
Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
𝑃 −𝑐| − 𝑎,+𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0

+a +b -c 0

+a -b +c 3

+a -b -c 0

-a +b +c 4

-a +b -c 1

-a -b +c 2

-a -b -c 0

Counts
−𝑎,−𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,−𝑐
−𝑎,+𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐



Announcements

Assignments

▪ HW10

▪ Due Wed 4/17

▪ P5

▪ Adjusted Plan: Out Wednesday, due 5/2



AI: Representation and Problem Solving

Bayes Nets Sampling

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



Review: Bayes Nets

Joint distributions → answer any query

𝑃 𝑎 𝑒) =
1

𝑍
𝑃 𝑎, 𝑒 =

1

𝑍
σ𝑏σ𝑐σ𝑑 𝑃(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)

Break down joint using chain rule

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

With Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)
𝐴

𝐵 𝐶

𝐷 𝐸



Variable Elimination Example
Query P(B | j, m) 



Variable Elimination order matters

▪Order the terms D, Z, A, B C
▪ P(D) =  α z,a,b,c P(D|z) P(z) P(a|z) P(b|z) P(c|z)

▪ =  α z P(D|z) P(z) a P(a|z) b P(b|z) c P(c|z)

▪ Largest factor has 2 variables (D,Z)

▪Order the terms A, B C, D, Z
▪ P(D) =  α a,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 

▪ =  α a b c z P(a|z) P(b|z) P(c|z) P(D|z) P(z)

▪ Largest factor has 4 variables (A,B,C,D)

▪ In general, with n leaves, factor of size 2n

D

Z

A B C



VE: Computational and Space Complexity

The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

The elimination ordering can greatly affect the size of the largest factor.  

▪ E.g., previous slide’s example 2n vs. 2

Does there always exist an ordering that only results in small factors?

▪No!



VE: Computational and Space Complexity

Inference in Bayes’ nets is NP-hard.

No known efficient probabilistic inference in general.



Bayes Nets

Part I: Representation

Part II: Exact inference

▪ Enumeration (always exponential complexity)

▪ Variable elimination (worst-case exponential complexity, often better)

▪ Inference is NP-hard in general

Part III: Approximate Inference



Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
𝑃 −𝑐| − 𝑎,+𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0

+a +b -c 0

+a -b +c 3

+a -b -c 0

-a +b +c 4

-a +b -c 1

-a -b +c 2

-a -b -c 0

Counts
−𝑎,−𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,−𝑐
−𝑎,+𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐



Approximate Inference: Sampling



Inference vs Sampling



Motivation for Approximate Inference

Inference in Bayes’ nets is NP-hard.

No known efficient probabilistic inference in general.



Motivation for Approximate Inference



Sampling

Sampling from given distribution

▪ Step 1: Get sample u from uniform 
distribution over [0, 1)

▪ e.g. random() in python

▪ Step 2: Convert this sample u into an 
outcome for the given distribution 
by having each outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of 
the outcome

Example

▪ If random() returns u = 0.83, then 
our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3



Sampling
How would you sample from a conditional distribution?

𝐴

𝐵

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

𝑃(𝐴)

𝑃(𝐵|𝐴)



Sampling in Bayes’ Nets

Prior Sampling

Rejection Sampling

Likelihood Weighting

Gibbs Sampling



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior Sampling

For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

Return (x1, x2, …, xn)



Piazza Poll 1

Prior Sampling: What does the value 
𝑁 +𝑎,−𝑏,+𝑐

𝑁
approximate?

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃 +𝑐 + 𝑎,−𝑏)
C. 𝑃(+𝑐 | − 𝑏, )
D. 𝑃(+𝑐)
E. I don’t know

28



Piazza Poll 2
How many {−𝑎,+𝑏,−𝑐} samples out of N=1000
should we expect?

A. 1
B. 50
C. 125
D. 200
E. I have no idea

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Probability of a sample

Given this Bayes Net & CPT,
what is 𝑃 +𝑎,+𝑏,+𝑐 ?

Algorithm: Multiply likelihood of 
each node given parents:

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)

▪ w = 1.0

▪ for i=1, 2, …, n

▪ Set w = w * P(xi | Parents(Xi))

▪ return w



Prior Sampling

This process generates samples with probability:

…i.e. the BN’s joint probability

Let the number of samples of an event be

Then

i.e., the sampling procedure is consistent



Example
We’ll get a bunch of samples from the BN:

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

If we want to know P(W)
▪ We have counts <+w:4, -w:1>

▪ Normalize to get P(W) = <+w:0.8, -w:0.2>

▪ This will get closer to the true distribution with more samples

▪ Can estimate anything else, too

▪ What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

▪ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

Let’s say we want P(C)
▪ No point keeping all samples around

▪ Just tally counts of C as we go

Let’s say we want P(C| +s)
▪ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s

▪ This is called rejection sampling

▪ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
IN: evidence instantiation

For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence
▪ Reject: Return, and no sample is generated in this cycle

Return (x1, x2, …, xn)



Piazza Poll 3

What queries can we answer with rejection samples (evidence: +𝑐)?

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃(+𝑎,−𝑏 | + 𝑐)
C. Both
D. Neither
E. I have no idea

36



Likelihood Weighting



▪ Idea: fix evidence variables and sample the 
rest
▪ Problem: sample distribution not consistent!

▪ Solution: weight by probability of evidence 
given parents

Likelihood Weighting

Problem with rejection sampling:
▪ If evidence is unlikely, rejects lots of samples

▪ Evidence not exploited as you sample

▪ Consider P(Shape|blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w

…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
IN: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ Set w = w * P(xi | Parents(Xi))

return w

No evidence:

Prior Sampling

Some evidence:

Likelihood Weighted Sampling

All evidence:

Likelihood Weighted

Input: no evidence

for i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn)

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

else

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting
Sampling distribution if z sampled and e fixed evidence

Now, samples have weights

Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Piazza Poll 4

Two identical samples from likelihood weighted sampling will have the same 
exact weights.

A. True
B. False
C. It depends
D. I don’t know



Piazza Poll 5
What does the following likelihood  weighted value approximate?

weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃 +𝑎,−𝑏 + 𝑐)
C. I’m not sure



Likelihood Weighting

Likelihood weighting is good
▪ We have taken evidence into account as we generate 

the sample

▪ E.g. here, W’s value will get picked based on the 
evidence values of S, R

▪ More of our samples will reflect the state of the world 
suggested by the evidence

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable



Likelihood Weighting

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable

→ Gibbs sampling



Gibbs Sampling



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.

Property: in the limit of repeating this infinitely many times the resulting sample is 
coming from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.

In contrast: likelihood weighting only conditions on upstream evidence, and hence 
weights obtained in likelihood weighting can sometimes be very small.  Sum of weights 
over all samples is indicative of how many “effective” samples were obtained, so want 
high weight.



Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
▪ R = +r

Steps 3: Repeat
▪ Choose a non-evidence variable X

▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Keep only the last sample from each iteration:

1.

2.

3.

Gibbs Sampling Example: P( S | +r)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Efficient Resampling of One Variable
Sample from P(S | +c, +r, -w)

Many things cancel out – only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Further Reading on Gibbs Sampling

Gibbs sampling produces sample from the query distribution P( Q | e ) in 
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov 
chain Monte Carlo (MCMC) methods 

▪Metropolis-Hastings is one of the more famous MCMC methods          
(in fact, Gibbs sampling is a special case of Metropolis-Hastings) 

You may read about Monte Carlo methods – they’re just sampling



Bayes’ Net Sampling Summary

Prior Sampling  P(Q, E)

Likelihood Weighting  P( Q , e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )


