
Warm-up as you walk in
When does a probability table sum to 1?

𝑃(A, B, c)

𝑃(A, B ∣ 𝑐)

𝑃(A ∣ 𝑏)

𝑃(a, b ∣ 𝑐)

𝑃(c ∣ 𝐴)

𝑃(a ∣ 𝐵, 𝐶)



Announcements
Assignments:

▪ HW9 (written)

▪ Due Tue 4/2, 10 pm

Optional Probability (online)

Midterm:

▪ Mon 4/8, in-class

Course Feedback:

▪ See Piazza post for mid-semester survey



AI: Representation and Problem Solving

Bayes Nets

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



AI-pril Fool’s!

Trouble maker credit: Arnav & Pranav



Course Survey
Please fill out on Piazza!



Warm-up as you walk in
When does a probability table sum to 1?

𝑃(A, B, c)

𝑃(A, B ∣ 𝑐)

𝑃(A ∣ 𝑏)

𝑃(a, b ∣ 𝑐)

𝑃(c ∣ 𝐴)

𝑃(a ∣ 𝐵, 𝐶)



Answer Any Query from Joint Distribution

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

What is the probability of getting a slice with:

1) No mushrooms

2) Spinach and no mushrooms

3) Spinach, when asking for slice 
with no mushrooms

▪ Mushrooms

▪ Spinach

▪ No spinach

▪ No spinach and mushrooms
▪ No spinach when asking for no mushrooms

▪ No spinach when asking for mushrooms

▪ Spinach when asking for mushrooms

▪ No mushrooms and no spinach



Answer Any Query from Joint Distribution

You can answer all of these questions:

𝑃(𝑀)

m1

m2

𝑃(𝑆)

s1

s2

m1 𝑠1

m1 𝑠2

𝑚2 𝑠1

𝑚2 𝑠2

m1

m2

𝑃(𝑀|s1)

m1

m2

𝑃(𝑀|s2)

s1

s2

𝑃(𝑆|𝑚1)

s1

s2

𝑃(𝑆|m2)

𝑃(𝑀, 𝑆)

12/20

6/20

6/12



Answer Any Query from Joint Distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season Temp Weather P(S, T, W)

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Answer Any Query from Joint Distribution
Two tools to go from joint to query

1. Definition of conditional probability

𝑃 𝐴 𝐵 =
𝑃 𝐴, 𝐵

𝑃 𝐵

2. Law of total probability (marginalization, summing out)

𝑃 𝐴 =෍

𝑏

𝑃(𝐴, 𝑏)

𝑃 𝑌 ∣ 𝑈, 𝑉 =෍

𝑥

෍

𝑧

𝑃(𝑥, 𝑌, 𝑧 ∣ 𝑈, 𝑉)



Answer Any Query from Joint Distribution
Two tools to go from joint to query

Joint: 𝑃(𝐻1, 𝐻2, 𝑄, 𝐸)

Query: 𝑃(𝑄 ∣ 𝑒)

1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒

𝑃 𝑒

2. Law of total probability (marginalization, summing out)

𝑃 𝑄, 𝑒 =෍

ℎ1

෍

ℎ2

𝑃(ℎ1, ℎ2, 𝑄, 𝑒)

𝑃 𝑒 =෍

𝑞

෍

ℎ1

෍

ℎ2

𝑃(ℎ1, ℎ2, 𝑞, 𝑒)



Answer Any Query from Joint Distribution

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season Temp Weather P(S, T, W)

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Answer Any Query from Joint Distribution
Joint distributions are the best!

Problems with joints

▪ Huge

▪ 𝑛 variables with 𝑑 values

▪ 𝑑𝑛 entries

▪ We aren’t given the joint table

▪ Usually some set of 
conditional probability tables

Joint

Query

𝑃 𝑎 𝑒)



Build Joint Distribution Using Chain Rule

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Build Joint Distribution Using Chain Rule
Two tools to construct joint distribution

1. Product rule

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵
𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

2. Chain rule

𝑃 𝑋1, 𝑋2, … , 𝑋𝑛 =ෑ

𝑖

𝑃 𝑋𝑖 𝑋1, … , 𝑋𝑖−1

𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 for ordering A, B, C

𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝑃 𝐶 𝐴 𝑃 𝐵 𝐴, 𝐶 for ordering A, C, B

𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐶 𝑃 𝐵 𝐶 𝑃 𝐴 𝐶, 𝐵 for ordering C, B, A



Answer Any Query from Condition Probability Tables

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Condition Probability Tables
Process to go from (specific) conditional probability tables to query

1. Construct the joint distribution

1. Product Rule or Chain Rule

2. Answer query from joint

1. Definition of conditional probability

2. Law of total probability (marginalization, summing out)



Answer Any Query from Condition Probability Tables
Bayes’ rule as an example

Given: 𝑃 𝐸 𝑄 , 𝑃 𝑄 Query: 𝑃(𝑄 ∣ 𝑒)

1. Construct the joint distribution

1. Product Rule or Chain Rule
𝑃 𝐸, 𝑄 = 𝑃 𝐸 𝑄 𝑃(𝑄)

2. Answer query from joint

1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

𝑃 𝑒
2. Law of total probability (marginalization, summing out)

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

σ𝑞 𝑃(𝑒, 𝑞)



Answer Any Query from Condition Probability Tables

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Condition Probability Tables

Conditional Probability Tables 
and Chain Rule

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

Problems

▪ Huge

▪ 𝑛 variables with 𝑑
values

▪ 𝑑𝑛 entries

▪ We aren’t given the 
right tables



Answer Any Query from Condition Probability Tables

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Condition Probability Tables

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Answer Any Query from Condition Probability Tables

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Build Joint Distribution Using Chain Rule
Chain rule

𝑃 𝑋1, 𝑋2, … , 𝑋𝑛 =ෑ

𝑖

𝑃 𝑋𝑖 𝑋1, … , 𝑋𝑖−1



Independence



Two variables X and Y are (absolutely) independent if

x,y P(x, y) = P(x) P(y)

▪ This says that their joint distribution factors into a product of two simpler 
distributions

▪ Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

x,y P(x | y) = P(x)   or     x,y P(y | x) = P(y)

Example: two dice rolls Roll1 and Roll2
▪ P(Roll1=5, Roll2=5)     =   P(Roll1=5) P(Roll2=5)  =  1/6 x 1/6  =  1/36
▪ P(Roll2=5 | Roll1=5)   =   P(Roll2=5)

Independence



Example: Independence
n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃1 𝑇,𝑊 𝑃2 𝑇,𝑊 = 𝑃 𝑇 𝑃(𝑊)

𝑃(𝑇)

𝑃(𝑊)



Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
▪ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I don’t have a cavity:
▪ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
▪ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
▪ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
▪ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
▪ One can be derived from the other easily



Conditional Independence
Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

X is conditionally independent of Y given Z

if and only if: 

x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if

x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence

What about this domain:

▪ Fire
▪ Smoke
▪ Alarm



Conditional Independence

What about this domain:

▪ Traffic
▪ Umbrella
▪ Raining



Conditional Independence and the Chain Rule

Chain rule:

P(x1, x2,…, xn) = 
i
P(xi | x1,…, xi-1)

Trivial decomposition:

P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:

P(Rain, Traffic, Umbrella) =



Conditional Independence and the Chain Rule

Chain rule:

P(x1, x2,…, xn) = 
i
P(xi | x1,…, xi-1)

Trivial decomposition:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes nets / graphical models help us express 
conditional independence assumptions



Bayes’Nets: Big Picture



Bayes’ Nets: Big Picture

Two problems with using full joint distribution tables as 
our probabilistic models:
▪ Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
▪ Hard to learn (estimate) anything empirically about more than a 

few variables at a time

Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
▪ More properly called graphical models
▪ We describe how variables locally interact
▪ Local interactions chain together to give global, indirect 

interactions



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

Nodes: variables (with domains)
▪ Can be assigned (observed) or unassigned 

(unobserved)

Arcs: interactions
▪ Similar to CSP constraints
▪ Indicate “direct influence” between variables
▪ Formally: encode conditional independence (more 

later)

For now: imagine that arrows mean direct 
causation (in general, they don’t!)



Example: Coin Flips
N independent coin flips

No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic
Variables:
▪ R: It rains

▪ T: There is traffic

Model 1: independence

Why is an agent using model 2 better?

R

T

R

T

▪ Model 2: rain causes traffic



Let’s build a causal graphical model!

Variables
▪ T: Traffic

▪ R: It rains

▪ L: Low pressure

▪ D: Roof drips

▪ B: Ballgame

▪ C: Cavity

Example: Traffic II



Example: Alarm Network

Variables
▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!



Bayes’ Net Semantics



Bayes Nets Syntax Review

One node per random variable

DAG

One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵 𝐶

𝐷 𝐸



Bayes Net Global Semantics

Bayes nets:
▪ Encode joint distributions as product of conditional distributions on each variable

𝑃 𝑋1…𝑋2 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Semantics Example

Joint distribution factorization example

Generic chain rule
▪ 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑋1…𝑋𝑖−1)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝐵 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐵, 𝐸, 𝐴 𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)

Bayes nets
▪ 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99


