Announcements

Assignments:
= HWY7/

= Due Wed 3/20, 10 pm
= P4

= Due Thu 3/28, 10 pm

= HWS8
= Plan: Out tonight, due M 3/25



Al: Representation and Problem Solving

Reinforcement Learning

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU Al and http://ai.berkeley.edu



Piazza Poll 1

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

A V(s) = maaxZS,P(S’IS, a)[R(s,a,s") +yV(s')]
B V(s) =R(s) + ]/mC?XZS,P(SllS, a)V(s")
C V(s) = mc?x[R(s, a) +yXaP(s'|s,a)V(s")

D. Q(s,a) =R(s,a) +y 25 P(s'|s,a) max Q(s’,a’)



Piazza Poll 1

Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?

Vv A V(s) = mC?xZS,P(S’IS, a)[R(s,a,s") +yV(s')]
v/ B V(s) =R(s) + VmC?XZs,P(S'Is, a)V(s')
VC V(s) = max[R(s,a) +y s P(s'ls, )V (s")

V) Q(s,a) = R(s,a) +y 25 P(s'|s,a) max Q(s’,a’)



Piazza Poll 2

Which of the following are used in policy iteration?

Value iteration:
Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Vs () = max ) P(s'ls, [R(s,0,5) +YVie(sD], Vs
Qrss(s,a) = ZSIIJ(SWS, D[R(s,a,5) +ymax Qu(s',a')], Vs,
7, (s) = argcrln:xz: P(s'|s,)[R(s,a,s") + yV(s)], Vs

Vicer () = z P(s'|s,m(s)[R(s,m(s),s) + ¥V (sD], Vs

Tnew(S) = argmaxz P(s'[s,a)[R(s,a,s") + yV™ld(s")], Vs
a
S/



Piazza Poll 2

Which of the following are used in policy iteration?

Value iteration:

Q-iteration:
Policy extraction:

\/ Policy evaluation:

«/ Policy improvement:

Vs () = max ) P(s'ls, [R(s,0,5) +YVie(sD], Vs
Qrss(s,a) = ZS;’(S’IS, D[R(s,a,5) +ymax Qu(s',a')], Vs,
7, (s) = arg;n;;i P(s'|s,)[R(s,a,s") + yV(s)], Vs

Vicer () = z P(s'|s,m(s)[R(s,m(s),s) + ¥V (sD], Vs

Tnew(S) = argmaxz P(s'[s,a)[R(s,a,s") + yV™ld(s")], Vs
a
S/



Reinforcement Learning




Reinforcement learning
What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration:
Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Viesa(s) = maxz RS [RerersT + Vi (5D, Vs
Qus1(s,@) = Za@s—m [BLore™) +y max Qi(s',a)], Vs,a
y (s) = arg;naxZW[w PPV, Vs
VE(s) = ) ReHermtTI[REmeeT T + YVEGSD], Vs
Tnew(s) = as;gznaxzﬂéﬁ'm[m +yVToud(s)], Vs



Reinforcement Learning

Agent
State: s o
Reward: r Actions: a
Environment
Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]



Example: Learning to Walk

m

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Demo Crawler Bot



Reinforcement Learning

Still assume a Markov decision process (MDP):
= Aset of statess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

R

Overheated

Still looking for a policy m(s)

New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Model-Based Learning




Model-Based Learning
Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

= Count outcomes s’ for each s, a

= Normalize to give an estimate of T'(s,a, s’)

= Discover each R(s,a,s’) when we experience (s, a, s’)

Step 2: Solve the learned MDP
" For example, use value iteration, as before




Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

N

g B, east, C, -1

~
C, east, D, -1

D, exit, X, +1OJ

Episode 3

N

(E, north, C, -1

~

C, east,
D, exit,

D, -1

X, +10j

Episode 2

N

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =
T(C, east, D) =
T(C, east, A) =

\_ - Y,

R(s,a,s")

4 R(B, east, C) = h
R(C, east, D) =
R(D, exit, x) =

\ oo /




Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

N

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

N

(E, north, C, -1

C, east,
D, exit,

D, -1

X, +10

~

J

Episode 2

N

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

-

~

)

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

-

~

)




Example: Expected Age

Goal: Compute expected age of 15-381 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 p(a) _ num(a) Z Why does this
work? Because N E[A] ~ i Z‘l' work? Because
eventually you A N &~ samples appear
learn the right E[A] ~ Z P(a)-a ' with the right

model. g / \ frequencies.




Model-Free Learning




Passive Reinforcement Learning




Passive Reinforcement Learning

Simplified task: policy evaluation

" [nput: a fixed policy m(s)

= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)

" Goal: learn the state values

In this case:

= Learner is “along for the ride”

* No choice about what actions to take
= Just execute the policy and learn from experience

= This is NOT offline planning! You actually take actions in the world.




Direct Evaluation

Goal: Compute values for each state under «

Idea: Average together observed sample values
= Act according to m

" Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples

This is called direct evaluation



Example: Direct Evaluation

Input Policy ©

Observed Episodes (Training)

Episode 1

g B, east, C, -1

Assume:y=1

-

~
C, east, D, -1

Episode 2

g B, east, C, -1

D, exit, X, "'10/

Episode 3

/E, north, C, -1

-

~

C,east, D, -1

-

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

g E, north, C, -1

D, exit, x,+10

J

-

C, east, A, -1
A, exit, x,-10

~

v

Output Values




Problems with Direct Evaluation

What’s good about direct evaluation? Output Values
" |t’s easy to understand
" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

What bad about it?

" |t wastes information about state connections
" Each state must be learned separately
= So, it takes a long time to learn

If Band E both go to C
under this policy, how can
their values be different?



Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:

= Each round, replace V with a one-step-look-ahead layer over V m(s)

Vo (s) =0 s, 1(s)
Vi1 (s) = S T(s,7(s), 8 ) [R(s,7(s),8") + V()] _sials)s’ \
s’ A s

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
" In other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

ka—|—1(3) — ZT(S,W(S), SHIR(s,7(s),s") + '}/ka(sl)]

S

ldea: Take samples of outcomes s’ (by doing the actionl) and average
sample; = R(s,m(s),s7) + vV (s})
samples = R(s,m(s),s5) + YV (s5)

samplep, = R(s,m(s), S;@) + ”YV/?(S;;,)

1
Vig1(8) < - > sample;
()




Temporal Difference Learning

Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: V7T (s) < V™(s) + a(sample — V" (s))



Exponential Moving Average

Exponential moving average
" The running interpolation update: Tn=(1—a) Tn_1+a-z,

= Makes recent samples more important:

Tp+(1—a) Tp 1 +(1—a)? zpo+...
I1+(1—-a)+(1—-a)2+...

" Forgets about the past (distant past values were wrong anyway)

Ly =

Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

States Observed Transitions
[ B, east, C, -2 } [ C, east, D, -2 }

ool [0

Assume: y =1,
a=1/2 VT(s) + (1 —a)V"™(s) + « [R(S,’FT(S), ") + 7\/”(5')}




Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s') [R(S, a,s') + ny(S’)]

ldea: learn Q-values, not values

Makes action selection model-free too! o




Active Reinforcement Learning




Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)

= You choose the actions now

= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and find out
what happens...



Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= Given V,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

But Q-values are more useful, so compute them instead
= Start with Qy(s,a) = 0, which we know is right
= Given Qy, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning
Q-Learning: sample-based Q-value iteration

Qr+1(s,a) ZT(S a,s) [R(s a,s’) +~ maXQk(s a’)]
Learn Q(s,a) values as you go
" Receive a sample (s,a,s’,r)
" Consider your old estimate: Q(s,a)
" Consider your new sample estimate:
sample = R(s,a,s’) 4+~ max Q(s', d")
a

" [ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Demo Q-Learning -- Gridworld



Demo Q-Learning -- Crawler



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're
acting suboptimally!

This is called off-policy learning

Caveats:
" You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)




