Announcements

Assignments:

- HW7
 - Due Wed 3/20, 10 pm
- P4
 - Due Thu 3/28, 10 pm
- HW8
 - Plan: Out tonight, due M 3/25

AI: Representation and Problem Solving Reinforcement Learning

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Rewards may depend on any combination of *state*, *action*, *next state*. Which of the following are valid formulations of the Bellman equations?

A.
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

B.
$$V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

C.
$$V(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')]$$

D.
$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Rewards may depend on any combination of *state*, *action*, *next state*. Which of the following are valid formulations of the Bellman equations?

$$\checkmark A. V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

$$\checkmark B. V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

$$\checkmark C. \quad V(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')]$$

$$\checkmark D. \ Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

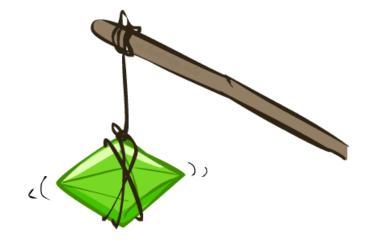
Which of the following are used in policy iteration?

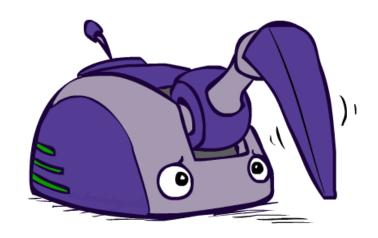
Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
Q-iteration: $Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$ Policy improvement: $\pi_{new}(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$

Which of the following are used in policy iteration?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
Q-iteration: $Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$ Policy improvement: $\pi_{new}(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$

Reinforcement Learning



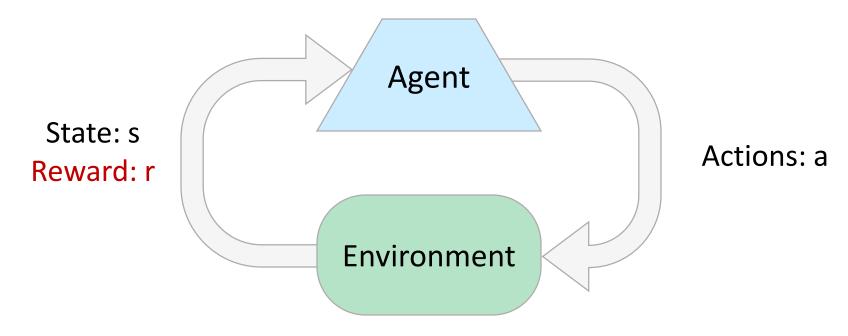


Reinforcement learning

What if we didn't know P(s'|s, a) and R(s, a, s')?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
Q-iteration: $Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,n(s))[P(s,n(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$ Policy improvement: $\pi_{new}(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k^{\pi_{old}}(s')], \quad \forall s$

Reinforcement Learning



Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]



Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

Finished

[Kohl and Stone, ICRA 2004]

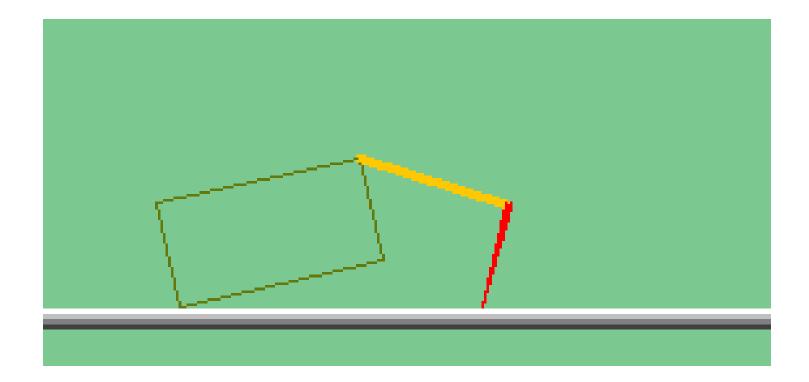
[Video: AIBO WALK – finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]

The Crawler!



[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):

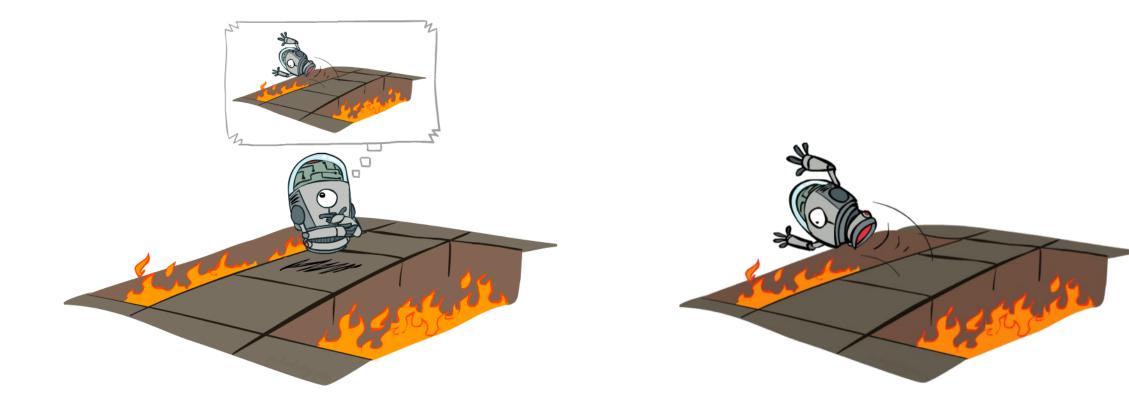
- A set of states s ∈ S
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

Overheated

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

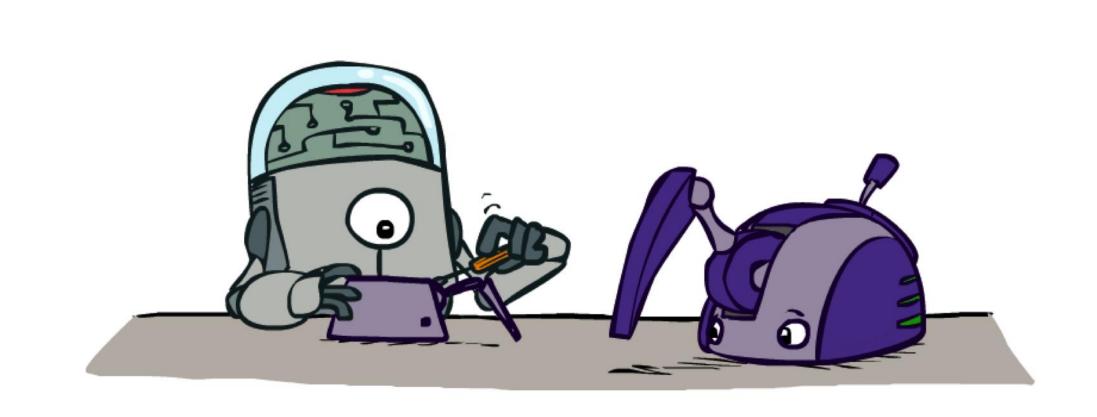
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

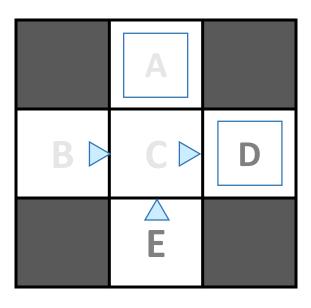
- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

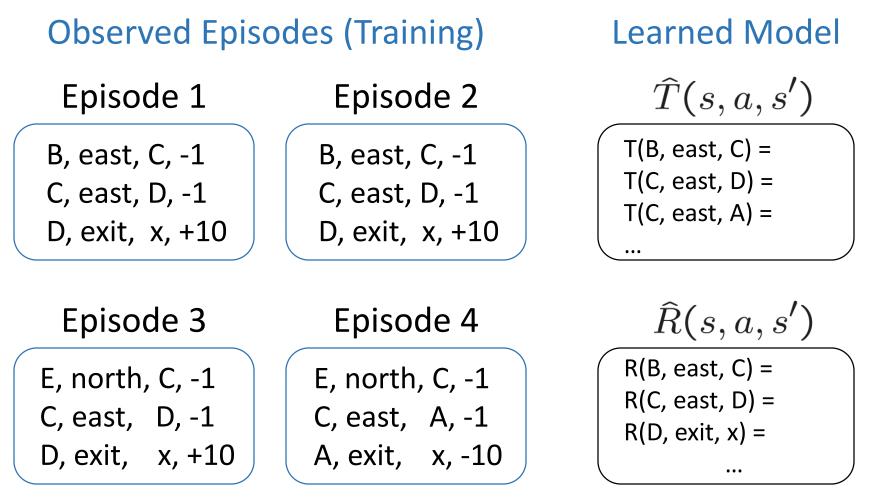
For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

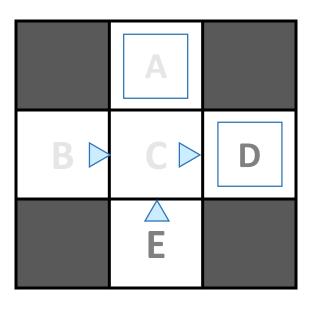


Assume: γ = 1

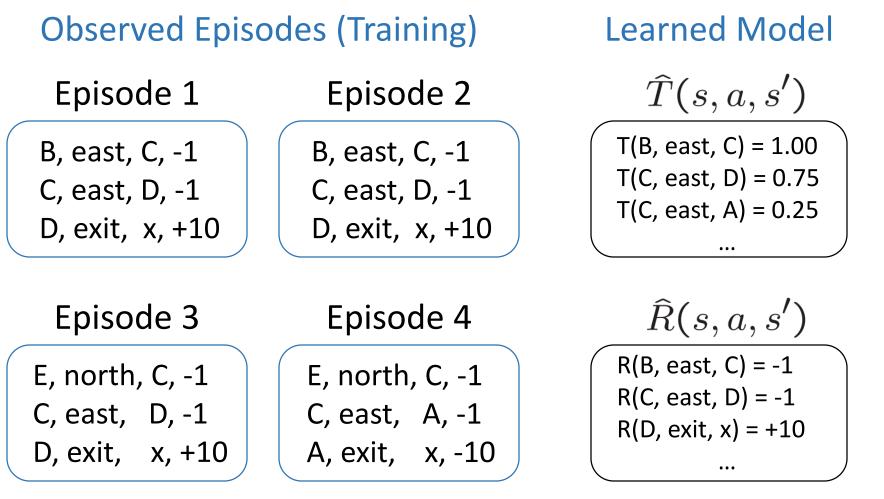


Example: Model-Based Learning

Input Policy π

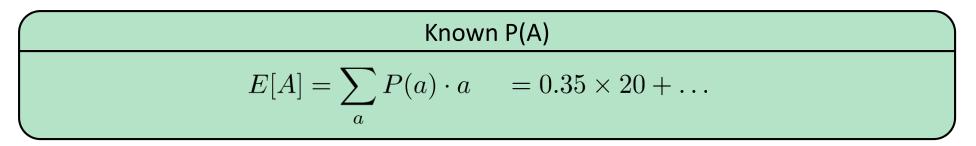


Assume: $\gamma = 1$

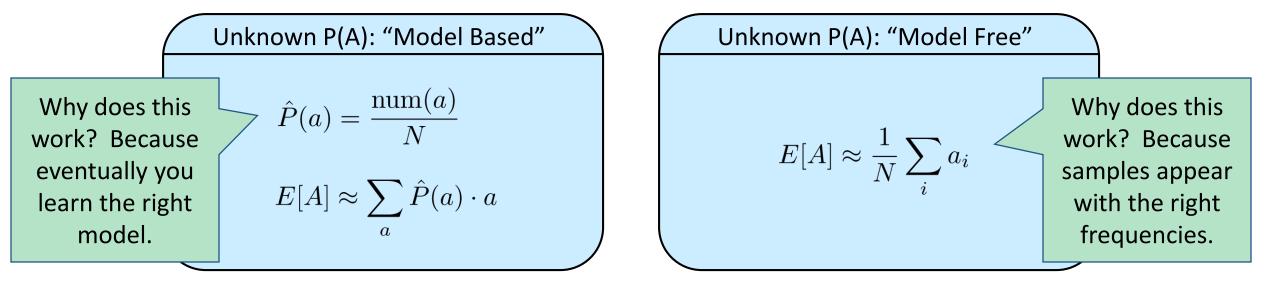


Example: Expected Age

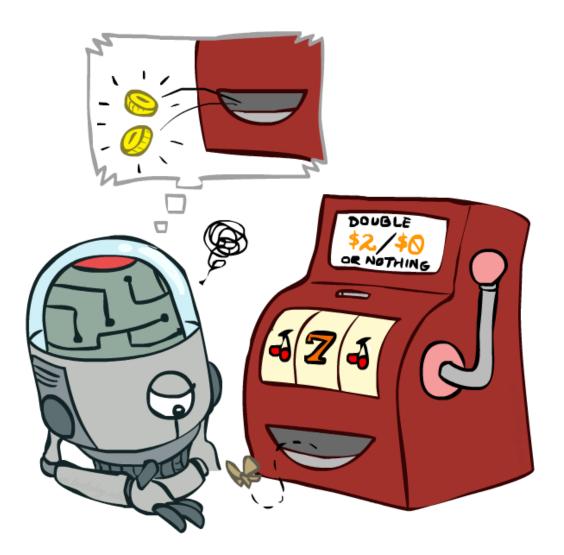
Goal: Compute expected age of 15-381 students



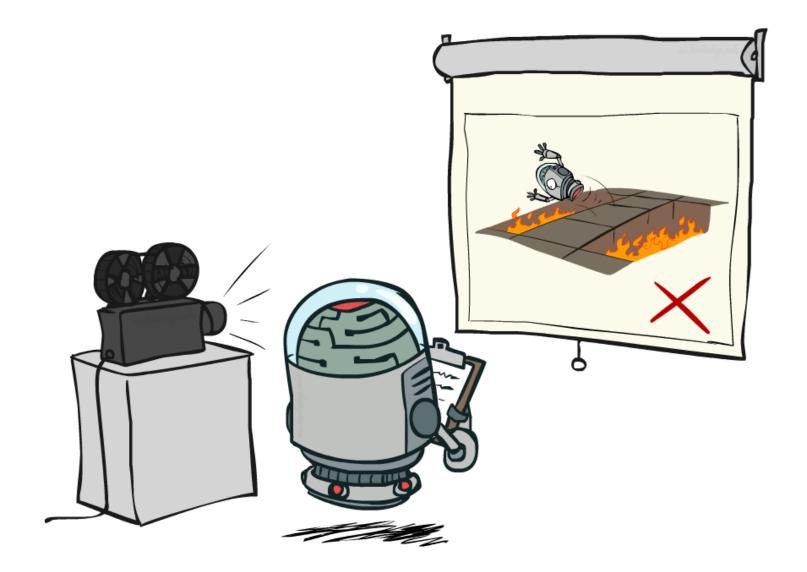
Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$



Model-Free Learning



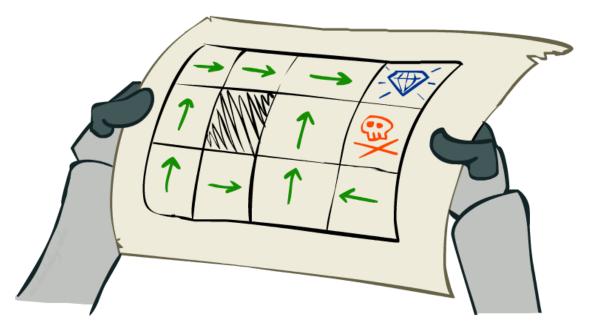
Passive Reinforcement Learning



Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values



In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

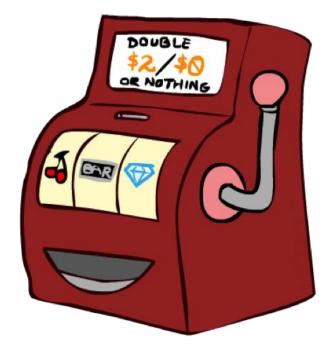
Direct Evaluation

Goal: Compute values for each state under $\boldsymbol{\pi}$

Idea: Average together observed sample values

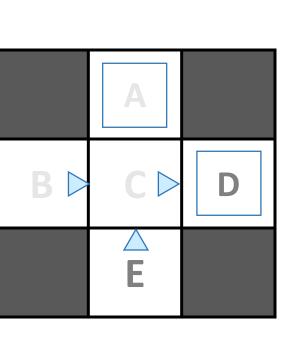
- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

This is called direct evaluation

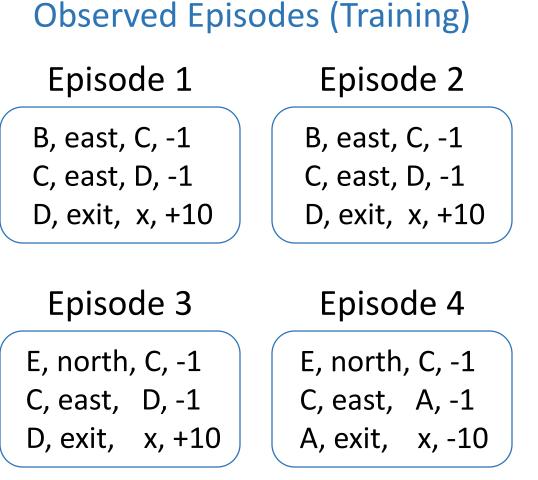


Example: Direct Evaluation

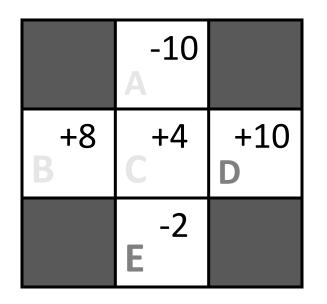
Input Policy π



Assume: γ = 1



Output Values



Problems with Direct Evaluation

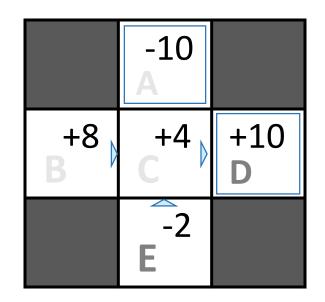
What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values



If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:

Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

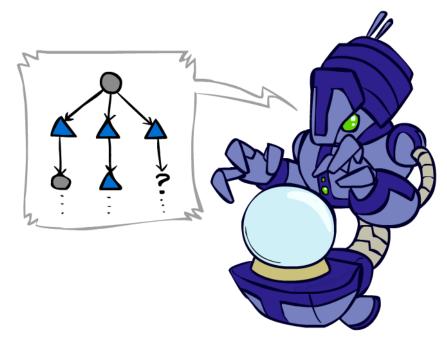
$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Temporal Difference Learning

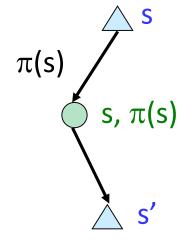
Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$



Exponential Moving Average

Exponential moving average

The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Makes recent samples more important:

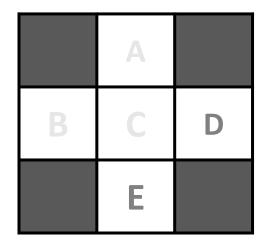
$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

Forgets about the past (distant past values were wrong anyway)

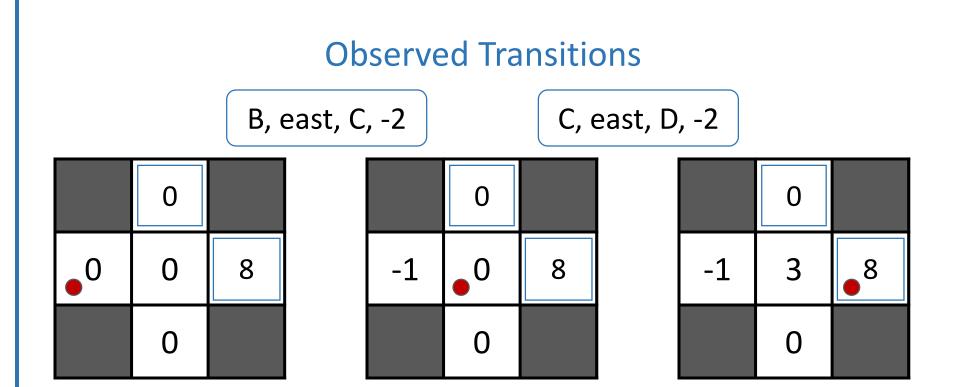
Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States



Assume: $\gamma = 1$, $\alpha = 1/2$



 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

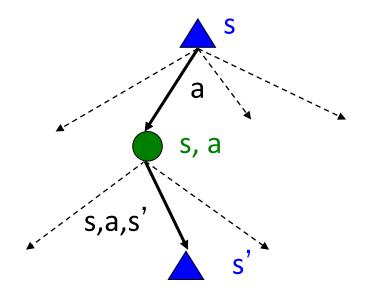
Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

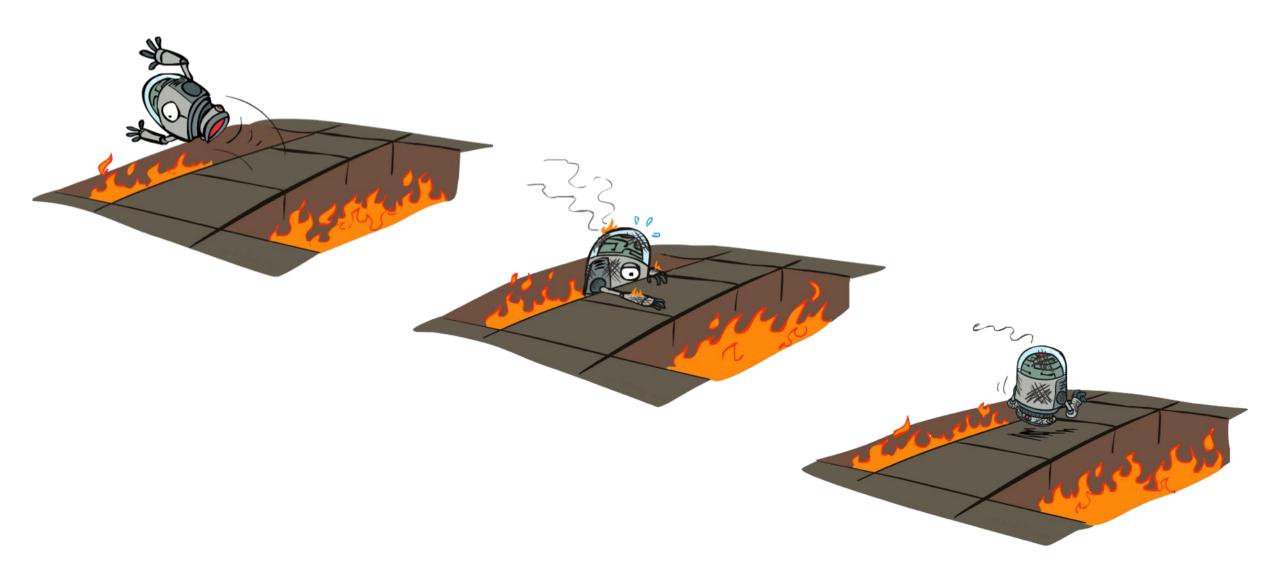
However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$

Idea: learn Q-values, not values Makes action selection model-free too!



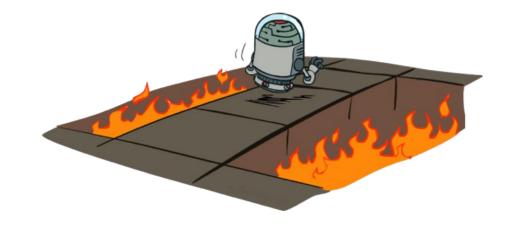
Active Reinforcement Learning



Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You choose the actions now
- Goal: learn the optimal policy / values



In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values

- Start with V₀(s) = 0, which we know is right
- Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

But Q-values are more useful, so compute them instead

- Start with Q₀(s,a) = 0, which we know is right
- Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

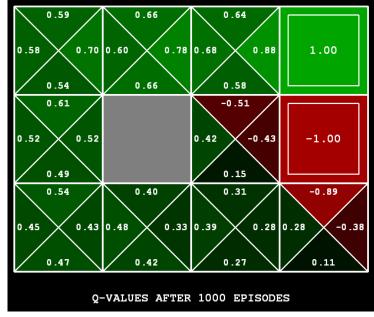
Learn Q(s,a) values as you go

- Receive a sample (s,a,s',r)
- Consider your old estimate: Q(s, a)
- Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$



[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Demo Q-Learning -- Gridworld

Demo Q-Learning -- Crawler

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

