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Announcements
Assignments:

▪ HW8 

▪ Due Tue 3/26, 10 pm

▪ P4

▪ Due Thu 3/28, 10 pm

▪ HW9 (written)

▪ Plan: Out tomorrow, due Tue 4/2



AI: Representation and Problem Solving

Reinforcement Learning II

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



Reinforcement Learning
We still assume an MDP:
▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over T using sample outcomes



Temporal Difference Learning



Model-Free Learning

Model-free (temporal difference) learning
▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates
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𝑉𝜋 𝑠 ← 𝑉𝜋(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average
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s

s, (s)
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Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠
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Piazza Poll 1

Which converts TD values into a policy?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

TD update: 𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠
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MDP/RL Notation
𝑉 𝑠 = max

𝑎
෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:



Q-Learning

We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally!

This is called off-policy learning

Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]



Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD/Value Learning



Exploration vs. Exploitation



How to Explore?

Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?

▪ You do eventually explore the space, but keep 
thrashing around once learning is done

▪ One solution: lower  over time
▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Demo Q-learning – Manual Exploration – Bridge Grid 



Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Demo Q-learning – Exploration Function – Crawler 



Regret

Even if you learn the optimal policy, you 
still make mistakes along the way!

Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards

Minimizing regret goes beyond learning to 
be optimal – it requires optimally learning 
to be optimal

Example: random exploration and 
exploration functions both end up optimal, 
but random exploration has higher regret



Approximate Q-Learning



Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about 
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

Instead, we want to generalize:

▪ Learn about some small number of training states 
from experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and 
we’ll see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Demo Q-Learning Pacman – Tiny – Watch All



Demo Q-Learning Pacman – Tiny – Silent Train



Demo Q-Learning Pacman – Tricky – Watch All



Feature-Based Representations

Solution: describe a state using a vector of 
features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

Using a feature representation, we can write a q function (or value 
function) for any state using a few weights:

▪ Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s) 

▪ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a) 

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in 
value!



Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] fi(s,a)
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Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a)  +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] Qw(s,a)/wi

=  wi +    [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a) ] fi(s,a)

Qualitative justification:

▪ Pleasant surprise: increase weights on +ve features, decrease on –ve ones

▪ Unpleasant surprise: decrease weights on +ve features, increase on –ve ones

31



Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that 

were on: disprefer all states with that state’s features

Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]



Demo Approximate Q-Learning -- Pacman



Q-Learning and Least Squares
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Optimization: Least Squares
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Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”



Recent Reinforcement Learning Milestones



TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon



Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
▪ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

41
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OpenAI Gym
2016+

Benchmark problems for learning agents

https://gym.openai.com/envs



AlphaGo, AlphaZero
Deep Mind, 2016+



Autonomous Vehicles?


