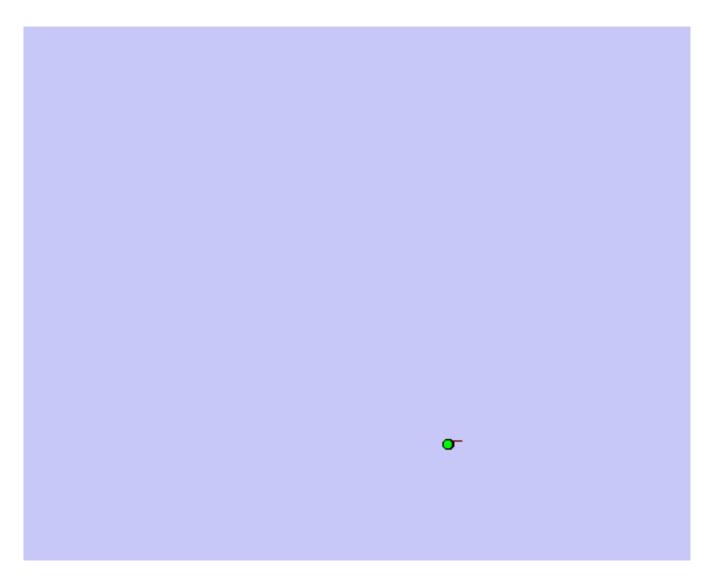
Particle Filter SLAM – Video 1



[Sebastian Thrun, et al.]

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2



[Dirk Haehnel, et al.]

[Demo: PARTICLES-SLAM-fastslam.avi]