
Warm-up as You Walk In (Repeat)

Given

▪ Set  actions (persistent/static)

▪ Set  states (persistent/static)

▪ Function T(s,a,s_prime)

Write the pseudo code for:
▪ function V(s) return value

that implements:



Announcements
Assignments:

▪ HW7 

▪ Due Wed 3/20, 10 pm

▪ HW8

▪ Plan: Out tomorrow, due M 3/25 

▪ P4

▪ Plan: Out tomorrow, due Thu 3/28 



AI: Representation and Problem Solving

Markov Decision Processes II

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu



Example: Grid World

▪ A maze-like problem
▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as 
planned
▪ 80% of the time, the action North takes the agent North 

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)



Example: Grid World

▪ A maze-like problem
▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as 
planned
▪ 80% of the time, the action North takes the agent North 

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of (discounted) rewards



Recap: MDPs
Markov decision processes:
▪ States S
▪ Actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )
▪ Start state s0

Quantities:
▪ Policy = map of states to actions
▪ Utility = sum of discounted rewards
▪ Values = expected future utility from a state (max node)
▪ Q-Values = expected future utility from a q-state (chance node)

a

s

s, a

s,a,s’

s’



MDP Notation

𝑉 𝑠 = max
𝑎
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𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)
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𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠
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𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

[Demo:  gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’



Gridworld Values V*



Gridworld: Q*



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’



Solving MDPs



Solving Expectimax



Solving Expectimax



Solving Expectimax



Value Iteration



Demo Value Iteration

[Demo: value iteration (L8D6)]



Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

s

s, a

s,a,s’



Value Iteration Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM

holds the actual untruncated values

Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge



Solved MDP! Now what?
What are we going to do with these values?? 

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎



Piazza Poll 1
If you need to extract a policy, would you rather have

Values or Q-values?



Piazza Poll 1
If you need to extract a policy, would you rather have

Values or Q-values?



Policy Methods



Policy Evaluation



Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy (s), then the tree would be simpler               
– only one action per state

▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

(s)

s

s, (s)

s, (s),s’
s’

Do the optimal action Do what  says to do



Utilities for a Fixed Policy

Another basic operation: compute the utility of a state 
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s 

and following 

Recursive relation (one-step look-ahead / Bellman 
equation):

(s)

s

s, (s)

s, (s),s’
s’



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation
How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’
s’



Policy Extraction



Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?

▪ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration
Value iteration repeats the Bellman updates:

Problem 1: It’s slow – O(S2A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration
Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not 
optimal utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead 
with resulting converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions



Policy Iteration

Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction

▪ One-step look-ahead:



Comparison
Both value iteration and policy iteration compute the same thing                     
(all optimal values)

In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)



Summary: MDP Algorithms
So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions



MDP Notation
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𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
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𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:
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Value iteration:

Q-iteration:
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Policy improvement:
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Standard expectimax:



MDP Notation

Standard expectimax: 𝑉 𝑠 = max
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Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:



Double Bandits



Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount

100 time steps

Both states have 
the same value



Offline Planning

Solving MDPs is offline planning
▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75  $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0



Online Planning
Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

??   $0

?? 
$2

??   $2

?? 
$0



Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0



What Just Happened?

That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!


