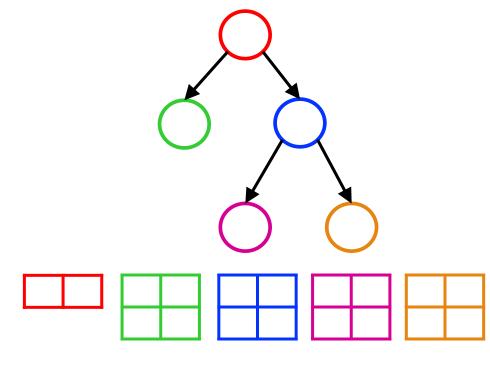
# Warm-up as you walk in

Each node in a Bayes net represents a conditional probability distribution.

What distribution do you get when you multiply all of these conditional

probabilities together?



## Announcements

#### Midterm:

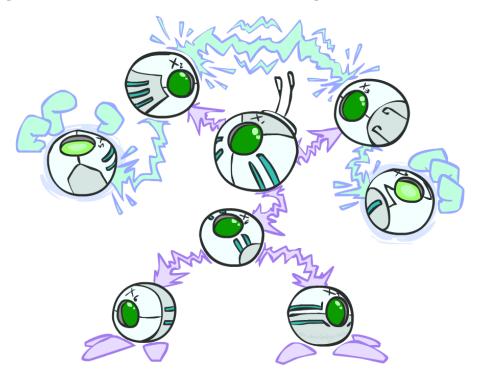
- Mon 4/8, in-class
- See Piazza for details

#### Course survey:

- Thanks!
- A few notes
  - In-class polls
  - Lectures
  - Recitation
  - TAs
  - Beyond Pac-man/Gridworld

# AI: Representation and Problem Solving

# Bayes Nets Independence



Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

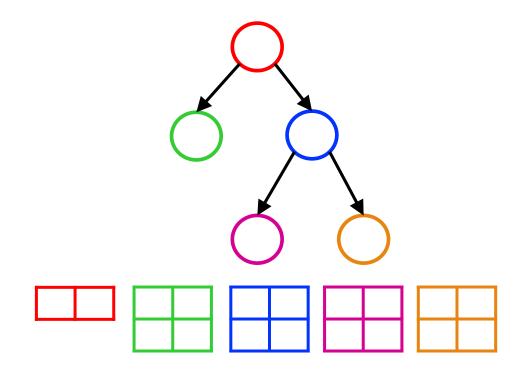
## Piazza Poll 1

Each node in a Bayes net represents a conditional probability distribution.

What distribution do you get when you multiply all of these conditional

probabilities together?

- A) Marginal
- B) Conditional
- C) Joint
- D) Poisson



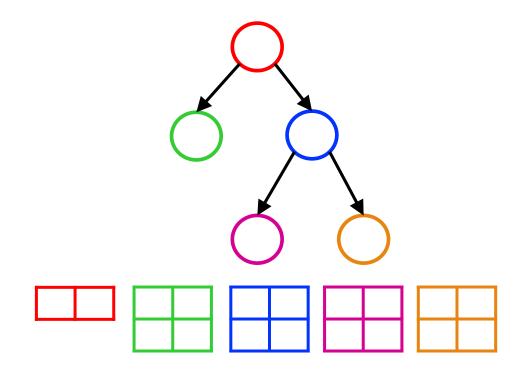
## Piazza Poll 1

Each node in a Bayes net represents a conditional probability distribution.

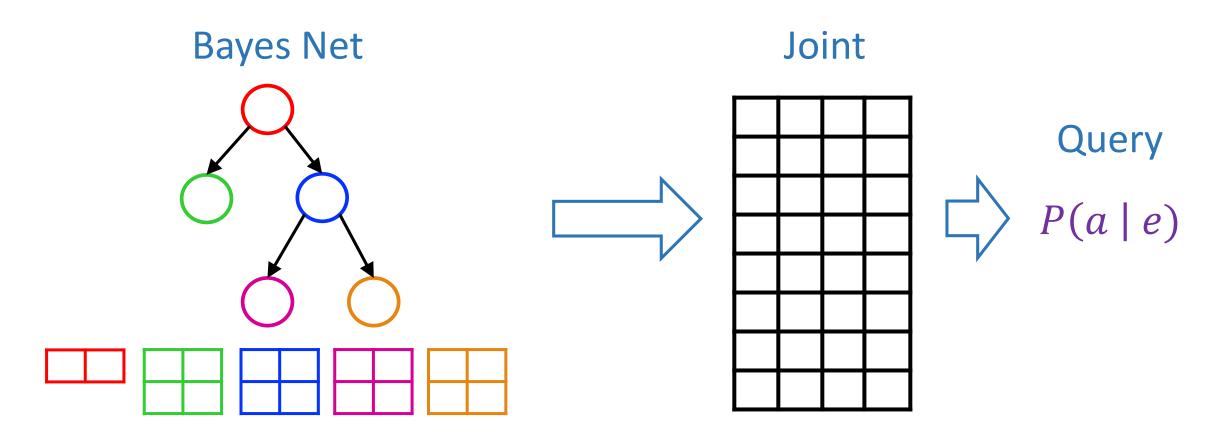
What distribution do you get when you multiply all of these conditional

probabilities together?

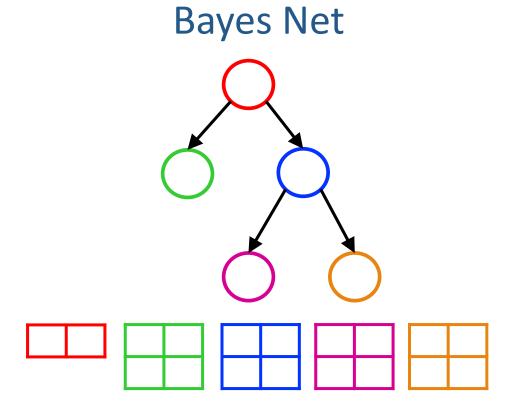
- A) Marginal
- B) Conditional
- C) Joint
- D) Poisson



# Answer Any Query from Condition Probability Tables



## Bayes Net Independence Assumptions



#### **CPTs** to Joint

- Chain rule
- Bayes net model
  - Causality (or not)
  - Markov assumptions

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

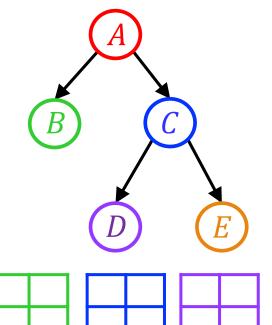
P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

## Bayes Nets Representation

- One node per random variable
- DAG
- One CPT per node: P(node | Parents(node) )
- Encodes joint distribution as product of conditional distributions on each variable

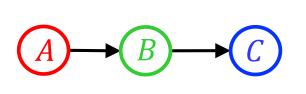
$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

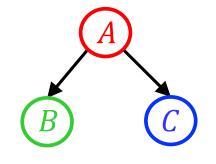
## Bayes net

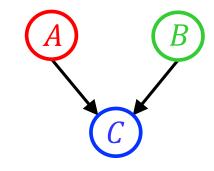


## Piazza Poll 2

Match the product of CPTs to the Bayes net.







 $I. \qquad P(A) P(B|A) P(C|B)$ 

P(A) P(B|A) P(C|A)

P(A) P(B) P(C|A,B)

|| P(A) P(B) P(C|A,B)|

P(A) P(B|A) P(C|B)

P(A) P(B|A) P(C|A)

III. P(A) P(B|A) P(C|A)

P(A) P(B) P(C|A,B)

P(A) P(B|A) P(C|B)



**Wheel of Fortune** 

Example: Speech Recognition

"artificial ...."

Find most probable next word given "artificial" and the audio for second word.

Example: Speech Recognition

"artificial ...."

Find most probable next word given "artificial" and the audio for second word.

Which second word gives the highest probability?

Break down problem

n-gram probability \* audio probability

 $P(\mathbf{limb} \mid \mathbf{artificial}, \mathbf{audio})$ 

*P*(**limb** | artificial) \* *P*(audio | **limb**)

*P*(**intelligence**| artificial, audio)

*P*(intelligence| artificial) \**P*(audio | intelligence)

*P*(**flavoring** | artificial, audio)

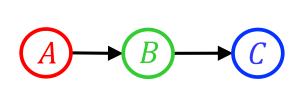
P(flavoring | artificial) \*P(audio | flavoring)

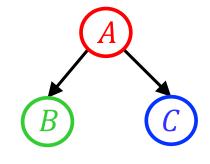
```
second^* = argmax_{second} P(second | artificial, audio)
= argmax_{second} \frac{P(second, artificial, audio)}{P(artificial, audio)}
= argmax_{second} P(second, artificial, audio)
= argmax_{second} P(artificial) P(second | artificial) P(audio | artificial, second)
= argmax_{second} P(artificial) P(second | artificial) P(audio | second)
= argmax_{second} P(second | artificial) P(audio | second)
```

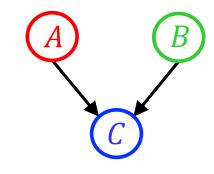
## Conditional Independence Semantics

## For the following Bayes nets, write the joint P(A, B, C)

- 1. Using the chain rule (with top-down order A,B,C)
- 2. Using Bayes net semantics (product of CPTs)







#### Assumption:

$$P(C|A,B) = P(C|B)$$

C is independent from A given B

$$P(C|A,B) = P(C|A)$$

C is independent from B given A

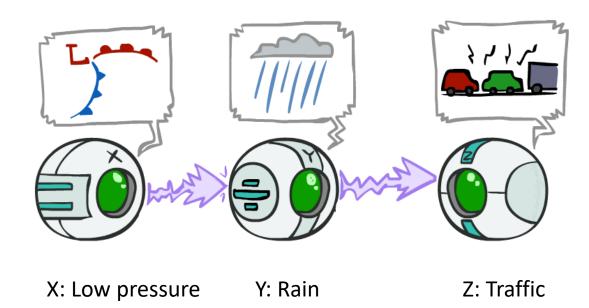
Assumption:

$$P(B|A) = P(B)$$

A is independent from B given { }

## **Causal Chains**

#### This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

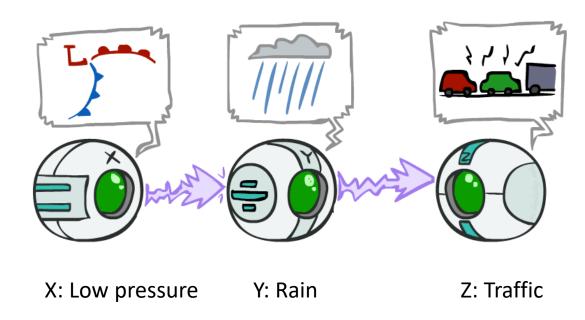
#### Guaranteed X independent of Z? No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
  - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
  - In numbers:

$$P( +y | +x ) = 1, P( -y | -x ) = 1,$$
  
 $P( +z | +y ) = 1, P( -z | -y ) = 1$ 

## **Causal Chains**

#### This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

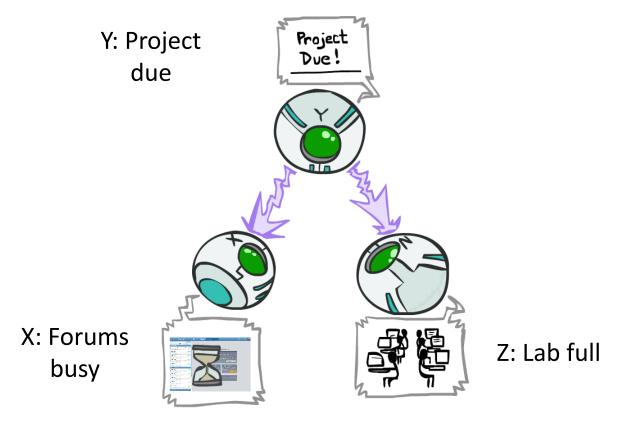
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

## **Common Cause**

#### This configuration is a "common cause"



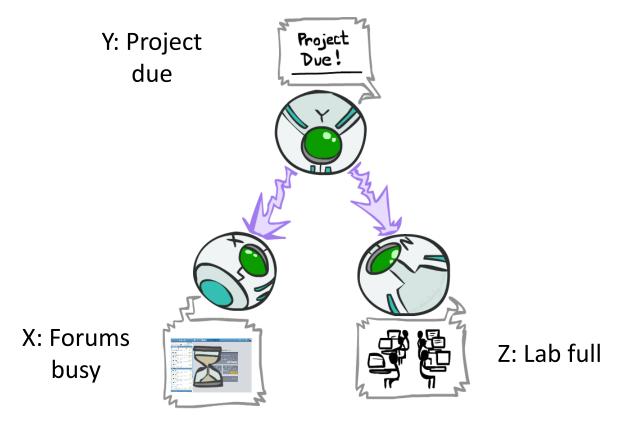
P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z? No!
  - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
  - Example:
    - Project due causes both forums busy and lab full
    - In numbers:

$$P( +x | +y ) = 1, P( -x | -y ) = 1,$$
  
 $P( +z | +y ) = 1, P( -z | -y ) = 1$ 

## **Common Cause**

#### This configuration is a "common cause"



P(x, y, z) = P(y)P(x|y)P(z|y)

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

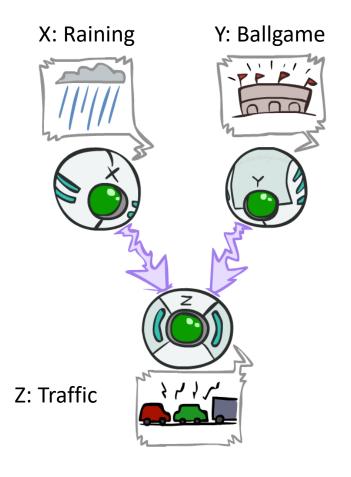
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

## Common Effect

Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
  - Yes: the ballgame and the rain cause traffic, but they are not correlated
  - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
  - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
  - Observing an effect activates influence between possible causes.

## Practice

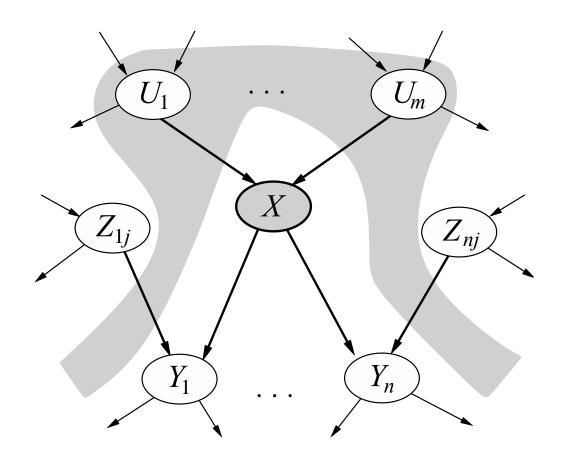
# Consider the case where you show up to Claire's office hours and she isn't there

Draw a Bayes Net capturing the causal relationship between
 Claire being in the room (yes/no), Claire being abducted by aliens (yes/no), and your watch having the wrong time (yes/no)

What statements about independence can you make?

# Conditional Independence Semantics

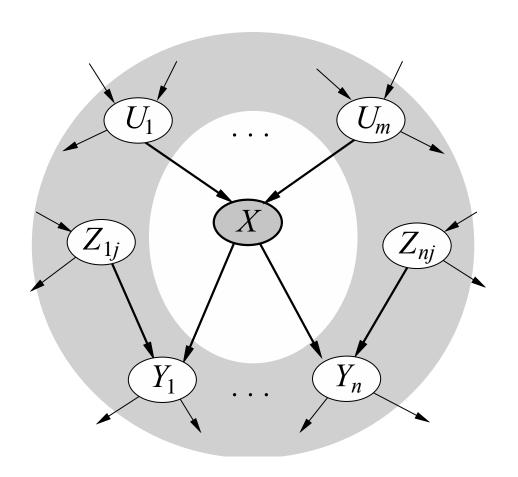
Every variable is conditionally independent of its non-descendants given its parents



## Markov blanket

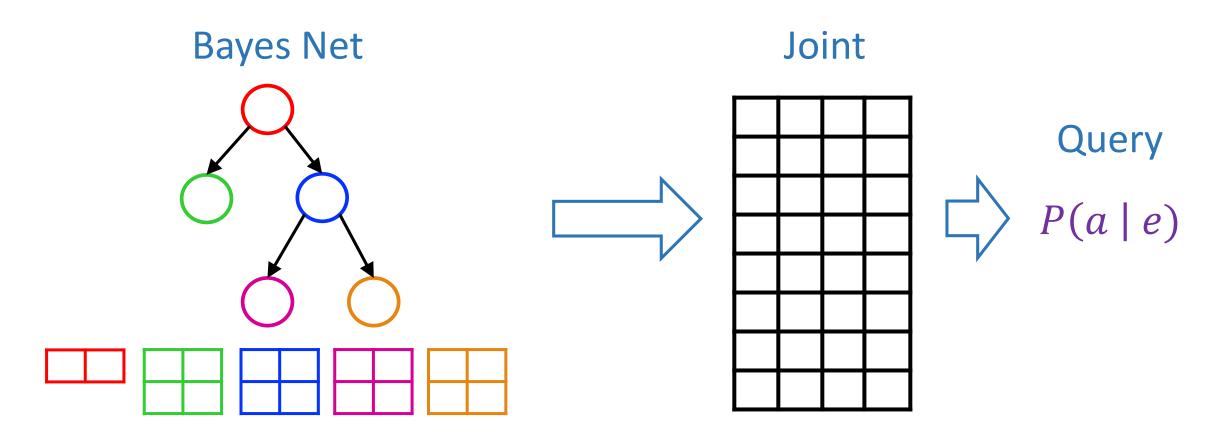
A variable's Markov blanket consists of parents, children, children's other parents

Every variable is conditionally independent of all other variables given its Markov blanket



# Markov Structures

# Answer Any Query from Condition Probability Tables



# Example: Alarm Network

#### Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!



## Example: Alarm Network



### Joint distribution factorization example

#### Generic chain rule

 $P(X_1 ... X_2) = \prod_i P(X_i | X_1 ... X_{i-1})$ 

$$P(B, E, A, J, M) = P(B) P(E|B) P(A|B, E) P(J|B, E, A) P(M|B, E, A, J)$$

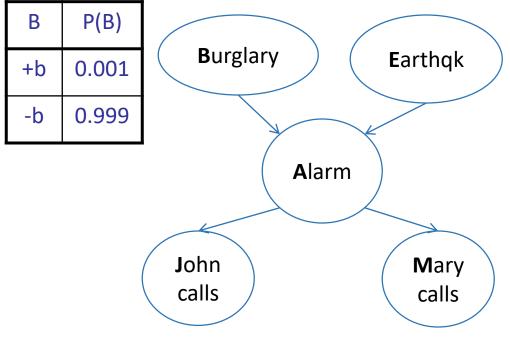
$$P(B,E,A,J,M) = P(B) P(E) P(A|B,E) P(J|A) P(M|A)$$



#### Bayes nets

 $P(X_1 ... X_2) = \prod_i P(X_i | Parents(X_i))$ 

# Example: Alarm Network



| Α  | J  | P(J A) |
|----|----|--------|
| +a | +j | 0.9    |
| +a | ij | 0.1    |
| -a | +j | 0.05   |
| -a | -j | 0.95   |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |

| E  | P(E)  |  |
|----|-------|--|
| +e | 0.002 |  |
| -e | 0.998 |  |

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -е | +a | 0.94     |
| +b | -е | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -е | +a | 0.001    |
| -b | -e | -a | 0.999    |

