
Warm-up as You Walk In (Repeat)

Given

▪ Set actions (persistent/static)

▪ Set states (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:

Announcements
Assignments:

▪ HW7

▪ Due Wed 3/20, 10 pm

▪ HW8

▪ Plan: Out tomorrow, due M 3/25

▪ P4

▪ Plan: Out tomorrow, due Thu 3/28

AI: Representation and Problem Solving

Markov Decision Processes II

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Example: Grid World

▪ A maze-like problem
▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as
planned
▪ 80% of the time, the action North takes the agent North

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

Example: Grid World

▪ A maze-like problem
▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as
planned
▪ 80% of the time, the action North takes the agent North

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of (discounted) rewards

Recap: MDPs
Markov decision processes:
▪ States S
▪ Actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount)
▪ Start state s0

Quantities:
▪ Policy = map of states to actions
▪ Utility = sum of discounted rewards
▪ Values = expected future utility from a state (max node)
▪ Q-Values = expected future utility from a q-state (chance node)

a

s

s, a

s,a,s’

s’

MDP Notation

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’

Gridworld Values V*

Gridworld: Q*

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’

Solving MDPs

Solving Expectimax

Solving Expectimax

Solving Expectimax

Value Iteration

Demo Value Iteration

[Demo: value iteration (L8D6)]

Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

s

s, a

s,a,s’

Value Iteration Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM

holds the actual untruncated values

Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge

Solved MDP! Now what?
What are we going to do with these values??

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎

Piazza Poll 1
If you need to extract a policy, would you rather have

Values or Q-values?

Piazza Poll 1
If you need to extract a policy, would you rather have

Values or Q-values?

Policy Methods

Policy Evaluation

Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy (s), then the tree would be simpler
– only one action per state

▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

(s)

s

s, (s)

s, (s),s’
s’

Do the optimal action Do what says to do

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s

and following

Recursive relation (one-step look-ahead / Bellman
equation):

(s)

s

s, (s)

s, (s),s’
s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation
How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’
s’

Policy Extraction

Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?

▪ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration
Value iteration repeats the Bellman updates:

Problem 1: It’s slow – O(S2A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration
Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead
with resulting converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Policy Iteration

Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction

▪ One-step look-ahead:

Comparison
Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms
So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Double Bandits

Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount

100 time steps

Both states have
the same value

Offline Planning

Solving MDPs is offline planning
▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Online Planning
Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

What Just Happened?

That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

