Warm-up as you walk in

• For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$

Announcements

Assignments

- HW11
 - Due Thur 4/25
- P5
 - Due Thur, 5/2

In-class Polls

Denominator capped after midterm 2, 56 polls

AI: Representation and Problem Solving

HMMs and Particle Filters

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Markov chain warm-up

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

Markov chain warm-up

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_4 \rightarrow X_4 \rightarrow X_4 \rightarrow X_5 \rightarrow X_5$$

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

Markov chain warm-up

$$X_1$$
 X_2 X_3 X_4 X_4

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)$$

$$= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_4} P(X_5 \mid x_4) P(x_4)$$

Weather prediction

States {rain, sun}

• Initial distribution $P(X_0)$

P(X ₀)	
sun	rain
0.5	0.5

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two new ways of representing the same CPT

Weather prediction

Time 0:
$$P(X_0) = <0.5, 0.5>$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_1) = \sum_{x_0} P(X_0 = x_{0}, X_1)$$

$$= \sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 >$$

$$= < 0.6, 0.4 >$$

Weather prediction, contd.

Time 1:
$$P(X_1) = <0.6, 0.4>$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_2) = \sum_{x_1} P(X_1 = x_1, X_2)$$

$$= \sum_{x_1} P(X_2 \mid X_1 = x_1) P(X_1 = x_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 >$$

$$= < 0.66, 0.34 >$$

Weather prediction, contd.

Time 2:
$$P(X_2) = <0.66, 0.34>$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{x_2} P(X_2 = x_2, X_3)$$

$$= \sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 >$$

$$= < 0.696, 0.304 >$$

Forward algorithm (simple form)

Transition model

Probability from previous iteration

What is the state at time *t*?

$$P(X_t) = \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}, X_t)$$

$$= \sum_{X_{t-1}} P(X_t \mid X_{t-1} = X_{t-1}) P(X_{t-1} = X_{t-1})$$

Iterate this update starting at *t*=0

Hidden Markov Models

HMM as a Bayes Net Warm-up

• For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence *E* at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

An HMM is defined by:

■ Initial distribution: $P(X_0)$

■ Transition model: $P(X_t \mid X_{t-1})$

■ Sensor model: $P(E_t \mid X_t)$

0.3

rain

0.7

Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0) = uniform$
- $P(X_t \mid X_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- P($C_{tij} \mid X_t$) = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

P(X₁)

HMM as Probability Model

Joint distribution for Markov model:

$$P(X_0,...,X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b

For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Prediction: $P(X_{t+k}|e_{1:t})$

Smoothing: $P(X_k | e_{1:t})$, k < t

Explanation: $P(X_{1:t}|e_{1:t})$

Inference Tasks

Filtering: $P(X_t|e_{1:t})$

belief state—input to the decision process of a rational agent

Prediction:
$$P(X_{t+k}|e_{1:t})$$
 for $k > 0$

evaluation of possible action sequences; like filtering without the evidence

Smoothing:
$$P(X_k | e_{1:t})$$
 for $0 \le k < t$

better estimate of past states, essential for learning

Most likely explanation: $\operatorname{argmax}_{x_{1:t}} P(x_{1:t} \mid e_{1:t})$

speech recognition, decoding with a noisy channel

Pacman – Hunting Invisible Ghosts with Sonar

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_{t+1} | X_t) P(x_t | e_{1:t})$$

Normalize

Update

Predict

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Example: Prediction step

As time passes, uncertainty "accumulates"

T = 1

T = 2

(Transition model: ghosts usually go clockwise)

$$T = 5$$

Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

Demo Ghostbusters – Circular Dynamics -- HMM

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{X_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 x_{t-1}

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{X_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}|e_{1:t-1}) P(X_t|x_{t-1},e_{1:t-1}) P(e_t|X_t,x_{t-1},e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 x_{t-1}

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Filtering Algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_{t+1} | X_t) P(x_t | e_{1:t})$$

Normalize Update Predict

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

Cost per time step: $O(|X|^2)$ where |X| is the number of states Time and space costs are **constant**, independent of t $O(|X|^2)$ is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms

Particle Filtering

We need a new algorithm!

When |X| is more than 10^6 or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible

Likelihood weighting fails completely – number of samples needed grows **exponentially** with *T*

We need a new idea!

The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples

Solution: kill the bad ones, make more of the good ones

This way the population of samples stays in the high-probability region

This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering

- Represent belief state by a set of samples
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•
•	

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)

- Generally, N << |X|</p>
- Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x

- So, many x may have P(x) = 0!
- More particles, more accuracy
- Usually we want a low-dimensional marginal
 - E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?"

For now, all particles have a weight of 1

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3) (3,2)

(1,2)

(3,3)

(3,3)

(3,3)

(2,3)

Particle Filtering: Propagate forward

- A particle in state x_t is moved by sampling its next position directly from the transition model:
 - $x_{t+1} \sim P(X_{t+1} \mid x_t)$
 - Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
· · · ·
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)

(2,3)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence

$$\blacksquare W = P(e_t | x_t)$$

 Normalize the weights: particles that fit the data better get higher weights, others get lower weights

Particles: (3,2)(2,3)(3,2)(3,1)(3,3)(3,2)(1,3)(2,3)(3,2)(2,2)Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4 (3,2) w=.9

(1,3) w=.1 (2,3) w=.2 (3,2) w=.9 (2,2) w=.4

Particle Filtering: Resample

Rather than tracking weighted samples, we *resample*

N times, we choose from our weighted sample distribution (i.e., draw with replacement)

Now the update is complete for this time step, continue with the next one

Particles:

- (3.2) w=.9
- (2,3) w=.2
- (3.2) w=.9
- (3.1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4

(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 15

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

[Dirk Haehnel, et al.]