Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,,) in terms of
the conditional probability tables associated with the Bayes net.

P(X, | e,e,ese,) =



Announcements

Assignments

= HWI11
= Due Thur 4/25

» P5
= Due Thur, 5/2

In-class Polls
" Denominator capped after midterm 2, 56 polls



Al: Representation and Problem Solving
HMMs and Particle Filters

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al and http://ai.berkeley.edu



Markov chain warm-up

OO OOy

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),

write an equation to compute P(X5s).

P(xs) = Z P (K=, %)
- ; P(xs 1X4) PIXG)




Markov chain warm-up

OO OOy

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = Zx4P(x4,X5)
= Zx4P(X5 | x4 )P (x4)



Markov chain warm-up

OO OOy

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = le,xz,xg,x4 P(x1, x5, X3, %4, Xs5)
= le,xz,xg,x4f(X5 | x4 )P (x4 | x3)P(x3 | x2)P(x2 | X1)P(xq)
= Zx4P(X5 x4)2x1,x2,xgp(x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3P(xllxz'x3)x4)
= Zx4P(X5 x4 )P (x4)




Weather prediction

States {rain, sun}

= Initial distribution P(X)

P(X,)

sun

rain

0.5

0.5

|

= Transition model P(X, | X, )

A

Xi1 P(X;|X,..)
sun rain

sun 0.9 0.1

rain 0.3 0.7
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Two new ways of representing the same CPT

0.9
0.3

sun

0.1




Weather prediction

Time 0: P(X,) =<0.5,0.5> X1

P(X,|X,.,)
sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 17
= ZXO P(X, | Xq=x,) P(X,=X,)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

=<0.6,0.4>




Weather prediction, contd.

Time 1: P(X;) =<0.6,0.4> X,q P(X|X,.1)
sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 27
P(Xy) = 2., P(X;=x5, X,)

=2, PXy | Xi=x7) P(X;=x,)
= 0.6<0.9,0.1> + 0.4<0.3,0.7>
=<0.66,0.34>




Weather prediction, contd.

Time 2: P(X,) =<0.66,0.34> X1

P(X;[X,,)

sun

sun 0.9

rain 0.3

What is the weather like at time 37
P(X3) = ZXZ P(X2=X2, X3)

=2, PIX3 | X3=x;) P(Xy=x5)
= 0.66<0.9,0.1> + 0.34<0.3,0.7>
=<0.696,0.304>




Forward algorithm (simple form)

Probability from

Transition model J . . . ]
previous iteration

What is the state at time t?
P(Xp) = Xy P(Xe1™Xe, Xo)
= th_l P(X| Xi17Xeq) P(X 17X 1)

Iterate this update starting at t=0



Hidden Markov Models




HMM as a Bayes Net Warm-up P X )

= For the following Bayes net, write the query P(X, | e,.,) in terms of the conditional

probability tables associated with the Bayes net.
?:ﬁ {@
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P(X, | e,e,ese,) = o ?(Xch E\Fz»e%‘fx O

2z Z ?CX‘XaXa Xy €, e, < 641,5
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Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

" X.is a single discrete variable; E; may be continuous and
may consist of several variables

TP
® O O




Example: Weather HMM

An HMM is defined by:
" |nitial distribution: P(X,)
P(X, | X, ,)

®» Transition model:
= Sensor model:

P(E, | X,)

A

Wiq | PW W)

sun rain
sun 0.9 0.1
rain 0.3 0.7

o (@1

/ﬁ
Weather Weather Weather

W, P(U I W,)
true false

sun 0.2 0.8

rain 0.9 0.1




Example: Ghostbusters HMM

= State: location of moving ghost
= QObservations: Color recorded by 1/61/6|1/2

ghost sensor at clicked squares ¥

0 (1/6| O

" P(X,) = uniform
" P(X, | X, ) = usually move clockwise, but 1/9|1/9| 1/9 01010

sometimes move randomly or stay in place

P(X, | X;=(2,3

= P(C,; | X,) = same sensor model as before: 1/911/5|1/ (X [ X,5(2,3))

red means close, green means far away. 1/9|1/9|1/9

P(Xy) l
©

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



HMM as Probability Model

= Joint distribution for Markov model:

P(Xgyeeey X7) = PXg) I Licq.7 PO, | X q)
= Joint distribution for hidden Markov model:
'D(X()) X]_;E]_) *e) XT/ET) = P(X()) Ht:]_;T 'D(Xt | Xt_]_) P(Et | Xt)
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Are evidence variab}féindependent of each other?

(

Useful notation: X ., = X, X

it 0 Xp

e

N For example: P(X;., | e,1_3§_) = P(i(,l_’ X_z, | e, e, €3)




Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

L

Machine translation HMMs: / 2 {

= Observations are words (tens of thousands) O—"

= States are translation options \L g
» @ W

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



Other HMM Queries

Filtering: P(X,|e,.,)

DO
© ® @ ©

e

Smoothing: P(X,|e,.,), k<t

Prediction: P(X,,.|e;.,)

D@OH®)
@ @ ©

Explanation: P(X,.,|e;.,)




Inference Tasks

Filtering: P(X;|eq.;)

= belief state—input to the decision process of a rational agent

Prediction: P(X,,|eq.;) for k>0

= evaluation of possible action sequences; like filtering without the evidence
Smoothing: P(X,|e ;) forO< k<t

—_— e — . -_

" better estimate of past states, essential for learning

Most likely explanation: argmax, (x1 + | €1.4)
= speech recognition, decoding with a n0|sy channel



Pacman — Hunting Invisible Ghosts with Sonar

-
74 CS188 Pacman

A [re——

21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Filtering Algorithm/

P(Xi1l€1.001) = & P(et+1 |Xt+1) th P(Xt+1| Xt) P(x, | e;.,)

A X NN

Normalize Update Predict

f1.t+1 = FORWARD(f, ;, €4,9)

e aand



Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

o

P(X, )e)*% F(Xzi 6,}—”?0(2 let)é’b “‘9?()(3)6,%)




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

oles

O




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

A4

]




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network




Example: Prediction step

. . 14 77
As time passes, uncertainty “accumulates (Transition model: ghosts usually go clockwise)

T=1

<0.01 <0.01<0.01 <0.01{| <0.01
nn
m

EEEEEE

T=

0.01
5




Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01/(<0.01|<0.01 <0.01|<0.01}|<0.01f|<0.01[<0.01{<0.01

Before observation After observation




Demo Ghostbusters — Circular Dynamics -- HMM



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P (X, |f_1__1;) = P(X¢| _?_ge1:t—1)
= a P(X;, et e1.1—1)

DD

->

l




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.r)=P(X¢| er,€1.6-1) @_’®_+@-

—“P(Xt»et|91t 1) l

v v
Qlheielos) 1@ @ @ @

Xt—1

/



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.r)=P(X¢| er,€1.6-1) @_’®_+@-

=a P(X;, er| e1.0-1) l

v v
Lreielas) 1@ @ @ @

Xt—1

a z P(x¢—1| €1.t-1) P(X¢|x¢—1, €1.4—1) P(er| X, Xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.r) = P(X¢| er, €1:0-1) @—»@ >@ >@

= a P(X; et er.6-1)

azp(xt_l,xt;etlelzt—l)

Xt—1

a Z P(x¢—1| €1.0—1) P(X¢|x¢—1, €1.4—1) P(er| X, xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)
=a P(X;, er| e1.0-1)

a z P(x¢—q,Xe, €] €1.6-1)

Xt—1

Xt—1

D@

%

1

@ ) PGl exeoy) P(Xelxey) PlerlX)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

[P(Xt | €1: t)}P(XH €, €1.t—1)
=a P(X;, er]| e1.0-1)

04 z P(x¢—1,X¢, €| €1.6-1)

Xt—1

oNo

]

O

P(x¢—1] e1.t—1) P(X¢|x¢e—1) P(e|X¢)

a Pleq|x;) z P(xtlxt—l)[P(xt—ll 31:1:—1))

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.r) = P(X¢| er, €1:0-1) @—»@——»@—
l

= a P(X; et er.6-1)

) 4 ) 4
04 z P(x¢—1, X¢, €] €1.6-1)

Xt—1

a z P(x¢—1| e1.6—1) P(X¢|xe—q) P(es]|Xt)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1

Qg



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) Xy @
= a P(X;, e¢| e1.4-1)

—»Xy

v

!
o z P(xi—1, Xt €| €1.0-1)

Xt—1

@ ) PGl exeoy) P(Xelxey) PlerlX)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1



Filtering Algorithm

P(Xp1l€1.000) = O P €11 |Xt+1 th P t+1| Xt) Pixe | 1)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)
Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are constant, independent of t

O(|X|?) is infeasible for models with many state variables
S ————d
We get to invent really cool approximate filtering algorithms



Particle Filtering




We need a new algorithm!

When |=X|_is more than_10° or so (e.g., 3 ghosts in a 10x20 world), exact
inference becomes infeasible

Likelihood weighting fails completely — number of samples needed grows

0900
& & ®&

erofy

0 51015202530354’04550
Time step



We need a new idea!
=

t=2

The problem: sample state trajectories go off into low-probability regions, ignoring
the evidence; too few “reasonable” samples

Solution: kill the bad ones, make more of the good ones
This way the population of samples stays in the high-probability region
This is called resampling or survival of the fittest



Robot Localization

In robot localization:
= We know the map, but not the robot’s position
= Observations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique

DIRECTORY




Particle Filter Localization (Sonar)

[Dieter Fox, et al.] [Video: global-sonar-uw-annotated.avi]



Particle Filtering

N

= Represent belief state by a set of samples
= Samples are called particles

= Time per step is linear in the number of
samples

= But: number needed may be large

= This is how robot localization works in
practice

0.0

0.0

0.0

0.2




Representation: Particles

Our representation of P(X) is now a list of N particles
(samples)

" Generally, N << [X|

= Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x
= S0, many x may have P(x) = 0!

" More particles, more accuracy

= Usually we want a low-dimensional marginal

= E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?”

For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)

(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Propagate forward

Particles:

" A particle in state x; is moved by sampling 3,3) 5
. - . - ]
its next position directly from the transition o) S |e%)
model: o . - \
~ (3.2)
" Xt+1 ’D(Xt+1 | Xt) (1,2)
: (33)
= Here, most samples move clockwise, but some 3,3)
move in another direction or stay in place (23) /
. . Particles:
" This captures the passage of time (3.2)
(2,3) ®  |®
= |f enough samples, close to exact values before (3.2) ® | o I‘
' (3.1)
and after (consistent) > R *:
(3.2)
(1,3) ®
(23)

(3,2)
(2,2)




Particle Filtering: Observe

= Slightly trickier:
= Don’t sample observation, fix it

= Similar to likelihood weighting, weight
samples based on the evidence

= W=P(e,| X,)

= Normalize the weights: particles that fit
the data better get higher weights,
others get lower weights

Particles:

(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:

(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

) 4




Particle Filtering: Resample

Rather than tracking weighted samples,
we resample

N times, we choose from our weighted
sample distribution (i.e., draw with
replacement)

Now the update is complete for this time
step, continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

?(X L) Propagate forward Weight Resample

@0 )

@ @
o |0 K O ® o
@ @ e 0
@ ® } ® % > ® | ¢%
] @
@ ‘ e
\
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

Consistency: see proof in AIMA Ch. 15 [Demos: ghostbusters particle filtering (L15D3,4,5)]



Particle Filter Localization (Laser

[Dieter Fox, et al.] [Video: global-floor.gif]



Robot Mapping

SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs) and
particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM —Video 1

[Sebastian Thrun, et al.] [Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 2

[Dirk Haehnel, et al.] [Demo: PARTICLES-SLAM-fastslam.avi]



