
Warm-up as you walk in

▪ For the following Bayes net, write the query P(X4 | e1:4) in terms of 
the conditional probability tables associated with the Bayes net.

P(X4 | e1,e2,e3,e4) = 

X2

e1

X1 X3 X4

e2 e3 e4



Announcements

Assignments

▪ HW11

▪ Due Thur 4/25

▪ P5

▪ Due Thur, 5/2

In-class Polls

▪ Denominator capped after midterm 2, 56 polls



AI: Representation and Problem Solving

HMMs and Particle Filters

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



Markov chain warm-up

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

X2X1 X3 X4



Markov chain warm-up

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

𝑃 𝑋5 = σ𝑥4 𝑃 𝑥4, 𝑋5

= σ𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4

X2X1 X3 X4



Markov chain warm-up

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

𝑃 𝑋5 = σ𝑥1,𝑥2,𝑥3,𝑥4 𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑋5

= σ𝑥1,𝑥2,𝑥3,𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

= σ𝑥4 𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3 𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

= σ𝑥4 𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= σ𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4

X2X1 X3 X4



States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

▪ Initial distribution P(X0) 

▪ Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Weather prediction



Weather prediction

Time 0: P(X0) =<0.5,0.5>

What is the weather like at time 1?
P(X1) =

X1X0

x0
P(X0=x0, X1)

= x0
P(X1| X0=x0) P(X0=x0)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

= <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x1
P(X1=x1, X2)

= x1
P(X2| X1=x1) P(X1=x1)

= 0.6<0.9,0.1> + 0.4<0.3,0.7>

= <0.66,0.34>
X0

Weather prediction, contd.

Time 1: P(X1) =<0.6,0.4>

What is the weather like at time 2?
P(X2) =

X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x2
P(X2=x2, X3)

= x2
P(X3| X2=x2) P(X2=x2)

= 0.66<0.9,0.1> + 0.34<0.3,0.7>

= <0.696,0.304>

Weather prediction, contd.

Time 2: P(X2) =<0.66,0.34>

What is the weather like at time 3?
P(X3) =

X3X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Forward algorithm (simple form)

What is the state at time t?
P(Xt) = xt-1

P(Xt-1=xt-1, Xt)

= xt-1
P(Xt| Xt-1=xt-1) P(Xt-1=xt-1)

Iterate this update starting at t=0

Probability from 
previous iteration

Transition model



Hidden Markov Models



HMM as a Bayes Net Warm-up

▪ For the following Bayes net, write the query P(X4 | e1:4) in terms of the conditional 
probability tables associated with the Bayes net.

P(X4 | e1,e2,e3,e4) = 

X2

e1

X1 X3 X4

e2 e3 e4



Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe evidence E at each time step

▪ Xt is a single discrete variable; Et may be continuous and 
may consist of several variables

X5X1X0 X2 X3

E1 E2 E3 E5



Example: Weather HMM

Umbrella t-1 Umbrella t Umbrella t+1

Weather t-1 Weather t Weather t+1

An HMM is defined by:
▪ Initial distribution:   P(X0)
▪ Transition model:    P(Xt | Xt-1)
▪ Sensor model:          P(Et | Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



Example: Ghostbusters HMM

▪ State: location of moving ghost

▪ Observations: Color recorded by 
ghost sensor at clicked squares

▪ P(X0) = uniform

▪ P(Xt | Xt-1) = usually move clockwise, but 
sometimes move randomly or stay in place

▪ P(Ctij | Xt) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P( X2 | X1=(2,3) )

1/6

0 1/6

1/2

0

0 0 0

1/6

X5

X1X0 X2 X3

C1ij C2ij C3ij

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



HMM as Probability Model

▪ Joint distribution for Markov model: 

P(X0,…, XT) = P(X0)t=1:T P(Xt | Xt-1)

▪ Joint distribution for hidden Markov model:                                                                 

P(X0, X1,E1, …, XT,ET) = P(X0) t=1:T P(Xt | Xt-1) P(Et | Xt)

▪ Future states are independent of the past given the present

▪ Current evidence is independent of everything else given the current state

▪ Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Useful notation: Xa:b = Xa , Xa+1, …, Xb

For example: P(X1:2 | e1:3) = P(X1, X2, | e1 , e2, e3)



Real HMM Examples

Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)

Molecular biology:
▪ Observations are nucleotides ACGT
▪ States are coding/non-coding/start/stop/splice-site etc.



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)



Inference Tasks

Filtering: P(Xt|e1:t)
▪ belief state—input to the decision process of a rational agent 

Prediction: P(Xt+k|e1:t) for k > 0 
▪ evaluation of possible action sequences; like filtering without the evidence 

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
▪ better estimate of past states, essential for learning 

Most likely explanation: argmaxx1:t
P(x1:t | e1:t) 

▪ speech recognition, decoding with a noisy channel 



Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
P(Xt+1| xt) P(xt | e1:t)

f1:t+1 = FORWARD(f1:t , et+1)

PredictUpdateNormalize



Filtering Algorithm

X2

e1

X1

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X3

e2

X2X1

e3e1

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3
X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Example: Prediction step

As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Demo Ghostbusters – Circular Dynamics -- HMM



Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1
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Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1 𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1 𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1 𝑃 𝑥𝑡−1| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1
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= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍
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𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍
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𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
P(Xt+1| xt) P(xt | e1:t)

f1:t+1 = FORWARD(f1:t , et+1)

Cost per time step: O(|X|2) where |X| is the number of states

Time and space costs are constant, independent of t

O(|X|2) is infeasible for models with many state variables

We get to invent really cool approximate filtering algorithms

PredictUpdateNormalize



Particle Filtering



We need a new algorithm!

When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), exact 
inference becomes infeasible

Likelihood weighting fails completely – number of samples needed grows 
exponentially with T
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We need a new idea!

The problem: sample state trajectories go off into low-probability regions, ignoring 
the evidence; too few “reasonable” samples

Solution: kill the bad ones, make more of the good ones

This way the population of samples stays in the high-probability region

This is called resampling or survival of the fittest

t=2 t=7



Robot Localization

In robot localization:
▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Represent belief state by a set of samples
▪ Samples are called particles
▪ Time per step is linear in the number of 

samples
▪ But: number needed may be large

▪ This is how robot localization works in 
practice



Representation: Particles

Our representation of P(X) is now a list of N particles 
(samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ Usually we want a low-dimensional marginal
▪ E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in {2,6], [5,6], and [8,11]?”

For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Propagate forward

▪ A particle in state xt is moved by sampling 
its next position directly from the transition 
model:
▪ xt+1 ~  P(Xt+1 | xt)

▪ Here, most samples move clockwise, but some 
move in another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before 

and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, weight 
samples based on the evidence

▪ W = P(et| xt)

▪ Normalize the weights: particles that fit 
the  data better get higher weights, 
others get lower weights

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

Rather than tracking weighted samples, 
we resample

N times, we choose from our weighted 
sample distribution (i.e., draw with 
replacement)

Now the update is complete for this time 
step, continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Propagate forward Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]Consistency: see proof in AIMA Ch. 15



Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]



Robot Mapping

SLAM: Simultaneous Localization And Mapping
▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs) and 
particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi][Sebastian Thrun, et al.]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi][Dirk Haehnel, et al.]


