Warm-up as you walk in

- For the following Bayes net, write the query $P\left(X_{4} \mid e_{1: 4}\right)$ in terms of the conditional probability tables associated with the Bayes net.

$$
P\left(X_{4} \mid e_{1}, e_{2}, e_{3}, e_{4}\right)=
$$

Announcements

Assignments

- HW11
- Due Thur $4 / 25$
- P5
- Due Thur, 5/2

In-class Polls

- Denominator capped after midterm 2, 56 polls

AI: Representation and Problem Solving

HMMs and Particle Filters

Instructors: Pat Virtue \& Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu

Markov chain warm-up

$$
\left.X_{1} \rightarrow X_{2}\right) \rightarrow\left(X_{3}\right) \rightarrow\left(X_{4}\right) \rightarrow
$$

If you know the transition probabilities, $P\left(X_{t} \mid X_{t-1}\right)$, and you know $P\left(X_{4}\right)$, write an equation to compute $P\left(X_{5}\right)$.

$$
\begin{aligned}
P\left(x_{5}\right) & =\sum_{x_{4}} P\left(x_{4}=x_{4}, x_{5}\right) \\
& =\sum_{x_{4}} P\left(x_{5} \mid x_{4}\right) P\left(x_{4}\right)
\end{aligned}
$$

Markov chain warm-up

If you know the transition probabilities, $P\left(X_{t} \mid X_{t-1}\right)$, and you know $P\left(X_{4}\right)$, write an equation to compute $P\left(X_{5}\right)$.

$$
\begin{aligned}
P\left(X_{5}\right) & =\sum_{x_{4}} P\left(x_{4}, X_{5}\right) \\
& =\sum_{x_{4}} P\left(X_{5} \mid x_{4}\right) P\left(x_{4}\right)
\end{aligned}
$$

Markov chain warm-up

If you know the transition probabilities, $P\left(X_{t} \mid X_{t-1}\right)$, and you know $P\left(X_{4}\right)$, write an equation to compute $P\left(X_{5}\right)$.

$$
\begin{aligned}
P\left(X_{5}\right) & =\sum_{x_{1}, x_{2}, x_{3}, x_{4}} P\left(x_{1}, x_{2}, x_{3}, x_{4}, X_{5}\right) \\
& =\sum_{x_{1}, x_{2}, x_{3}, x_{4}} P\left(X_{5} \mid x_{4}\right) P\left(x_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\sum_{x_{4}} P\left(X_{5} \mid x_{4}\right) \sum_{x_{1}, x_{2}, x_{3}} P\left(x_{4} \mid x_{3}\right) P\left(x_{3} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\sum_{x_{4}} P\left(X_{5} \mid x_{4}\right) \sum_{x_{1}, x_{2}, x_{3}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{4}} P\left(X_{5} \mid x_{4}\right) P\left(x_{4}\right)
\end{aligned}
$$

Weather prediction

States \{rain, sun\}

- Initial distribution $P\left(X_{0}\right)$

$P\left(X_{0}\right)$	
sun	rain
0.5	0.5

Two new ways of representing the same CPT

- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Weather prediction

Time 0: $P\left(X_{0}\right)=<0.5,0.5>$

$\mathbf{X}_{\mathbf{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 1 ?

$$
\begin{aligned}
P\left(X_{1}\right) & =\sum_{x_{0}} P\left(X_{0}=x_{0}, X_{1}\right) \\
& =\sum_{x_{0}} P\left(X_{1} \mid X_{0}=x_{0}\right) P\left(X_{0}=x_{0}\right) \\
& =0.5<0.9,0.1>+0.5<0.3,0.7> \\
& =<0.6,0.4>
\end{aligned}
$$

Weather prediction, contd.

Time 1: $P\left(X_{1}\right)=<0.6,0.4>$

$\mathbf{X}_{\mathbf{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 2?

$$
\begin{aligned}
P\left(X_{2}\right) & =\sum_{x_{1}} P\left(X_{1}=x_{1}, X_{2}\right) \\
& =\sum_{x_{1}} P\left(X_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right) \\
& =0.6<0.9,0.1>+0.4<0.3,0.7> \\
& =<0.66,0.34>
\end{aligned}
$$

Weather prediction, contd.

Time 2: $P\left(X_{2}\right)=<0.66,0.34>$

$\mathbf{X}_{\mathbf{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3 ?

$$
\begin{aligned}
P\left(X_{3}\right) & =\sum_{x_{2}} P\left(X_{2}=x_{2}, X_{3}\right) \\
& =\sum_{x_{2}} P\left(X_{3} \mid X_{2}=x_{2}\right) P\left(X_{2}=x_{2}\right) \\
& =0.66<0.9,0.1>+0.34<0.3,0.7> \\
& =<0.696,0.304>
\end{aligned}
$$

Forward algorithm (simple form)

What is the state at time t ?

$$
\begin{aligned}
P\left(X_{t}\right) & =\sum_{x_{t-1}} P\left(X_{t-1}=x_{t-1}, X_{t}\right) \\
& =\sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}=x_{t-1}\right) P\left(X_{t-1}=x_{t-1}\right)
\end{aligned}
$$

Iterate this update starting at $t=0$

Hidden Markov Models

HMM as a Bayes Net Warm-up

$$
P\left(x_{3} \mid x_{2}\right)
$$

- For the following Bayes net, write the query $P\left(X_{4} \mid e_{1: 4}\right)$ in terms of the conditional probability tables associated with the Bayes net.

$$
\begin{aligned}
P\left(x_{4} \mid e_{y} e_{2} e_{3} e_{4}\right)= & \alpha P\left(x_{4}, e_{1}, e_{2} e_{3} e_{4}\right) \\
= & \alpha \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \frac{P\left(x_{1} x_{2} x_{3} x_{4} e_{1} e_{2} e_{3} e_{4}\right)}{1} e_{2} e_{3} \\
& P\left(x_{\tau} \mid x_{T-1}\right) P\left(e_{4} \mid x_{6}\right) P\left(x_{1}\right)
\end{aligned}
$$

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_{t} is a single discrete variable; E_{t} may be continuous and may consist of several variables

Example: Weather HMM

An HMM is defined by:

- Initial distribution: $P\left(X_{0}\right)$
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$
- Sensor model: $\quad P\left(E_{t} \mid X_{t}\right)$

$\mathbf{W}_{\mathbf{t}-\mathbf{1}}$	$\mathbf{P}\left(\mathbf{W}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P\left(X_{0}\right)=$ uniform
- $P\left(X_{t} \mid X_{t-1}\right)=$ usually move clockwise, but sometimes move randomly or stay in place
- $P\left(C_{t i j} \mid X_{t}\right)=$ same sensor model as before: red means close, green means far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$

$P\left(X_{1}\right)$

HMM as Probability Model

- Joint distribution for Markov model:

$$
P\left(X_{0}, \ldots, x_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right)
$$

- Joint distribution for hidden Markov model:

$$
P\left(X_{0}, X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation: $X_{a: b}=x_{a}, x_{a+1}, \ldots, x_{b}$
For example: $P\left(X_{1: 2} \mid e_{1: 3}\right)=P\left(X_{1}, X_{2}, \mid e_{1}, e_{2}, e_{3}\right)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Other HMM Queries

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Smoothing: $P\left(X_{k} \mid e_{1: t}\right), k<t$

Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$

Explanation: $P\left(X_{1: t} \mid e_{1: t}\right)$

Inference Tasks

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

- belief state-input to the decision process of a rational agent

Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$

- evaluation of possible action sequences; like filtering without the evidence

Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq \underline{k}<t$

- better estimate of past states, essential for learning

Most likely explanation: $\operatorname{argmax}_{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$

- speech recognition, decoding with a noisy channel

Pacman - Hunting Invisible Ghosts with Sonar

Filtering Algorithm

$f_{1: t+1}=\operatorname{ForWARD}\left(\underline{f_{1: t}}, e_{t+1}\right)$

Filtering Algorithm
Query: What is the current state, given all of the current and past evidence?
Marching forward through the HMM network

$P\left(x_{1} \mid e_{1}\right) \rightarrow P\left(x_{2} \mid e_{1}\right) \rightarrow P\left(x_{2} \mid e_{1}, e_{2}\right) \rightarrow P\left(x_{3} \mid e_{1}, e_{2}\right)$

Filtering Algorithm
Query: What is the current state, given all of the current and past evidence?
Marching forward through the HMM network

Filtering Algorithm
Query: What is the current state, given all of the current and past evidence?
Marching forward through the HMM network

Filtering Algorithm
Query: What is the current state, given all of the current and past evidence?
Marching forward through the HMM network

Example: Prediction step

As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	1.00	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

$\mathrm{T}=1$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
T = ?					

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
$\mathrm{~T}=5$					

Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

Demo Ghostbusters - Circular Dynamics -- HMM

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

$$
=\alpha \sum_{x_{t-1}} \underbrace{P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right)}
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}, e_{1: t-1}\right) P\left(e_{t} \mid X_{t}, x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}, e_{1: t-1}\right) P\left(e_{t} \mid X_{t}, x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

$$
=\alpha \sum_{x_{t-1}} P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right)
$$

$$
=\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}\right) P\left(e_{t} \mid X_{t}\right)
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& =\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

$$
=\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}\right) P\left(e_{t} \mid X_{t}\right)
$$

$$
=\alpha P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1: t-1}\right)
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right) \\
& \quad=\alpha \sum_{x_{t-1}} P\left(x_{t-1}, X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

$\stackrel{3}{5}$
$\frac{0}{4}$
$\frac{0}{3}$
0
0

$$
\begin{aligned}
& =\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}\right) P\left(e_{t} \mid X_{t}\right) \\
& =\alpha P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1: t-1}\right)
\end{aligned}
$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?
Matching math with Bayes net

$$
\begin{aligned}
& P\left(X_{t} \mid e_{1: t}\right)=P\left(X_{t} \mid e_{t}, e_{1: t-1}\right) \\
& \quad=\alpha P\left(X_{t}, e_{t} \mid e_{1: t-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { i. } \\
& . \frac{0}{4} \\
& \frac{1}{5} \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha \sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) P\left(X_{t} \mid x_{t-1}\right) P\left(e_{t} \mid X_{t}\right) \\
& =\alpha P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid e_{1: t-1}\right)
\end{aligned}
$$

Filtering Algorithm
$P\left(X_{t+1} \mid e_{1, t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1+t}\right)$

$f_{1: t+1}=\operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)$
Cost per time step: $O\left(|X|^{2}\right)$ where $|X|$ is the number of states
Time and space costs are constant, independent of t
$O\left(|X|^{2}\right)$ is infeasible for models with many state variables
We get to invent really cool approximate filtering algorithms

Particle Filtering

We need a new algorithm!

When $|X|$ is more than 10^{6} or so (e.g., 3 ghosts in a 10×20 world), exact inference becomes infeasible
Likelihood weighting fails completely - number of samples needed grows exponentially with T

We need a new idea!

$t=2$

$$
t=7
$$

The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples
Solution: kill the bad ones, make more of the good ones
This way the population of samples stays in the high-probability region This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Particle Filtering

- Represent belief state by a set of samples
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- This is how robot localization works in practice

Representation: Particles

Our representation of $P(X)$ is now a list of N particles
(samples)

- Generally, N << |X|
- Storing map from X to counts would defeat the point

$P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!

Particles:

- More particles, more accuracy
- Usually we want a low-dimensional marginal
- E.g., "Where is ghost 1?" rather than "Are ghosts $1,2,3$ in $\{2,6],[5,6]$, and $[8,11]$?"

For now, all particles have a weight of 1

Particle Filtering: Propagate forward

- A particle in state x_{t} is moved by sampling its next position directly from the transition model:
- $x_{t+1} \sim P\left(X_{t+1} \mid x_{t}\right)$
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particles:

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence
- $W=P\left(e_{t} \mid x_{t}\right)$
- Normalize the weights: particles that fit the data better get higher weights, others get lower weights

Particles:
$(2,2)$
$(2,2) w=.4$

Particle Filtering: Resample

Rather than tracking weighted samples, we resample
N times, we choose from our weighted sample distribution (i.e., draw with replacement)

Now the update is complete for this time step, continue with the next one

Particles:
$(3,2) w=.9$
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) \quad w=.4$
$(3,3) w=.4$
$(3,2) \quad w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) \quad w=.9$
$(2,2) w=.4$
(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Propagate forward

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Weight

Particles:
$(3,2) \quad w=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) w=.4$

Resample

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Particle Filter Localization (Laser)

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

