Warm-up as you walk in

https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL website/

https://high-level-4.herokuapp.com/experiment
https://rach0012.github.io/humanRL_website/

Announcements

Assignments:

= HWS8
= Due Tue 3/26, 10 pm

= P4
= Due Thu 3/28, 10 pm

= HW9 (written)
= Plan: Out tomorrow, due Tue 4/2

Al;

Representation and Problem Solving

Reinforcement Learning Il

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al and http://ai.berkeley.edu

Reinforcement Learning

We still assume an MDP:

= Asetofstatess e S

" A set of actions (per state) A
= A model T(s,a,s’) _

= A reward function R(s,a,s’)

Still looking for a policy mt(s)
New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over T using sample outcomes

Temporal Difference Learning

Model-Free Learning

Model-free (temporal difference) learning
" Experience world through episodes

L%L ,r, S a/ T,,S,,,QII,TH,S”H..
-

= Update estimates each transition (s, a,r,s’)

= Over time, updates will mimic Bellman updates

)

£ey= Ly-xY

Temporal Difference Learning %é:_(y,ﬂ
X
R
Big idea: learn from every experience! .
= Update V(s) each time we experience a transition (s, a, s/, r) -
= Likely outcomes s’ will contribute updates more often .Ti(fl
s, T(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! ,
= Move values toward value of whatever successor occurs: running average A S__
Sample of V(s): sample = r+y V™(s') 3
"‘"-’ - (54»‘*\\0 V (S

Update to V(s): Vi(s) « (1 —a)V™(s) + (a) sample

Same update: Vi(s) « V™(s) + a[sample — V™(s)]

)

1
Same update: V™(s) « V™(s) — aVError Error = 5 (sample — V”(S))@

Piazza Poll 1

TD update: Ve(s) = V(s) +alr+yVT(s') — VT(s)]

Which converts TD values into a policy?

Value iteration: Vis1(s) = mc?xz P(s'|s,a)[R(s,a,s") + ¥V, (s")], Vs
Q-iteration: Qr+1(s,a) = ZSI;(S’IS, a)[R(s,a,s") +y max Qr(s',a)], Vs,a
Policy extraction: my(s) = argcrln:xz: P(s'|s,a)[R(s,a,s") +yV(s')], Vs
Policy evaluation: VE . (s) = z P(SS’IIS, (s))[R(s,m(s),s") + yVF(s)], Vs

S7

Policy improvement: Tpew (S) = argmaxz P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

Piazza Poll 1

TD update:

/

V(s) = V;(s) +alr+yVT(s') — VE(s)]

s r

Which converts TD values into a policy?

Vv

g\ Value iteration:
Q

v

.| Qiteration:

Y

™

.| Policy extraction:
A\

< | Policy evaluation:
X

\ Policy improvement:

Vier1(s) = mc?xz P(s'|s,a)[R(s,a,s") +yV,(s")], Vs
Qusa(5,0) = Z P(s'ls, IR(5,a,5") +y max Qu(s',a)], Vs,

nV(s) = argmaxz: P(s']s, a)[R(S as') + yV(S’)] Vs

Vi,(s) = z P(S |s, t(s))[R(s,m(s),s") + yVF(s")], Vs

Tnow (5) = argmaxz P(s'ls,)[R(s, a,s") +yV™oia(s)], Vs
a

MDP/RL Notation

Standard expectimax:

Bellman equations:

Value iteration:
g Q-iteration:

Policy extraction:

Policy extraction.

Policy evaluation:

Policy improvement:

g Value (TD) learning:
Q-learning:

V(s) = mgxz P(s'|s,)V (s")

V(s) = mgxszl P(s'ls, D)[R(s, a,s") + YV (s")]

Veri(s) = maxz P(s'|s, @) [R(s,a,s") + yVi(s)], Vs
Orsi(s @) = ZP(S 5, [R(s,0,5") +y max Qi(s',a)], V¥s,a
my(s) = argmaxZ P(sherm[R(sarss) + YV (D], Vs
VEa() =) P(s'ls, i(DIRGs, m(s),) + YVEGD], Vs
Tnow (5) = ;’"g;naxz: P(s'ls,)[R(s,a,s") + yVTola(s)], Vs

Vi(s) = V(s) +ar+yV™(s') — V(s)]

Z%O
X

0\/‘@

0(s,a) = Q(s,0) +alr +ymax0(s',a) - Q(s, @] M (<) = max

h

Q)

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qt1(s,a) = ST (s,a,8) |R(s,a,8) +9 maxQu(s', o)

" But can’t compute this update without knowing T, R

Instead, compute average as we go
= Receive a sample transition (s,a,r,s’)
" This sample suggests

Q(s,0) = 7 +ymaxQ(s,a)

* But we want to average over results from (s,a) (Why?)
" So keep a running average

Qs,0) — (1=)Q(s,a) + (o) |r + 7 MaxQ(s',)

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if

you’re acting suboptimally!
This is called off-policy learning

Caveats:
" You have to explore enough

" You have to eventually make the learning rate

small enough
= .. but not decrease it too quickly

—

= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning — auto — cliff grid (L11D1)]

The Story So Far: MDPs and RL

—

Known MDP:(Offline Solution

Unknown MDP:(Model-Based Unknown MDP: Model-Free /
(. N O . N
Goal Technique Goal Technique
~2 Compute V*, Q*, t* VI/Pl on approx. MDP — Compute V*, Q*, n* Q-learning
— Evaluate a fixed policy t PE on approx. MDP ——9 Evaluate a fixed policy # TD/Value Learning
o DN /

Exploration vs. Exploitation

b7

GRAND

T
0
=5

How to Explore?

Several schemes for forcing exploration
= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability&,_act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Demo Q-learning — Manual Exploration — Bridge Grid

Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. /0//0
f(u,n) =u+k/n
— —==>

—> Regular Q-Update: Q(s,a) <« R(s,a,5") + 7 max Q(s,d")

"
Modified Q-Update: Q(s,a) <—a R(s,a,s") +ymax f(Q(s",a"), N(s',a"))

a
M4 o V4 h
= Note: this propagates the “bonus” back to states that lead tggnkr‘i‘ostta}es as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Demo Q-learning — Exploration Function — Crawler

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn about
every single state!

* Too many states to visit them all in training
" Too many states to hold the g-tables in memory

Instead, we want to generalize:

" Learn about some small number of training states
from experience

" Generalize that experience to new, similar situations

" This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
\ [Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Demo Q-Learning Pacman — Tiny — Watch All

Demo Q-Learning Pacman — Tiny — Silent Train

Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)

= Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

= Example features:
= Distance to closest ghost
» Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
» [s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a g function (or value
function) for any state using a few weights:

=V, (s) =w,f(s) +w,f,(s)+..+wf(s)
" Q,(s,a) =w,f,(s,a) + w,f,(s,a) +... + w_f (s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

= zly=xy B A(Gy-0T®)
Updating a linear value function D\E“(y D -

erov

Original Q learning rule tries to reduce prediction error at s, a:
" Q(s,a) « Qs,a) + a-[R(s,a,s’)+y max, Q(s,a’)-Q(s,a)]

1 Sompld)
erroc

Instead, we update the weights to try to reduce the error at s, a:
" w,« w;+ a-[R(s,a,s’) +y max, Q(s’,a’) - Q(s,a) ,],0Q,(s,a)/ow;,
= w, + a-[R(s,a,s") +y max, Q(s’,a’) - Q(s,a)] f(s,a)

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
" Q(s,a) « Q(s,a) + a-[R(s,a,s’) +y max, Q(s,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
" w, « W, + o-[R(s,a,s’) +ymax, Q(s,a’) - Qs,a)]0Q,(s,a)/ow,
= w;+ o - [R(s,a,s’) +y max, Q(s’,a’) - Qs,a)]fs,a)

Qualitative justification:
" Pleasant surprise: increase weights on +ve features, decrease on —ve ones
» Unpleasant surprise: decrease weights on +ve features, increase on —ve ones

31

Approximate Q-Learning

Q@) = wifi(s) Fwafa(s,)t Aunfulsa)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [7" + v max Q(s',d)| —Q(s,a)

a

Q(s,a) «— Q(s,a) + «[difference] Exact Q’s

w; «— w; + a [difference] f;(s,a) Approximate Q’s

Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4'OfDOT(Sa CL) — 1'OfGST(Saa)

fDOT(Sa NORTH) = 0.5

fasr(s, NORTH) = 1.0

~

a = NORTH
r = —500

/

Q(s,NORTH) = +1
r + vy max Q(s’,a") = —500

a

O

Q(S,7) =0

[difference — —501 >

wpor — 4.0 + a[-501] 0.5
was — —1.0 + a [-501] 1.0

Q(S, CL) — 30fDOT(S, CL) — 30fGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

407

20

f1(x)

Prediction: Prediction:

Yy = wo + wi f1(x) y; = wo + wiy f1(x) + wafo(x)

Optimization: Least Squares

2
total error = Z (y; — 3);')2 =) (yi - Zwkfk(l'i))
; k

7 7

_ Error or “residual”
Observation y |

P

Prediction y

| f1(z))

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y - Zwkf’f(x))
k
0 e(;ror(’lU) — _ (y _ Zwkfk(aj)) fm(x)
Wm k

Wm <= Wm + O (y — Zwkfk(w)) fm(x)
k
Approximate q update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”

Recent Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

" Plays approximately at parity with world champion
" Led to radical changes in the way humans play backgammon

Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
" [nput is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convglution Convglution Fully cgnnected Fully cgnnected

[C‘Z
SHGAMBE s
z

o-

i
i

i
+

i
¥

¥
@] (@] (@] (@] (€] (@) (@]

ii
+ 1+ 0+

2t
+1+
@]

O A A A
e
et o

= =

1
R

£l } il

(ERERERE QN e,
ALTISior B

OpenAl Gym
2016+

Benchmark problems for learning agents
https://gym.openai.com/envs

Acrobot-v1

Swing up a two-link robot

MountainCarContinuous-v0

Drive up a big hill with

continuous control

Breakout-ram-vO
Maximize score in the game

Breakout, with RAM as input

FetchPush-v0
Push a block to a goal

Episode 2

Humanoid-v2

Make a 3D two-|

HandManipulateBlock-v0
Orient a block using a robot

hand

AlphaGo, AlphaZero
Deep Mind, 2016+

e e

* ®+ Google DeepMind

‘00 ®
Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

