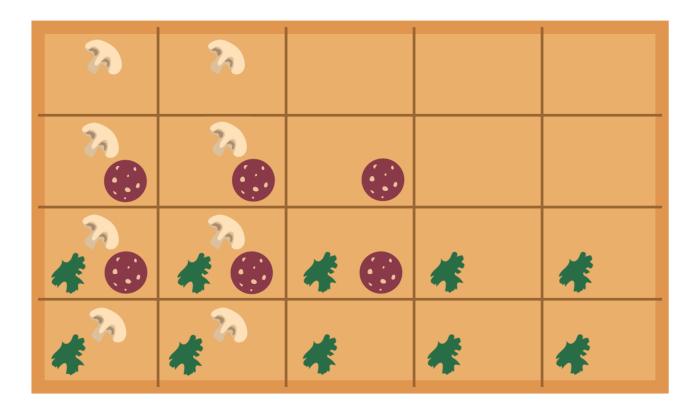
Walk-in warm-up: Omega Pizzeria

Three questions: What is the probability of getting a slice with:

1) No mushrooms

2) Spinach and no mushrooms

3) Spinach, when asking for slice with no mushrooms



Write down your answers. We'll get to them in a few minutes.

Announcements

Assignments:

- P4
 - Due Thu 3/28, 10 pm
- HW9 (written)
 - Out tonight, due Tue 4/2

Optional Probability (online)

Course Feedback:

- See Piazza post for mid-semester survey
- Note the separate TA posts

AI: Representation and Problem Solving **Probability**

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Previous Exposure to Probability

Previous topics

- Some version of notation
- Sample spaces, outcomes, sets, events
- Three axioms
- Theorem of total probability
- Partitions

$$\sum_{i=1}^{n} P(\mathbf{a}_i) = 1$$

Outline

1. Conditional probability

- Pizza
- Notation
- Definition
- 2. Another partition proof
- 3. Product rule & Bayes' theorem
 - Algebra
 - Why Bayes' theorem

Our probability toolbox

- Algebra
- Three axioms of probability
- Theorem of total probability
- Definition of conditional probability
- Product rule
- Bayes' theorem

Piazza Poll 1

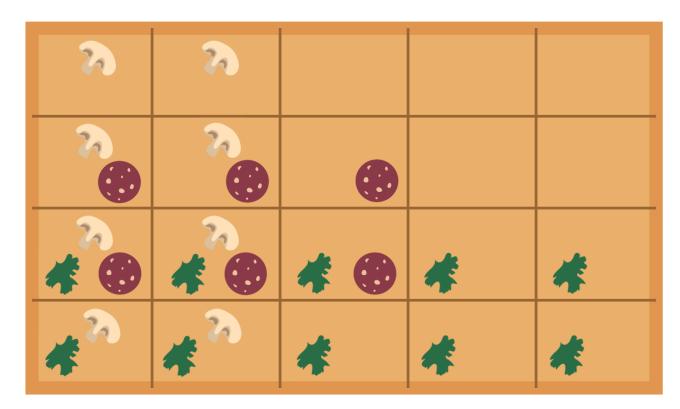
Three questions: What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms

How comfortable are you with this? A: I'm good

B: So-so

C: A little freaked out



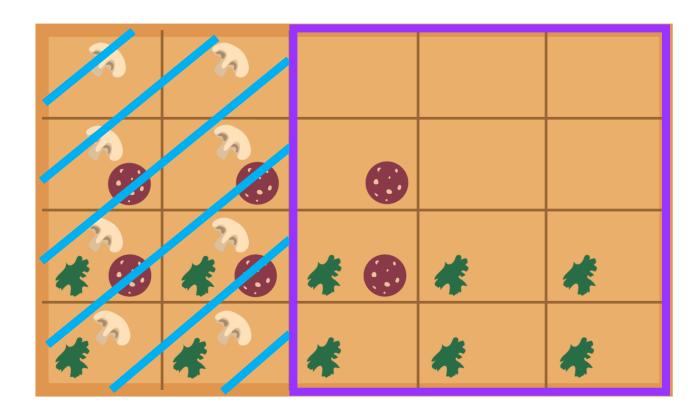
Three questions: What is the probability of getting a slice with:

1) No mushrooms

2) Spinach and no mushrooms

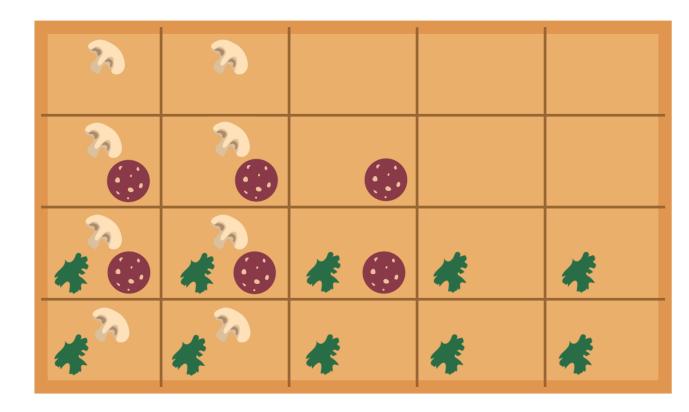
3) Spinach, when asking for slice with no mushrooms

New information (condition) Adjust sample space



Formalize this a bit

- Ω: whole pizza
- S: Spinach random variable
 s₁: no spinach
 s₂: spinach
- M: Mushroom random variable
 m₁: no mushrooms
 m₂: mushrooms



Formalize this a bit

- Ω: whole pizza
- Spinach partition
 s₁: no spinach
 s₂: spinach
- Mushroom partition
 *m*₁: no mushrooms
 *m*₂: mushrooms

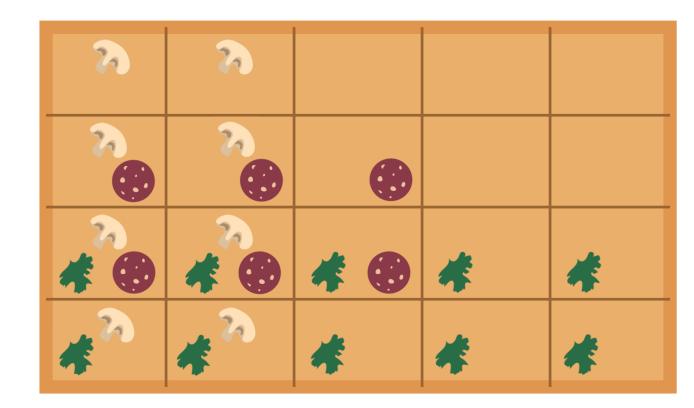
Questions?

- 1) No mushrooms $P(M = m_1)$
- 2) Spinach and no mushrooms $P(S = s_2, M = m_1)$
- 3) Spinach, when asking for slice with no mushrooms $P(S = s_2 | M = m_1)$

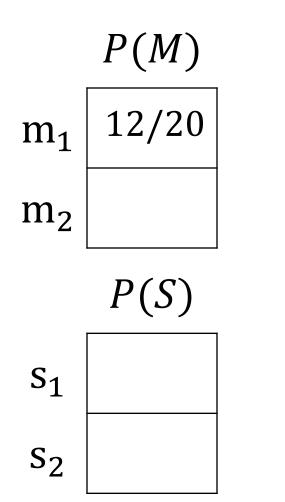
New notation alert!

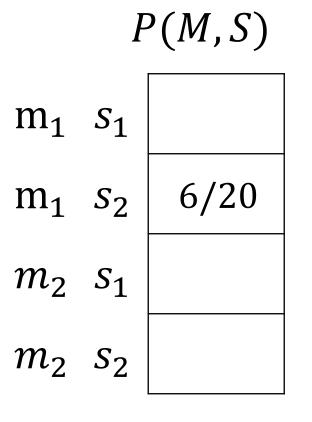
More questions: What is the probability of getting a slice with:

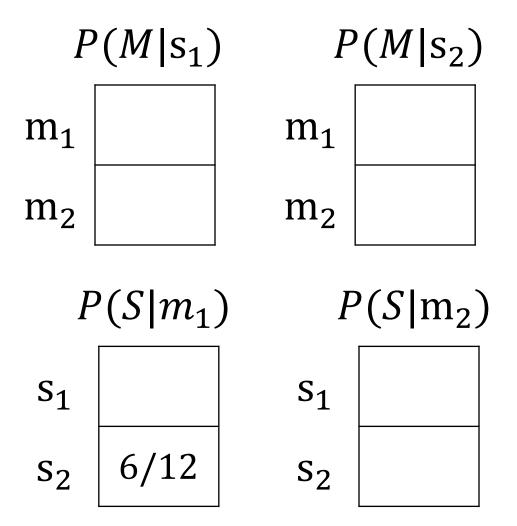
- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms
- No much reasons and no animach



You can answer all of these questions:





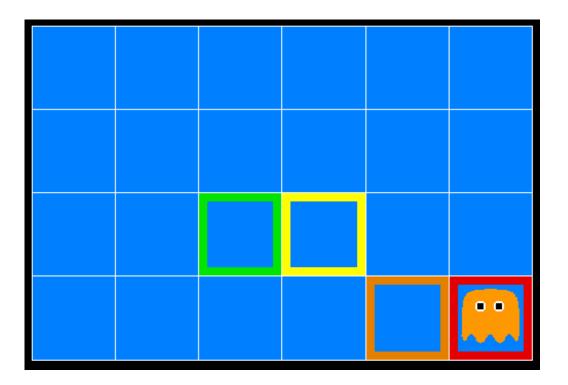


Sensor Probability

Images CC: https://openclipart.org/detail/275131/car, https://openclipart.org/detail/216619/car

Sensor Probability

Ghostbusters project

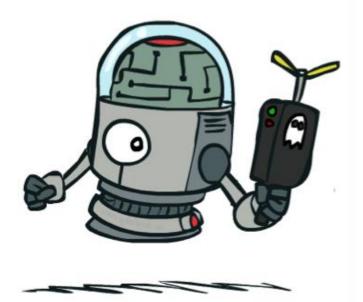


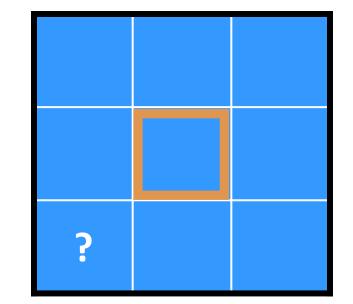
[ai.berkeley.edu demo: Ghostbuster – no probability (L12D1)]

Sensor Probability

Ghostbusters project

- Want $P(g_{3,1} | s_{2,2,0range})$
- Have $P(s_{2,2,Orange} \mid g_{3,1})$
- We need more tools!



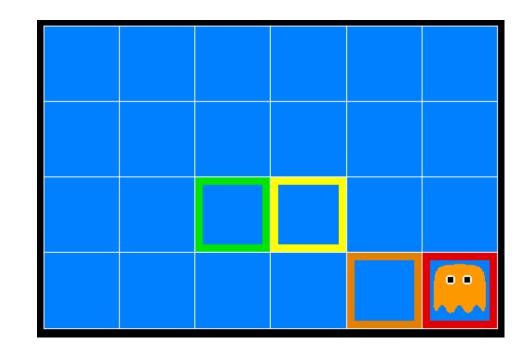


Inference in Ghostbusters

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost

- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green



Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Ghostbusters Demo

[Demo: Ghostbuster – no probability (L12D1)]

Definition of Conditional Probability

Definition:

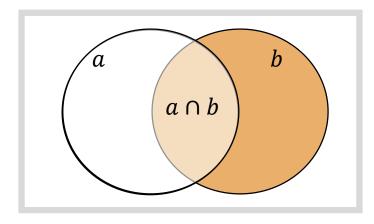
If P(b) > 0, then the conditional probability of a given b is:

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Counting: proportions

$$P(a) = \frac{Count(a)}{Count(\Omega)}$$

$$P(a|b) = \frac{Count(a \cap b)}{Count(b)}$$



Apply definition of conditional probability

No mushrooms

 $P(m_1) = \frac{12}{20}$

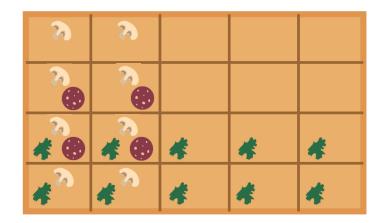
Spinach and no mushrooms

 $P(s_2, m_1) = \frac{6}{20}$

Conditional Probability: $P(a|b) = \frac{P(a,b)}{P(b)}$

 Spinach, when asking for slice with no mushrooms

$$P(s_2|m_1) = \frac{6}{12}$$



Apply definition of conditional probability

No mushrooms

 $P(m_1) = \frac{12}{20}$

Spinach and no mushrooms

 $P(s_2, m_1) = \frac{6}{20}$

 $P(s_2|m_1) = \frac{6}{12}$

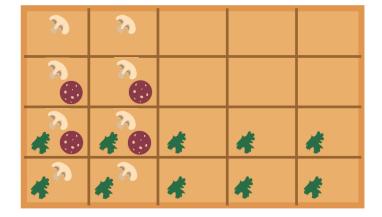
Conditional **Probability**:

 $P(a|b) = \frac{P(a,b)}{P(b)}$

6

Spinach, when asking for slice with no mushrooms

$$P(s_2|m_1) = \frac{P(s_2, s_1)}{P(s_1)} = \frac{\frac{6}{20}}{\frac{12}{20}} = \frac{6}{12}$$



Definition of Conditional Probability

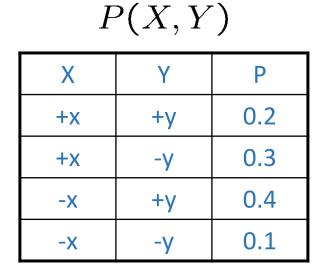
Definition:

If P(B) > 0, then the conditional probability of A given B is:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

http://achievementgen.com/360/

Quiz: Normalization Trick P(X | Y=-y) ?



SELECT the joint probabilities matching the evidence

NORMALIZE the

selection (make it sum to one)

To Normalize

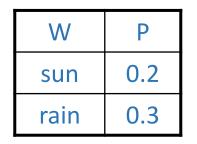
(Dictionary) To bring or restore to a normal condition

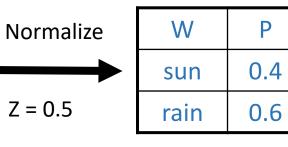
All entries sum to ONE

Procedure:

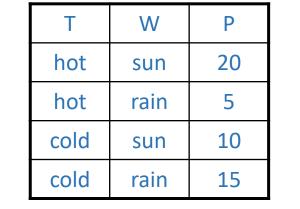
- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Example 1





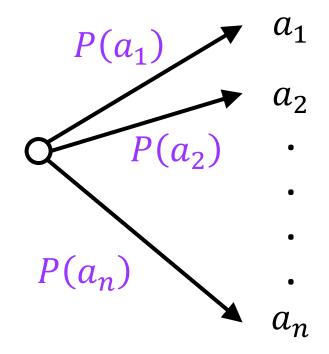
• Example 2



	Т	W	Р
Normalize	hot	sun	0.4
	hot	rain	0.1
Z = 50	cold	sun	0.2
	cold	rain	0.3

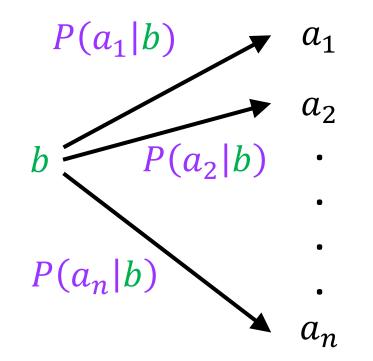
Sum over all values of a random variable

For all possible disjoint values of a random variable, $A: a_1, a_2, ..., a_n$ (a partition of the sample space Ω), $\sum_{i=1}^{n} P(a_i) = 1$.



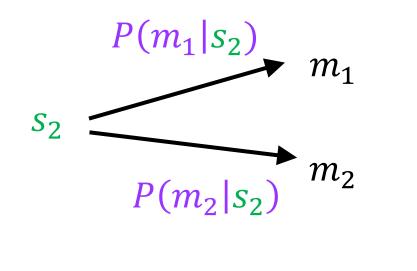
Partition given Event, Still Sums to One

For any event *b* and partition $a_1, a_2, ..., a_n$ of the sample space Ω , $\sum_{i=1}^{n} P(a_i \mid b) = 1$:

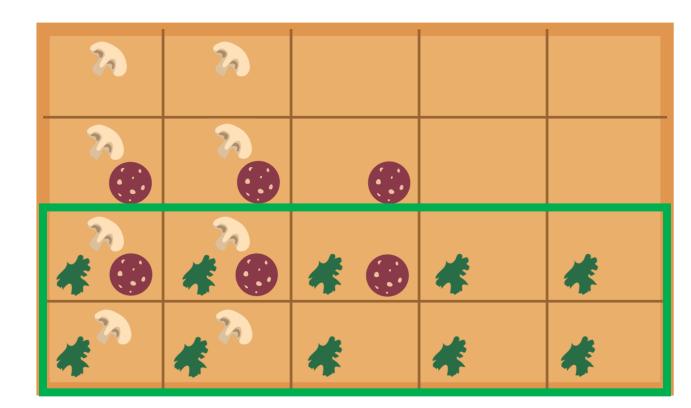


Partition given Event, Still Sums to One

For any event *b* and partition $a_1, a_2, ..., a_n$ of the sample space Ω , $\sum_{i=1}^n P(a_i \mid b) = 1$:

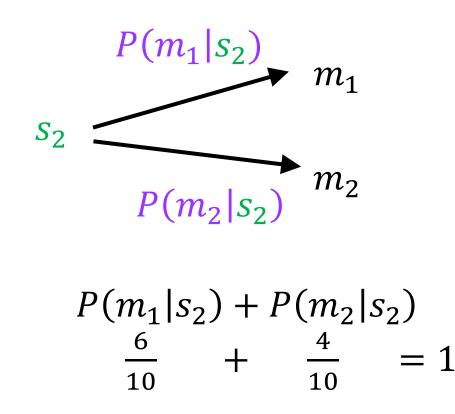


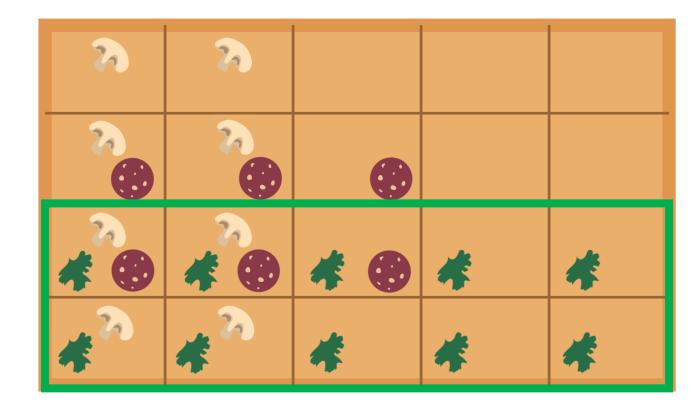
 $P(m_1|s_2) + P(m_2|s_2)$



Partition given Event, Still Sums to One

For any event *b* and partition $a_1, a_2, ..., a_n$ of the sample space Ω , $\sum_{i=1}^n P(a_i \mid b) = 1$:





Piazza Poll 2

How many valid equations can we compose using:

P(x), P(y), P(x,y), P(x|y), P(y|x) and =, \times , \div

First one: P(x|y) = P(x,y)/P(y)

A) 2 B) 4 C) 7

D) Other

At most one use per probability term e.g. Not P(x) = P(x)

Must be different e.g. Cannot also use P(x,y)/P(y) = P(x|y)

Product Rule and Bayes' Theorem

Reformulations of definition of conditional probability

Product rule:

$$P(A,B) = P(A|B)P(B)$$

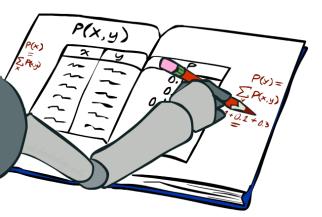
= P(B|A)P(A)

Achievement unlocked Product Rule

Bayes' theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

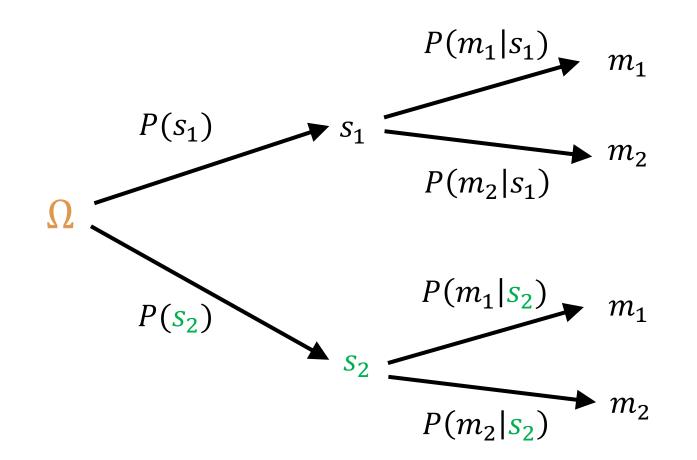
Achievement unlocked Bayes' Theorem

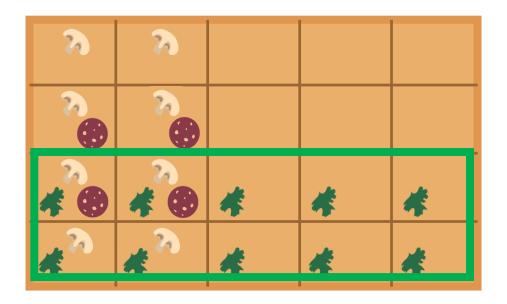


http://achievementgen.com/360/

Product Rule: Tree

Product rule: P(a,b) = P(a|b)P(b)



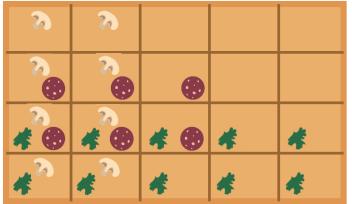


$$P(s_2) P(m_1|s_2) = \frac{1}{2} \cdot \frac{6}{10}$$
$$P(m_1, s_2) = \frac{6}{20}$$

Exercise: Product Rule: Tree

Demonstrate, using trees, that product rule works both ways: P(A,B) = P(A|B)P(B)

= P(B|A)P(A)



Bayes' Theorem

Bayes' theorem:

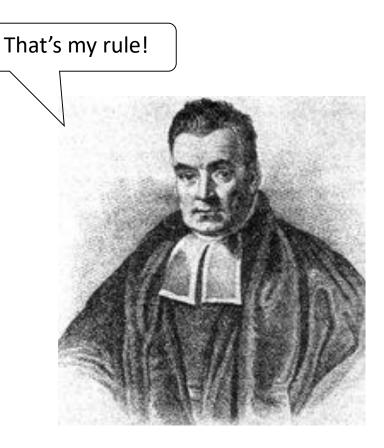
$$P(a_1|b) = \frac{P(b|a_1)P(a_1)}{P(b)}$$

Also:

$$P(a_1|b) = \frac{P(b|a_1)P(a_1)}{\sum_{i=1}^{n} P(b|a_i)P(a_i)}$$

Why is this at all helpful?

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Describes an "update" step from prior P(a) to posterior $P(a \mid b)$
- Foundation of many probabilistic systems



Inference with Bayes' Theorem

Example: Diagnostic probability from *causal probability:*

$$P(cause \mid effect) = \frac{P(effect \mid cause) P(cause)}{P(effect)}$$

Example:

- Your friend has a stiff neck (+s)
- Knowledge:

 $P(+m | +s) = \frac{P(+s|+m) P(+m)}{P(+s)}$

 $=\frac{0.8\times0.0001}{0.01}=0.008$

P(+s) = 0.01P(+m) = 0.0001P(+s | + m) = 0.8

• What are the chances your friend has meningitis (+*m*)?

Probabilistic Inference

Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

We generally compute conditional probabilities

- P(on time | no reported accidents) = 0.90
- These represent the agent's *beliefs* given the evidence

Probabilities change with new evidence:

- P(on time | no accidents, 5 a.m.) = 0.95
- P(on time | no accidents, 5 a.m., raining) = 0.80
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

P(W)?

P(W | winter)?

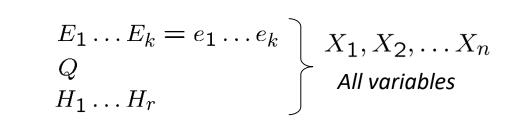
P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

General case:

- Evidence variables:
- Query* variable:
- Hidden variables:



 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1\ldots e_k)$$

 Step 1: Select the entries consistent with the evidence

-3

-1

5

 \odot

Pa

0.05

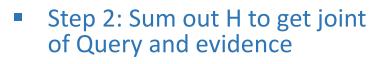
0.25

0.2

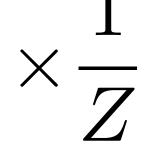
0.01

0.07

0.15



Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

Tools Summary

Adding to our toolbox

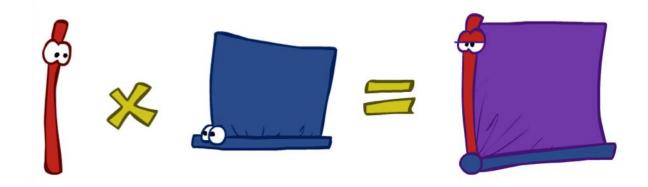
- 1. Definition of conditional probability
- 2. Product Rule
- 3. Bayes' theorem
- 4. Chain Rule...

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
$$P(A,B) = P(A|B)P(B)$$
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \qquad \longleftarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$



The Product Rule

P(y)P(x|y) = P(x,y)

Example:

P(W)

Ρ

0.8

0.2

R

sun

rain

P((D W))	
D	W	Р	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(D,W)

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Ghostbusters, Revisited

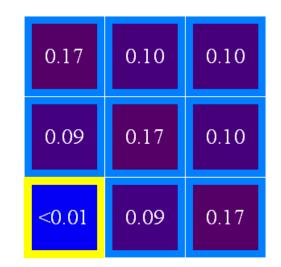
Let's say we have two distributions:

- Prior distribution over ghost location: P(G)
 - Let's say this is uniform
- Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1

We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11



[Demo: Ghostbuster – with probability (L12D2)]

Demo Ghostbusters with Probability