Warm-up as You Walk In

Given

" Set actions (persistent/static)
" Set states (persistent/static)
" Function T (s,a,s prime)

Write the pseudo code for:
" function V(s) return wvalue

that implements:

V(s) = max Z T(s,a,s"V(s")

acactions
s’ Estates

Announcements

Assignments:
= HWY7/
= Due Wed 3/20, 10 pm
= HWS
= Plan: Out tomorrow, due M 3/25
" P4
= Plan: Out tomorrow, due Thu 3/28

Al: Representation and Problem Solving

Markov Decision Processes ||

Instructors: Pat Virtue & Stephanie Rosenthal
Slide credits: CMU Al and http://ai.berkeley.edu

Example: Grid World

" A maze-like problem
= The agentlivesin a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as
planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

" The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Example: Grid World

A maze-like problem
= The agentlivesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Recap: MDPs

Markov decision processes:

= States S

= Actions A

" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y)
= Start state s,

Quantities:

" Policy = map of states to actions

= Utility = sum of discounted rewards

= Values = expected future utility from a state (max node)

= Q-Values = expected future utility from a g-state (chance node)

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maaXZ P(s'ls,a)[R(s,a,s") +yV(s")]
S/
Value iteration: Vis1(s) = mgxz P(s'|s,a)[R(s,a,s") +yVi,(s")], Vs
Q-iteration: Qi+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max 0,(s",a"], Vs,a
S/
Policy extraction: Ty (s) = argcrlnaxz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVi(s")], Vs
S/

Policy improvement: Tew (S) = argmax E P(s'|s,a)[R(s,a,s") + yVTela(s")], Vs
a
S/

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

" The optimal policy:
7 (s) = optimal action from state s

[Demo: gridworld values (L9D1)]

Gridworld Values V*

VALUES AFTER 100 ITERATIONS

Gridworld: Q*

R =
s

The Bellman Equations

How to be optimal:

(& Step 1: Take correct first action

Step 2§Keep being optimal

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*¥(s) = max Q*(s,a)
Q*(s,a) =) T(s,a, s [R(S, a,s’) + ’)/V*(s’)]

V*i(s) = macijT(s, a,s’) [R(s,a, s + ’}/V*(S,)}

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Solving MDPs

Solving Expectimax

Solving Expectimax

Solving Expectimax

Value lteration

Demo Value Iteration

VALUES AFTER 0 ITERATIONS VALUES AFTER 100 ITERATIONS

[Demo: value iteration (L8D6)]

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vir1(s) - max 3 7(s.a:8) [R(s,0:8) +9 V(D] o

S

Repeat until convergence .

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value Iteration

Bellman equations characterize the optimal values:

V*(s) = m(?XZT(S, a,s’) [R(S,a,, s") + ’Yv*(SI)} ol

Value iteration computes them: «

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Value iteration is just a fixed point solution method
= .. though the V| vectors are also interpretable as time-limited values

Value Iteration Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)
Case 1: If the tree has maximum depth M, then V,,
holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

" That last layer is at best all R,y / \ /

= |tis at worst Ry,

= But everything is discounted by y* that far out
» SoV, and V,,, are at most yk max|R| different
= So as k increases, the values converge

Solved MDP! Now what?

What are we goi

ng to do with these values??

S

Piazza Poll 1

Piazza Poll 1

If you need to extract a policy, would you rather have
Values or Q-values?

0.95 »

.
n.

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-°s,a,S

A’/

A S
Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 1t(s), then the tree would be simpler
— only one action per state

= ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:

V™(s) = expected total discounted rewards starting in s
and following m

Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,m(s),s) + V" (s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo(s) =0

ka_|_1(s) — ZT(S,T&'(S), SH[R(s,7(s),s") + WV,{W(S')]

S

Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver

Policy Extraction

|

' —J

Computing Actions from Values

Let’s imagine we have the optimal values V*(s) .n..
0.95 » 0.98 » 1.00
How should we act?
. 4 0.89 -1.00
= |t's not obvious!
.. . 0.92 4 0.91 0.80
We need to do a mini-expectimax (one step))

7*(s) = arg CILTIaXZ:T(s, a,s)[R(s,a,s") +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values:

How should we act?
= Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

Important lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

Vie-1(8) < mC?XZT(S, a,s) [R(s,a, s + WV/{(S')}

S

Problem 1: It’s slow — O(S%A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

0.72) 1.00

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

o6

Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

S

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead
with resulting converged (but not optimal!) utilities as future values

" Repeat steps until policy converges

This is policy iteration
" |t’s still optimal!
* Can converge (much) faster under some conditions

Policy Iteration

Evaluation: For fixed current policy &, find values with policy evaluation:
" [terate until values converge:

Vit 1 (s) < Y T(s,mi(s),s") |R(s,mi(s),8") + 7 V(s

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi4+1(s) = arg CILﬂaXZT(s, a,s) [R(s, a,s’) + ")/VW":(S,)}

S

Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving M DPs)

Summary: MDP Algorithms

So you want to....

" Compute optimal values: use value iteration or policy iteration

= Compute values for a particular policy: use policy evaluation

» Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maaxz P(s'|s,a)[R(s,a,s") + yV(s")]
S1
Value iteration: Vies1(s) = mgxz P(s'|s,a)[R(s,a,s") + yV,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S1

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") + yV™oid(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maaXZ P(s'ls,a)[R(s,a,s") +yV(s")]
S/
Value iteration: Vis1(s) = mgxz P(s'|s,a)[R(s,a,s") +yVi,(s")], Vs
Q-iteration: Qi+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max 0,(s",a"], Vs,a
S/
Policy extraction: Ty (s) = argcrlnaxz: P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVi(s")], Vs
S/

Policy improvement: Tew (S) = argmax E P(s'|s,a)[R(s,a,s") + yVTela(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maaxz P(s'|s,a)[R(s,a,s") + yV(s")]
S1
Value iteration: Vies1(s) = mgxz P(s'|s,a)[R(s,a,s") + yV,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi,(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S1

Policy improvement: Tnew(S) = argmaxz P(s'|s,a)[R(s,a,s") + yV™oid(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maaxz P(s'|s,a)[R(s,a,s") + yV(s")]
S1
Value iteration: Vierr1(s) = mgxz P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = Z P(s'|s,m(s))[R(s,m(s),s") + YV (s")], Vs
S1

Policy improvement: Thew(S) = argmaxz P(s'|s,a)[R(s,a,s") + yV™old(s")], Vs
a
S/

Double Bandits

4 N

Double-Bandit MDP No discount
100 time steps
Actions: Blue, Red Both states have

States: Win, Lose 0.25 SO Kthe same va/ue/

Offline Planning

. . . . 4 No discount
Solving MDPs is offline planning 100 time steps
" You determine all quantities through computation Both states have
" You need to know the details of the MDP the same value

o /
" You do not actually play the game!
Value
Play Red 150

Play Blue 100

\ /

Let’s Play!

S2 $2 S0 $S2 $2
$2 $2 SO SO SO

Online Planning

Rules changed! Red’s win chance is different.

?? SO

Let’s Play!

SO SO SO $2 SO
$2 SO SO SO SO

What Just Happened?

That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

= Exploration: you have to try unknown actions to get information

= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

