## Walk-in warm-up: Omega Pizzeria

Three questions: What is the probability of getting a slice with:

1) No mushrooms
2) Spinach and no mushrooms
3) Spinach, when asking for slice with no mushrooms


Write down your answers.
We'll get to them in a few minutes.

## Announcements

## Assignments:

- P4
- Due Thu $3 / 28,10 \mathrm{pm}$
- HW9 (written)
- Out tonight, due Tue 4/2

Optional Probability (online)

Course Feedback:

- See Piazza post for mid-semester survey
- Note the separate TA posts


## AI: Representation and Problem Solving

## Probability

Instructors: Pat Virtue \& Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu

## Previous Exposure to Probability

## Previous topics

- Some version of notation
- Sample spaces, outcomes, sets, events
- Three axioms
- Theorem of total probability
- Partitions

$$
\sum_{i=1}^{n} P\left(\mathrm{a}_{i}\right)=1
$$

## Outline

## 1. Conditional probability

- Pizza
- Notation
- Definition

2. Product rule \& Bayes' theorem

- Algebra
- Why Bayes' theorem


## Our probability toolbox

- Algebra
- Three axioms of probability
- Theorem of total probability
- Definition of conditional probability
- Product rule
- Bayes' theorem
- Chain rule


## Piazza Poll 1

Three questions: What is the probability of getting a slice with:

1) No mushrooms
2) Spinach and no mushrooms
3) Spinach, when asking for slice with no mushrooms

How comfortable are you with this?
A: I'm good
B: So-so


C: A little freaked out

## Omega Pizzeria

Three questions: What is the probability of getting a slice with:

1) No mushrooms

2) Spinach and no mushrooms

3) Spinach, when asking for slice with no mushrooms

New information (condition)


Adjust sample space

## Omega Pizzeria

## Formalize this a bit

- $\Omega$ : whole pizza
- S: Spinach random variable
$\rightarrow s_{1}$ : no spinach -s
$\rightarrow S_{2}$ : spinach +5
- M: Mushroom random variable $m_{1}$ : no mushrooms $m_{2}$ : mushrooms



## Omega Pizzeria

## Formalize this a bit

- $\Omega$ : whole pizza
- Spinach partition $s_{1}$ : no spinach $s_{2}$ : spinach
- Mushroom partition $m_{1}$ : no mushrooms $m_{2}$ : mushrooms

1) No mushrooms
$P\left(\underline{M}=\underline{m_{1}}\right)$

2) Spinach and no mushrooms
$P\left(S=s_{2}, M=m_{1}\right) \quad P(+s) \cap P(-m)$
3) Spinach, when asking for slice Conditiona with no mushrooms

$$
P\left(S=s_{2} \mid M=m_{1}\right)
$$

## Omega Pizzeria

## More questions: What is the probability of getting a slice with:

1) No mushrooms
2) Spinach and no mushrooms
3) Spinach, when asking for slice with no mushrooms

- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms

- No spinach when asking for mushrooms
- Spinach when asking for mushrooms


## Omega Pizzeria

You can answer all of these questions:


|  | $P(M, S)$ |  |
| :--- | :--- | :--- |
| $m_{1}$ | $s_{1}$ |  |
| $m_{1}$ | $s_{2}$ | $6 / 20$ |
| $m_{2}$ | $s_{1}$ |  |
| $m_{2}$ | $s_{2}$ | $\square$ |
|  |  |  |



## Sensor Probability



## Sensor Probability

Ghostbusters project


## Sensor Probability

Ghostbusters project

- Want $P\left(\underline{g_{3,1}} \mid s_{2,2, \text { orange }}\right)$
- Have $P\left(s_{2,2, \text { Orange }} \mid g_{3,1}\right)$
- We need more tools!



## Inference in Ghostbusters

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost

- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  | 0. |

- Sensors are noisy, but we know $P(\operatorname{Color}(x, y) \mid$ DistanceFromGhost( $x, y))$

| $P($ red \| 3) | $P$ (orange \| 3) | P (yellow \| 3) | $\mathrm{P}($ green \| 3) |
| :---: | :---: | :---: | :---: |
| 0.05 | 0.15 | 0.5 | 0.3 |

## Ghostbusters Demo

## Definition of Conditional Probability

## Definition:

If $P(b)>0$, then the conditional probability of $a$ given $b$ is:

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

Counting: proportions

$$
P(a)=\frac{\operatorname{Count}(a)}{\operatorname{Count}(\Omega)}
$$

$$
P(a \mid b)=\frac{\operatorname{Count}(a \cap b)}{\operatorname{Count}(b)}
$$



## Omega Pizzeria

## Apply definition of conditional probability

- No mushrooms
$\longrightarrow \mathrm{P}\left(\mathrm{m}_{1}\right)=\frac{12}{20}$
- Spinach and no mushrooms
$\rightarrow \mathrm{P}\left(\mathrm{s}_{2}, \mathrm{~m}_{1}\right)=\frac{6}{20}$
- Spinach, when asking for slice with no mushrooms
$\rightarrow \mathrm{P}\left(\underline{\mathrm{s}_{2}} \mid \mathrm{m}_{1}\right)=\frac{6}{12}$

Conditional
Probability:


$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

## Omega Pizzeria

## Apply definition of conditional probability

- No mushrooms

$$
\mathrm{P}\left(\mathrm{~m}_{1}\right)=\frac{12}{20}
$$



- Spinach and no mushrooms

$$
\mathrm{P}\left(\mathrm{~s}_{2}, \mathrm{~m}_{1}\right)=\frac{6}{20}
$$

Conditional
Probability:

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

- Spinach, when asking for slice
with no mushrooms

$$
\mathrm{P}\left(\mathrm{~s}_{2} \mid \mathrm{m}_{1}\right)=\frac{6}{12} \quad P\left(s_{2} \mid m_{1}\right)=\frac{P\left(s_{2}, s_{1}\right)}{P\left(s_{1}\right)}=\frac{\frac{6}{20}}{\frac{12}{20}}=\frac{6}{12}
$$

## Definition of Conditional Probability

Definition:
If $P(B)>0$, then the conditional probability of $A$ given $B$ is:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Normalization Trick

$$
\frac{P(X \mid Y=-y)}{\uparrow} ?
$$

$P(X, Y)$

| $X$ | $Y$ | $P$ |
| :---: | :---: | :---: |
| $+X$ | $+y$ | 0.2 |
| $+x$ | $-y$ | 0.3 |
| $-x$ | $+y$ | 0.4 |
| $-x$ | $-y$ | 0.1 |



NORMALIZE the selection probabilities matching the $\xrightarrow{\text { evidence }}$

## To Normalize

(Dictionary) To bring or restore to a normal condition


Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z


## Example 1

| $W$ | $P$ |
| :---: | :---: |
| sun | 0.2 |
| $\mathrm{Z}=0.5$ |  | | $W$ | $P$ |  |
| :---: | :---: | :---: |
| rain | 0.3 |  |
| sun | 0.4 |  |
| rain | 0.6 |  |

- Example 2

| $T$ | $W$ | $P$ |
| :---: | :---: | :---: |
| hot | sun | 20 |
| hot | rain | 5 |
| cold | sun | 10 |
| cold | rain | 15 |


$\xrightarrow{*}$ Normalize $\quad$| $T$ | $W$ | $P$ |
| :---: | :---: | :---: |
| $\mathrm{Z}=50$ | hot | sun |
| hot | rain | 0.4 |
| cold | sun | 0.2 |
| cold | rain | 0.3 |

## Sum over all values of a random variable

For all possible disjoint values of a random variable, $A$ : $a_{1}, a_{2}, \ldots a_{n}$ (a partition of the sample space $\Omega), \sum_{i=1}^{n} P\left(a_{i}\right)=1$.


## Partition given Event, Still Sums to One

For any event $b$ and partition $a_{1}, a_{2}, \ldots a_{n}$ of the sample space $\Omega$, $\sum_{i=1}^{n} P\left(a_{i} \mid b\right)=1$ :


## Partition given Event, Still Sums to One

For any event $b$ and partition $a_{1}, a_{2}, \ldots a_{n}$ of the sample space $\Omega$, $\sum_{i=1}^{n} P\left(a_{i} \mid b\right)=1$ :


$$
P\left(m_{1} \mid s_{2}\right)+P\left(m_{2} \mid s_{2}\right)
$$



Icons: CC, https://openclipart.org/detail/296791/pizza-slice

## Piazza Poll 2

How many valid equations can we compose using:

$$
P(x), P(y), P(x, y), P(x \mid y), P(y \mid x) \text { and }=, \times, \div
$$

First one: $P(x \mid y)=P(x, y) / P(y)$
A) 2
B) 4
C) 7
D) Other

$$
\begin{array}{r}
\rightarrow P(x \mid y)=P(y \mid x) P(x) / P(y) \\
A P(x \mid y) P(y)=P(y \mid x) P(x) \\
P(y \mid x)=P(x \mid y) P(y) / P(x)
\end{array}
$$

At most one use per probability term
e.g. Not $P(x)=P(x)$

Must be different
e.g. Cannot also use
$P(x, y) / P(y)=P(x \mid y)$

## Product Rule and Bayes' Theorem

Reformulations of definition of conditional probability
Product rule:

$$
\begin{aligned}
P(A, B) & =P(A \mid B) P(B) \\
& =P(B \mid A) P(A)
\end{aligned}
$$

Achievement unlocked Product Rule
Bayes' theorem:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

## Product Rule: Tree

## Product rule:

$$
P(a, b)=P(a \mid b) P(b)
$$




$$
\begin{aligned}
& P\left(s_{2}\right) P\left(m_{1} \mid s_{2}\right)=\frac{1}{2} \cdot \frac{6}{10} \\
& P\left(m_{1}, s_{2}\right)=\frac{6}{20}
\end{aligned}
$$

## Exercise: Product Rule: Tree

Demonstrate, using trees, that product rule works both ways:

$$
P(A, B)=P(A \mid B) P(B) \quad \text { 工 }
$$

$$
=P(B \mid A) P(A)
$$




## Bayes' Theorem

$$
\begin{aligned}
P(b) & =\sum_{i} P\left(b \mid a_{i}\right) P\left(a_{i}\right) \\
& =\sum_{i} P\left(a_{i}, b\right)=P(b)
\end{aligned}
$$

Bayes' theorem:

$$
P\left(a_{1} \mid b\right)=\frac{P\left(b \mid a_{1}\right) P\left(a_{1}\right)}{P(b)}
$$

Also:

$$
P\left(a_{1} \mid b\right)=\frac{P\left(b \mid a_{1}\right) P\left(a_{1}\right)}{\sum_{i=1}^{n} P\left(b \mid a_{i}\right) P\left(a_{i}\right)}
$$

Why is this at all helpful?

- Lets us build one conditional from its reverse

- Often one conditional is tricky but the other one is simple
- Describes an "update" step from prior $P(a)$ to posterior $P(a \mid b) \longleftarrow$
- Foundation of many probabilistic systems


## Inference with Bayes' Theorem

Example: Diagnostic probability from causal probability:

$$
P(c a u s e \mid e f f e c t)=\frac{P(e f f e c t \mid \text { cause }) P(\text { cause })}{P(e f f e c t)}
$$

Example:

- Your friend has a stiff neck (+s)
- Knowledge:

$$
P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}
$$

$$
\begin{gathered}
P(+s)=0.01 \\
P(+m)=0.0001 \\
P(+s \mid+m)=0.8
\end{gathered}
$$

$$
=\frac{0.8 \times 0.0001}{0.01}=0.008
$$

- What are the chances your friend has meningitis ( $+m$ ) ?


## Probabilistic Inference

Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

We generally compute conditional probabilities

- $\mathrm{P}($ on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence

Probabilities change with new evidence:

- P(on time | no accidents, 5 a.m.) $=0.95$
- P (on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated



## Inference by Enumeration

$P(W) ? \quad$| $P(w)$ |
| :---: |
| sun |
| rain |

## P(W | winter)?

$\mathrm{P}(\mathrm{W} \mid$ winter, hot $)$ ?

| $S$ | $T$ | $W$ | $P$ |
| :---: | :---: | :---: | :---: |
| summer | hot | sun | 0.30 |
| summer | hot | rain | 0.05 |
| summer | cold | sun | 0.10 |
| summer | cold | rain | 0.05 |
| winter | hot | sun | 0.10 |
| winter | hot | rain | 0.05 |
| winter | cold | sun | 0.15 |
| winter | cold | rain | 0.20 |

## Inference by Enumeration

## General case:

- Evidence variables:
- Query* variable:
- Hidden variables:

- We want:
* Works fine with multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence
- Step 2: Sum out H to get joint of Query and evidence

- Step 3: Normalize


$$
Z=\sum_{q} P\left(Q, e_{1} \cdots e_{k}\right)
$$

$$
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
$$

## Inference by Enumeration

- Obvious problems:
- Worst-case time complexity $O\left(d^{n}\right)$
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution


## Tools Summary

Adding to our toolbox

1. Definition of conditional probability
2. Product Rule

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

$$
P(A, B)=P(A \mid B) P(B)
$$

3. Bayes' theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

4. Chain Rule...

The Product Rule

Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow \quad P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

10县=

The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

Example:

| $P(W)$ |
| :---: |
| R |
| sun |
| rain |


| $P(D \mid W)$ |
| :--- |
| D |
| W |
| wet |
| sun |
| dry |
| wet |
| sun |
| dry |


| $P(D, W)$ |
| :--- |
| $D$ |
| $D$ |$| W$

## The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

## Ghostbusters, Revisited

Let's say we have two distributions:

| 0.11 | 0.11 | 0.11 |
| :--- | :--- | :--- |
| 0.11 | 0.11 | 0.11 |
| 0.11 | 0.11 | 0.11 |

- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$

We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid r)$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

| 0.17 | 0.10 | 0.10 |
| :---: | :---: | :---: |
| 0.09 | 0.17 | 0.10 |
| $<0.01$ | 0.09 | 0.17 |

## Demo Ghostbusters with Probability

