
Announcements

Assignments

▪ HW10

▪ Due Wed 4/17

▪ HW11

▪ Plan: Out tomorrow, due Wed 4/24

▪ P5

▪ Plan: Out tonight, due 5/2



Sampling Wrap-up



Likelihood Weighting
IN: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ Set w = w * P(xi | Parents(Xi))

return w

No evidence:

Prior Sampling

Some evidence:

Likelihood Weighted Sampling

All evidence:

Likelihood Weighted

Input: no evidence

for i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn)

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

else

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, −𝑑

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 𝐵 +𝑎 𝑃 𝐶 +𝑎 𝑃 −𝑑 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, +𝑏, −𝑐, −𝑑, +𝑒

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 +𝑏 +𝑎 𝑃 −𝑐 +𝑎 𝑃 −𝑑 −𝑐 𝑃(+𝑒| − 𝑐)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: None

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Piazza Poll 1

Two identical samples from likelihood weighted sampling will have the same 
exact weights.

A. True
B. False
C. It depends
D. I don’t know



Piazza Poll 2
What does the following likelihood  weighted value approximate?

weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃 +𝑎,−𝑏 + 𝑐)
C. I’m not sure



Likelihood Weighting

Likelihood weighting is good
▪ We have taken evidence into account as we generate 

the sample

▪ E.g. here, W’s value will get picked based on the 
evidence values of S, R

▪ More of our samples will reflect the state of the world 
suggested by the evidence

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable



Likelihood Weighting

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable

→ Gibbs sampling



Gibbs Sampling



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.



Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
▪ R = +r

Steps 3: Repeat
▪ Choose a non-evidence variable X

▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Keep only the last sample from each iteration:

1.

2.

3.

Gibbs Sampling Example: P( S | +r)
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Efficient Resampling of One Variable
Sample from P(S | +c, +r, -w)

Many things cancel out – only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.

Property: in the limit of repeating this infinitely many times the resulting sample is 
coming from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.

In contrast: likelihood weighting only conditions on upstream evidence, and hence 
weights obtained in likelihood weighting can sometimes be very small.  Sum of weights 
over all samples is indicative of how many “effective” samples were obtained, so want 
high weight.



Gibbs Sampling

Gibbs sampling produces sample from the query distribution P( Q | e ) in 
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov 
chain Monte Carlo (MCMC) methods 

▪Metropolis-Hastings is one of the more famous MCMC methods          
(in fact, Gibbs sampling is a special case of Metropolis-Hastings) 

You may read about Monte Carlo methods – they’re just sampling



Bayes’ Net Sampling Summary

Prior Sampling  P(Q, E)

Likelihood Weighting  P( Q , e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )



AI: Representation and Problem Solving

Hidden Markov Models

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



Reasoning over Time or Space

Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Conditional Independence

Basic conditional independence:
▪ Past and future independent given the present
▪ Each time step only depends on the previous
▪ This is called the (first order) Markov property

Note that the chain is just a (growable) BN
▪ We can always use generic BN reasoning on it if we truncate 

the chain at a fixed length



Example Markov Chain: Weather

States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):



Piazza Poll 3
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛) = ?

A) 0

B) 0.3

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Piazza Poll 3
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛) = ?

A) 0

B) 0.3

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Mini-Forward Algorithm

Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

▪From initial observation of sun

▪From initial observation of rain

▪From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…

[Demo: L13D1,2,3]



Demo Ghostbusters Basic Dynamics



Demo Ghostbusters Circular Dynamics



Demo Ghostbusters Whirlpool Dynamics



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution of the 
chain

▪ It satisfies

Stationary Distributions

For most chains:
▪ Influence of the initial distribution gets 

less and less over time.

▪ The distribution we end up in is 
independent of the initial distribution



Example: Stationary Distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Application of Stationary Distribution: Web Link Analysis

PageRank over a web graph
▪ Each web page is a state

▪ Initial distribution: uniform over pages

▪ Transitions:

▪ With prob. c, uniform jump to a
random page (dotted lines, not all shown)

▪ With prob. 1-c, follow a random
outlink (solid lines)

Stationary distribution
▪ Will spend more time on highly reachable pages
▪ E.g. many ways to get to the Acrobat Reader download page
▪ Somewhat robust to link spam
▪ Google 1.0 returned the set of pages containing all your keywords 

in decreasing rank, now all search engines use link analysis along 
with many other factors (rank actually getting less important over 
time)



Application of Stationary Distributions: Gibbs Sampling*

Each joint instantiation over all hidden and query 
variables is a state: {X1, …, Xn} = H U Q

Transitions:
▪ With probability 1/n resample variable Xj according to 

P(Xj | x1, x2, …, xj-1, xj+1, …, xn, e1, …, em)

Stationary distribution:
▪ Conditional distribution P(X1, X2 , … , Xn|e1, …, em)

▪ Means that when running Gibbs sampling long enough we get 
a sample from the desired distribution

▪ Requires some proof to show this is true!



Quick Break

How the real Ghostbusters make decisions

https://www.youtube.com/watch?v=waojaJSbV08


Hidden Markov Models



Pacman – Sonar (P5)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Demo Pacman – Sonar (no beliefs)



Hidden Markov Models
Markov chains not so useful for most agents
▪ Need observations to update your beliefs

Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using 
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:



Example: Ghostbusters HMM

P(X1) = uniform

P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or stay in 
place

P(Rij|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



Demo Ghostbusters – Circular Dynamics -- HMM



Conditional Independence

HMMs have two important independence properties:

▪ Markov hidden process: future depends on past via the present

▪ Current observation independent of all else given current state

Does this mean that evidence variables are guaranteed to be independent?

▪ [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Real HMM Examples

Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)

▪ States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
▪ Observations are words (tens of thousands)

▪ States are translation options

Robot tracking:
▪ Observations are range readings (continuous)

▪ States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

We start with B1(X) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first implemented 
as a method of trajectory estimation for the Apollo program



Example: Robot Localization

t=0

Sensor model: can read in which directions there is a wall, 
never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, but less likely b/c 
required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Base Cases

E1

X1

X2X1



Passage of Time

Assume we have current belief P(X | evidence to date)

Then, after one time step passes:

Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

▪ Or compactly:



Example: Passage of Time

As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation

Assume we have current belief P(X | previous evidence):

Then, after evidence comes in:

Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt|e1:t-1)

Smoothing: P(Xt|e1:N), t<N Explanation: P(X1:N|e1:N)



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

X2

e1

X1 X3 X4

e2 e3 e4



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

X2

e1

X1 X3 X4

e2 e3 e4



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

X2

e1

X1 X3 X4

e2 e3 e4



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Recursive
X2

e1

X1 X3 X4

e2 e3 e4



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

X2

e1

X1 X3 X4

e2 e3 e4



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching forward through the HMM network

X2

e1

X1

e2



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching forward through the HMM network

X3

e2

X2X1

e3e1



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching forward through the HMM network

X4

e3

X3X1

e4e1

X2

e2



The Forward Algorithm

Query: What is the current state, given all of the current and past evidence?

Marching forward through the HMM network

X4

e3

X3
X1

e4e1

X2

e2



Online Belief Updates
Every time step, we start with current P(X | evidence)

We update for time:

We update for evidence:

The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



Pacman – Sonar (P5)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (with beliefs)



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt|e1:t-1)

Smoothing: P(Xt|e1:N), t<N Explanation: P(X1:N|e1:N)



Next Time: Particle Filtering and Applications of 
HMMs


