Announcements

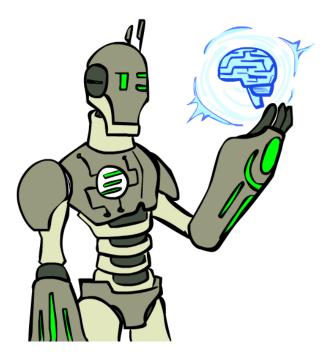
Assignments:

- HW6
 - Due Tue 3/5, 10 pm
- P3
 - Due Thu 3/7, 10 pm

Spring Break!

- No recitation this Friday
- HW7 (online): out Wed 3/6, due Tue 3/19
- P4: out after break, due Thu 3/28

AI: Representation and Problem Solving Knowledge Representation



Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, especially Tom Mitchell (NELL)

What is this?

What is this?

WordNet/ImageNet

WordNet

A Lexical Database for English

https://wordnet.princeton.edu/ http://www.image-net.org/

Ontologies

ImageNet

ImageNet server is under maintenance. Synsets outside ILSVRC are temporarily unavailable.

Golden retriever

An English breed having a long silky golden coat

- darter (0)	Treemap Visualization Images of the Synset Downloads
survivor (0)	Treemap Visualization Images of the Synset Downloads
- range animal (0)	
- creepy-crawly (0)	
domestic animal, domesticated animal (213)	
domestic cat, house cat, Felis domesticus, Felis c	
dog, domestic dog, Canis familiaris (189)	
- pooch, doggie, doggy, barker, bow-wow (0)	
hunting dog (101)	
pointer, Spanish pointer (2)	
setter (3)	
- bird dog (0)	
spaniel (11)	
griffon, wire-haired pointing griffon (0)	
water dog (0)	
retriever (5)	
- golden retriever (0)	
- Chesapeake Bay retriever (0)	
curly-coated retriever (0)	

1607

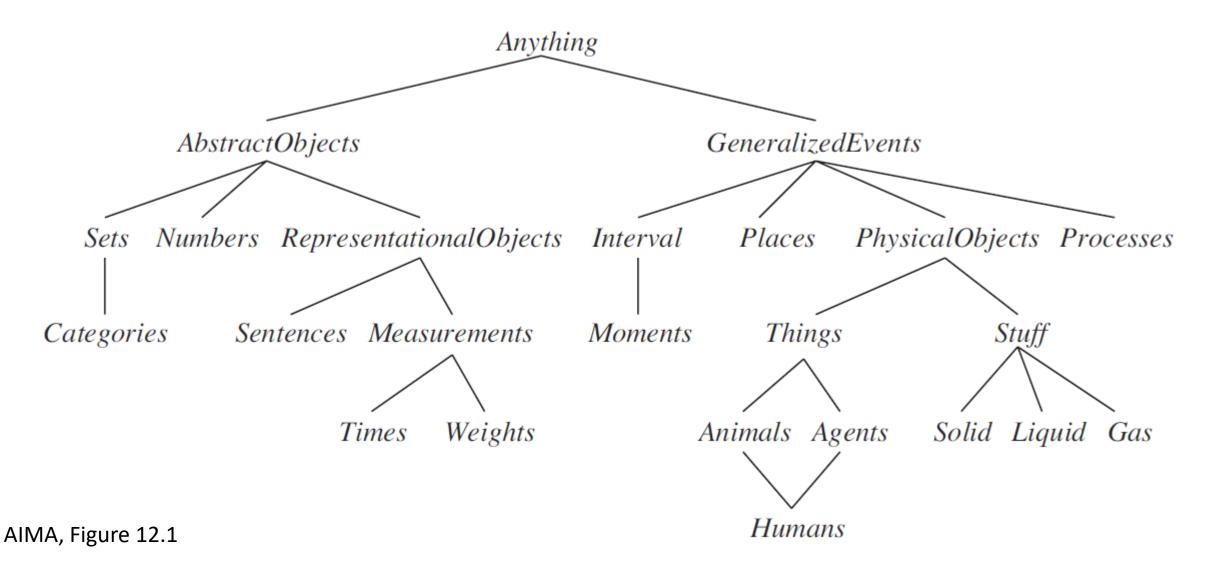
pictures

64.99% Popularity Percentile

Wc ID:

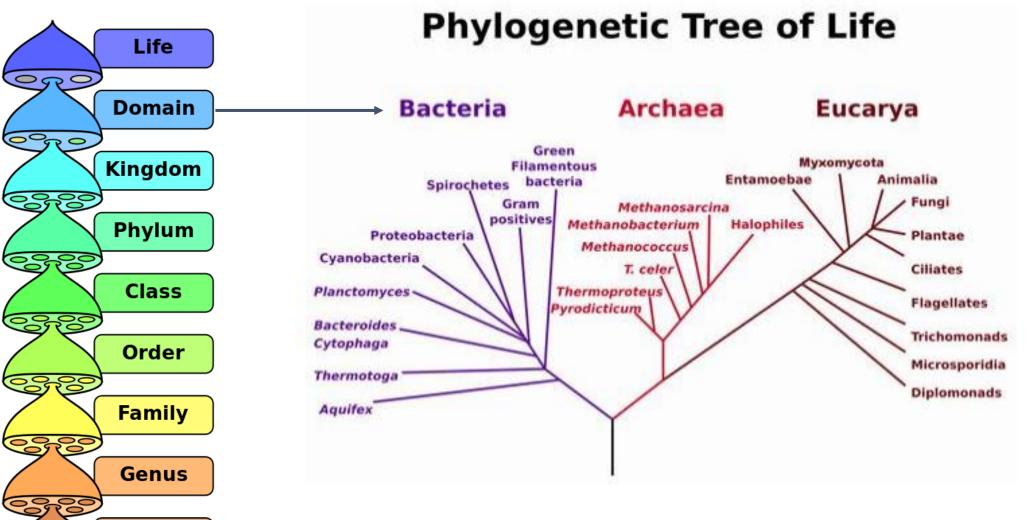
https://wordnet.princeton.edu/ http://www.image-net.org/

An "upper ontology" of the world

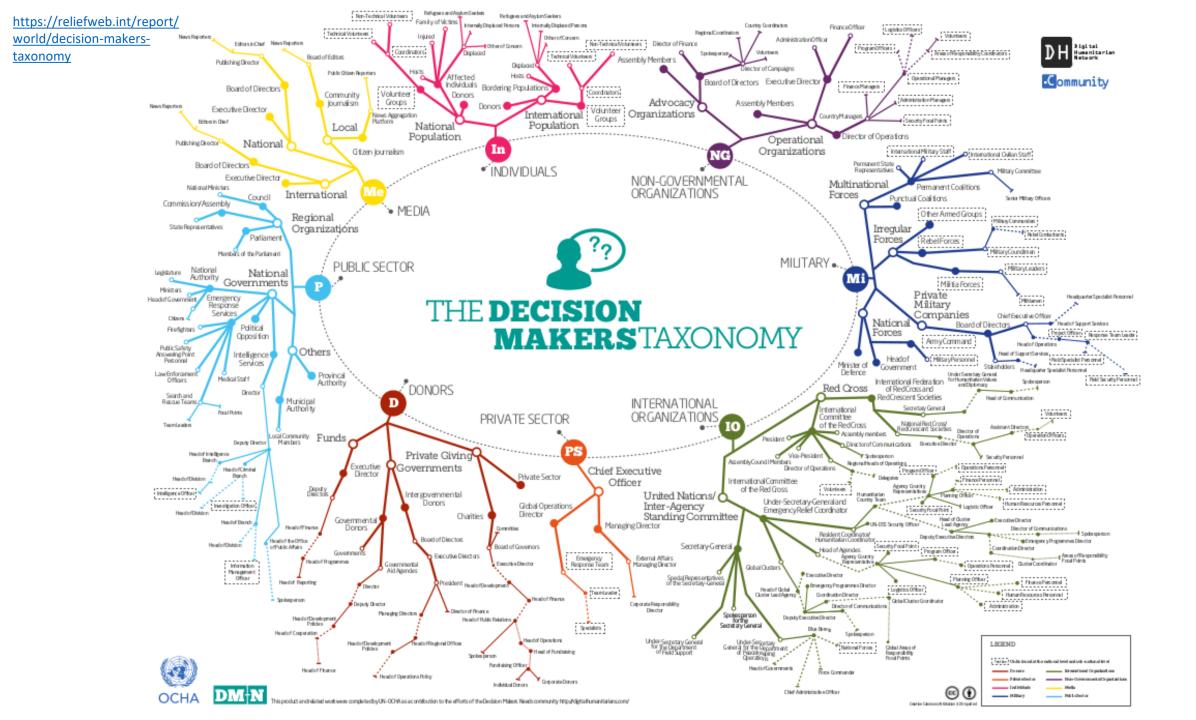


Taxonomic Hierarchies

Species



10 million living and extinct species.



TAXONOMY CREATION & APPLICATION VIDEO GAME MOOD TAXONOMY FROM THE PERSPECTIVE OF USERS STEPHANIE ROSSI MLIS

TOP THREE MOODS BY GENRE

INTRODUCTION -

The mood taxonomy, developed by the Game Metadata Research Group, in collaboration with the SIMM, is part of the Video Game Metadata Schema. This project expands upon current research, furthering our understanding of how people percieve and describe the mood of video games and interactive media.

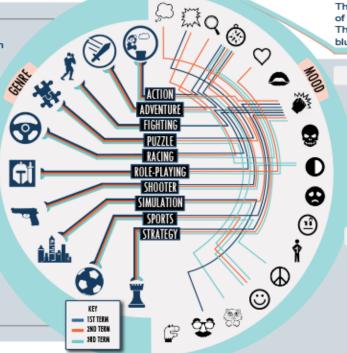
METHOD

Metadata: video game title list with 1500+ entries. User Study and Exercise: 26 gamers completed questionnaires, were interviewed and asked to apply mood terms to popular video game titles.

RESULTS

Study Data: interview transcripts and exercise data.

Data Analysis: sample of 300 games with sourced genre and year (from allgame.com). Term Suggestions: mood term suggestions collected from gamerDNA and interview data. Mood Clustering: hierarchical clustering of current preferred terms.



The diagram to the left explores the genre breakdown of mood terms applied to a sample of 300 games. The top three mood terms are represented by dark blue, orange, and light blue lines, repectively.

Mentioned in both gamerDNA and interview data

MOOD CLUSTER DATA

sensual

romantic

sarcastic

peaceful

humorous

Imaginative

light-hearted

quirky

sad

MOOD STUDY DATA ANALYSIS

As part of the exercise, participants were asked to apply mood terms to 35 video game titles. Below are the four most recognized video game titles with their applied mood terms.

While a large number of participants applied the same top mood term to Angry Birds (light-hearted), Assassin's Creed III (adventurous) and Grand Theft Auto IV (aggressive) opinion was more split over Super Mario Bros.

Mood Term Dendrogram 0.8 0.85 0.9 0.95

This graph represents mood terms that appear frequently together in the collected interview data. The results indicate that the mood terms intense and aggressive. light-hearted and cute, and horror and dark are applied often together when describing video game mood. Clustering mood terms will allow us to use groups of particular mood terms instead of individual terms to obtain more consistent results.

Acknowledgements: Jin Ha Lee, Carl Geliert, Alison Lane, The Seattle Interactive Media Museum, The Game Metadata Research Group, INFC498/INFX598 Participants, Jaki Parsons, and The Noun Project.

First-order logic for ontological representations

Category: Basketball

- Predicate: Basketball(b)
- Object for category: *Basketballs*
 - Member(b, Basketballs) ←
 - Notation shortcut: $b \in Basketballs$
 - Subset(Basketballs, Balls)
 - Notation shortcut: *Basketball* ⊂ *Balls*
- Specific object
 - \bigcirc Basketball₁₂ \in Basketballs

Reification: converting category predicate into an object

Decompositions and Partitions

Disjoint({Animals, Vegetables})

ExhaustiveDecomposition({Canadians,Americans,Mexicans}, NorthAmericans)

Partition({Canada, United States, Mexico}, NorthAmericanCountries})

Parts

PartOf(Bucharest, Romania)
PartOf(Romania, EasternEurope)
PartOf(EasterEurope, Europe)

Transitive

$$PartOf(x, y) \land PartOf(y, z) \Rightarrow PartOf(x, z)$$

Reflexive

PartOf(x, x)

Measurements

Number are objects

Units are typically functions to convert number constants to measurements

 $\underbrace{Length(L_1) = Inches(1.5) = Centimeters(3.81)}_{\uparrow}$

Piazza Poll 1

Which of these measurement statements makes sense? Select ALL that apply.

- A) Diameter(Basketball)
- **B)** *Diameter*(*Basketball*₁₂)
- C) Weight(Apple)
- **D)** $Weight(Apple_1 \land Apple_2 \land Apple_3)$
- E) None of the above

Piazza Poll 1

Which of these measurement statements makes sense? Select ALL that apply.

A) Diameter(Basketball) Maybe, if we have default diameter
B) Diameter(Basketball₁₂) Yes B) $Diameter(Basketball_{12})$ Yes C) Weight(Apple) Probably not. Not all apples in the category Apple have the same weight D) $Weight(Apple_1 \land Apple_2 \land Apple_3)$ No. This is invalid, as the arg E) None of the above to Weight is a sensence not a term, e.g. Weight (True) doesn't make SENSP

Bunches of Things and Stuff

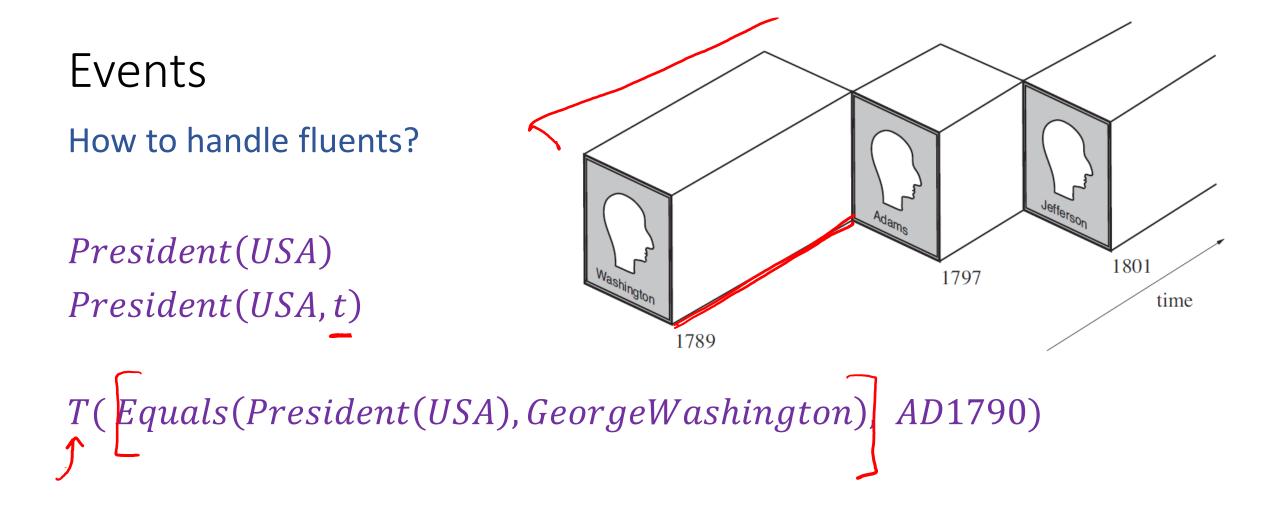
BunchOf({Apple1, Apple2, Apple3})

Things

- Countable
- "The" apple, "an" apple

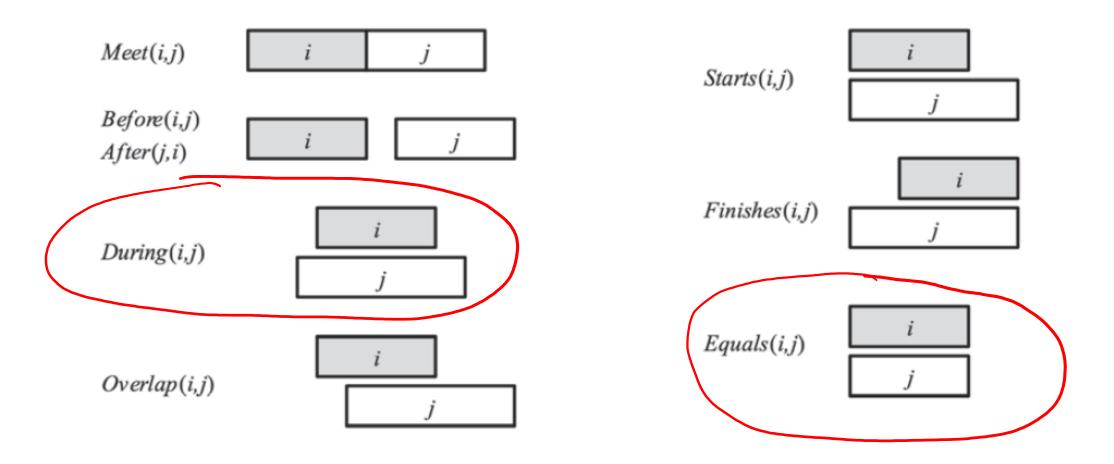
Stuff

- More of a mass
- "Some" water
- $b \in Butter \land PartOf(p, b) \Rightarrow p \in Butter$



Events

How to handle time?

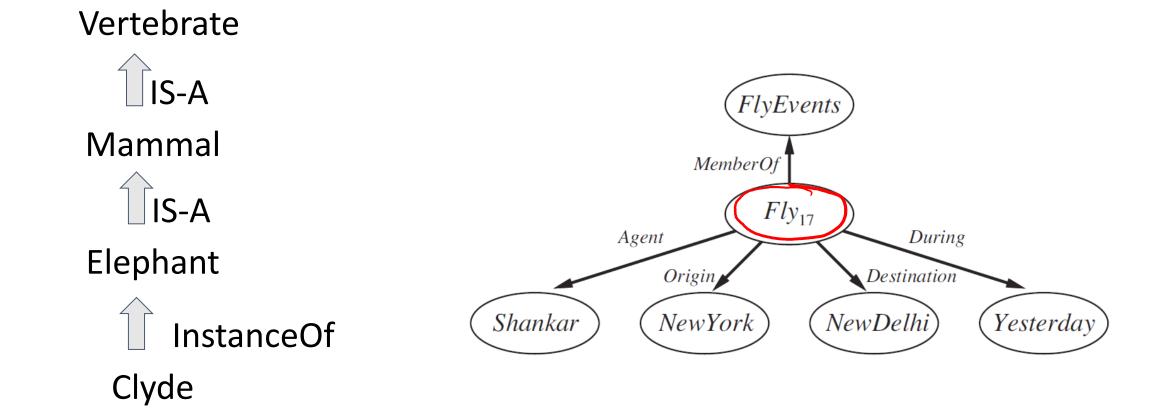


AIMA, Figure 12.2

Semantic Networks

A graphical representation for some types of knowledge

- Once viewed as an "alternative" to logic (it's not really)
- The IS-A relation often forms the backbone of a semantic network



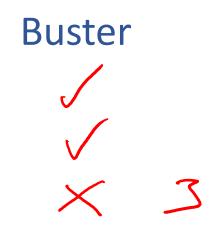
Semantic Networks

Reasoning with default information

Dog

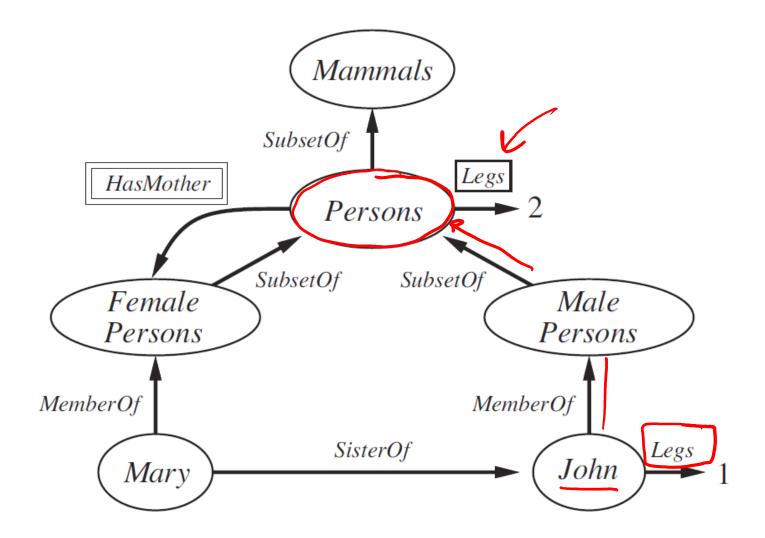
Barks

- Has Fur
- Has four legs

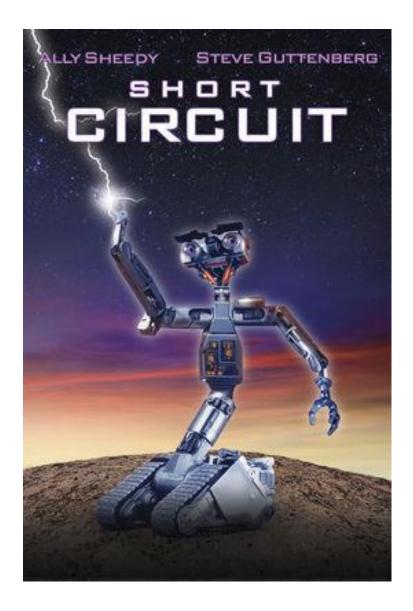


Semantic Networks

Reasoning with default information



Input, More Input!



Knowledge Representation in the Wild

- WordNet
- ImageNet
- Wikimedia: Wikipedia, WikiData
- Google Knowledge Graph
- Schema.org
- The "Semantic Web"
- NELL: Never Ending Language Learning

Knowledge panels in Google search results

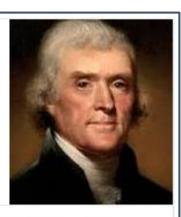
The panels are generated from what's called the **Google Knowledge Graph**.

Data comes from Wikipedia, CIA World Factbook, and other online sources.

As of Oct. 2016, held 70 billion facts.

Thomas Jefferson

3rd U.S. President



Thomas Jefferson was an American Founding Father who was the principal author of the Declaration of Independence and later served as the third President of the United States from <u>1801 to 1809</u>. Previously, he had been elected the second Vice President of the United States, serving under John Adams from 1797 to 1801. Wikipedia

Born: April 13, 1743, Shadwell, VA Died: July 4, 1826, Monticello, VA Presidential term: March 4, 1801 – March 4, 1809 Spouse: Martha Jefferson (m. 1772–1782) Children: Martha Jefferson Randolph, Madison Hemings, MORE Vice presidents: Aaron Burr (1801–1805), George Clinton (1805–1809)

People also search for

View 15+ more

John Adams

George Washington

James on Madison Benjamin Franklin

Abraham Lincoln

1

25

Google Knowledge Graph API Access

```
import json
import urllib
api key = open('.api key').read()
query = 'Taylor Swift'
service url = 'https://kgsearch.googleapis.com/v1/entities:search'
params = \{
    'query': query,
    'limit': 10,
    'indent': True,
    'key': api key,
url = service url + '?' + urllib.urlencode(params)
response = json.loads(urllib.urlopen(url).read())
for element in response['itemListElement']:
  print element['result']['name'] + ' (' + str(element['resultScore']) + ')'
```

Partial result

```
{ "@type": "EntitySearchResult",
 "result": {
   "@id": "kg:/m/0dl567",
   "name": "Taylor Swift",
   "@type": [
     "Thing",
     "Person"
   ],
   "description": "Singer-songwriter",
   "image": {
     "contentUrl": "https://tl.gstatic.com/images?q=tbn:ANd9GcQm...",
     "url": "https://en.wikipedia.org/wiki/Taylor Swift",
     "license": "http://creativecommons.org/licenses/by-sa/2.0"
    },
   "detailedDescription": { ...
```

"Person" schema at schema.org

Prop Prop add

add

aff

alu

awa bir

bir

bra

chi

col

con

dea

dea

dun

ema

fam

fax

fol

Person

Canonical URL: <u>http://schema.org/Person</u>

Thing > Person A person (alive, dead, undead, or fictional).

Usage: Over 1,000,000 domains

operty	Expected Type	Description			
operties from Person					
ditionalName	Text	An additional name for a Person, can be used for a middle name.			
dress	PostalAddress or Text	Physical address of the item.			
filiation	Organization	An organization that this person is affiliated with. For example, a school/university, a club, or a team.			
umniOf	EducationalOrganization or Organization	An organization that the person is an alumni of. Inverse property: <mark>alumni</mark> .			
ard	Text	An award won by or for this item. Supersedes awards.			
rthDate	Date	Date of birth.			
rthPlace	Place	The place where the person was born.			
and	Brand or Organization	The brand(s) associated with a product or service, or the brand(s) maintained by an organization or business person.			
ildren	Person	A child of the person.			
lleague	Person or URL	A colleague of the person. Supersedes colleagues.			
ntactPoint	ContactPoint	A contact point for a person or organization. Supersedes contactPoints.			
athDate	Date	Date of death.			
athPlace	Place	The place where the person died.			
ns	Text	The Dun & Bradstreet DUNS number for identifying an organization or business person.			
ail	Text	Email address.			
milyName	Text	Family name. In the U.S., the last name of an Person. This can be used along with givenName instead of the name property.			
xNumber	Text	The fax number.			
llows	Person	The most generic uni-directional social relation.			

8

The Semantic Web

- Term coined by Tim Berners-Lee
- Common framework for exchange of data across application, enterprise, and community boundaries
- HTML defines how text should look when presented to humans
- Semantic web markup defines how information should be organized to be interpretable by machines
- "Ontology engineer" is a job description now

NELL: Never-Ending Language Learner

Inputs:

- initial ontology
- few examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the initial ontology
 - 2. learn to read (perform #1) better than yesterday

NELL Overview

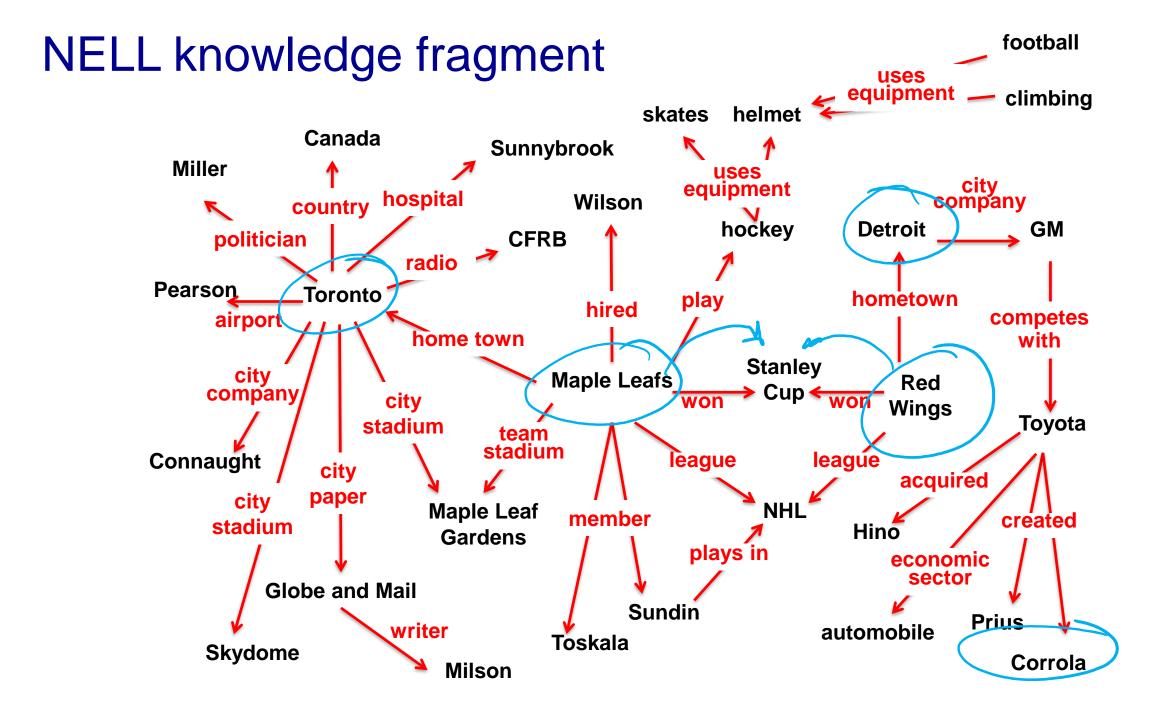
Running 24x7, since January, 12, 2010

Inputs:

- ontology defining >600 categories and relations
- 10-20 seed examples of each
- 500 million web pages
- 100,000 web search queries per day
- ~ 5 minutes/day of human guidance

Result:

- KB with > 15 million candidate beliefs, growing daily
- learning to reason, as well as read
- automatically extending its ontology



NELL Website

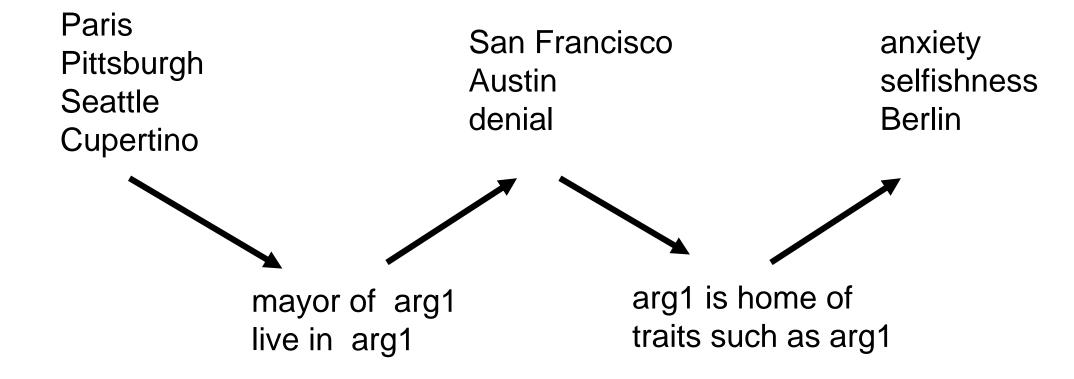
- <u>http://rtw.ml.cmu.edu</u> ← follow NELL here
- eg. "diabetes", "Avandia", , "tea", "IBM", "love" "baseball" "BacteriaCausesCondition" ...

Recently-Learned Facts			Refresh
instance	iteration	date learned	confidence
shamattawa_river is a river	1111	06-jul-2018	100.0 [🖄 💆
<u>capitol_theatre_oh</u> is a <u>stadium or event venue</u>	1111	06-jul-2018	100.0 🍰 🕄
j <u>apanese_judge</u> is a j <u>udge</u>	1111	06-jul-2018	98.4 🍰 🕄
saturday_meetings is a <u>TV show</u>	1111	06-jul-2018	100.0 🍰 🕄
<u>trolley_museum</u> is a <u>museum</u>	1111	06-jul-2018	100.0 🍰 🕄
subaru makes the automobile legacy	1 114	25-aug-2018	98.4 🗳 🕄
jacksonville_jaguars is a sports team also known as steelers	1112	24-jul-2018	98.4 🍰 🕄
steve001 is an athlete who injured his/her knee	1112	24-jul-2018	99.6 🗳 🕄
dodge is a specific automobile maker dealer in ohio	1115	03-sep-2018	96.9 🗳 🕄
cristhian_martinez plays the sport baseball	1 <mark>1</mark> 16	12-sep-2018	96.9 🖾 🤻

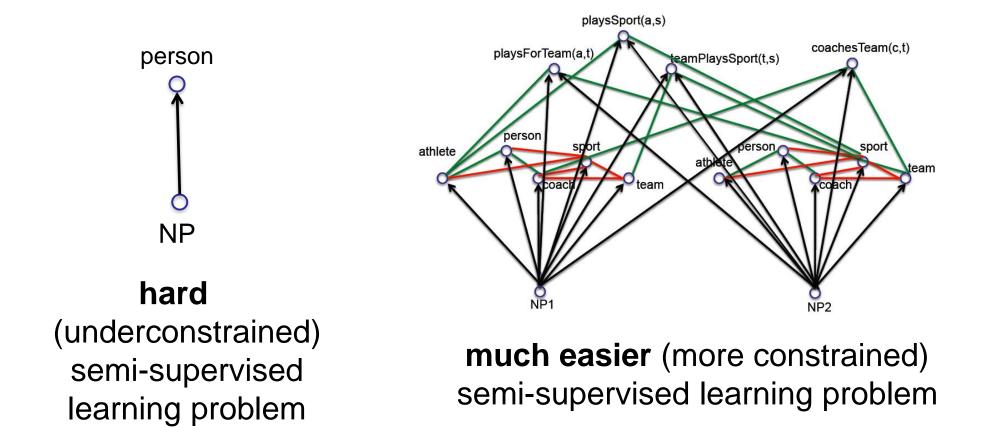
Default Approach

Its underconstrained!!

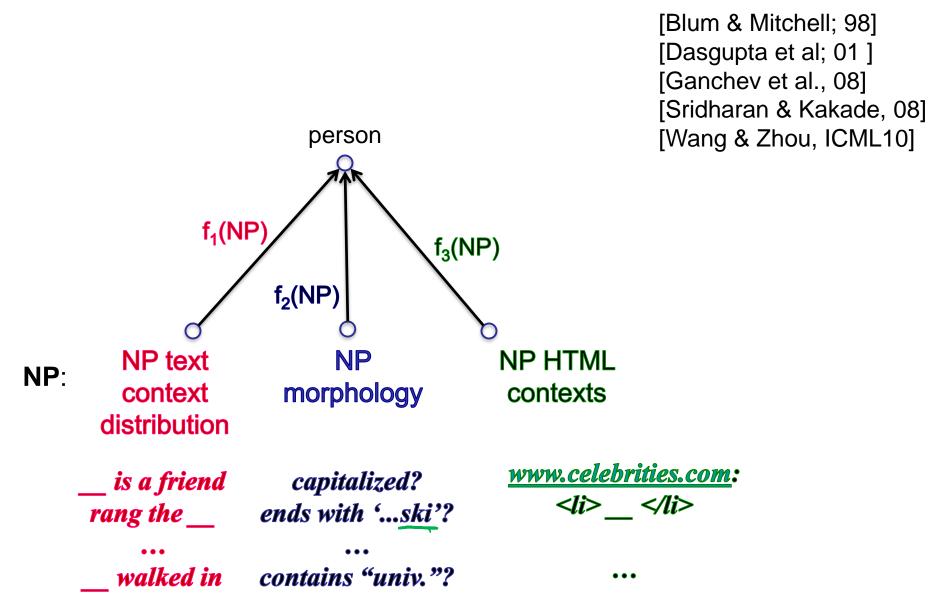
Extract cities:



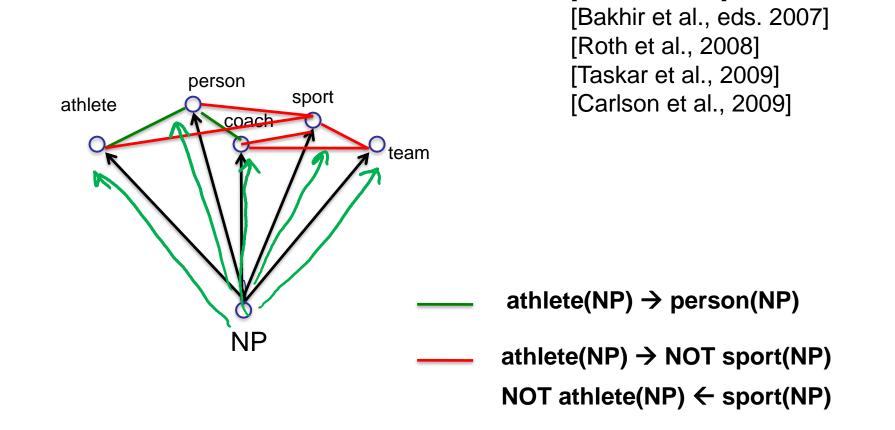
Key Idea 1: Coupled semi-supervised training of many functions



Type 1 Coupling: Co-Training, Multi-View Learning

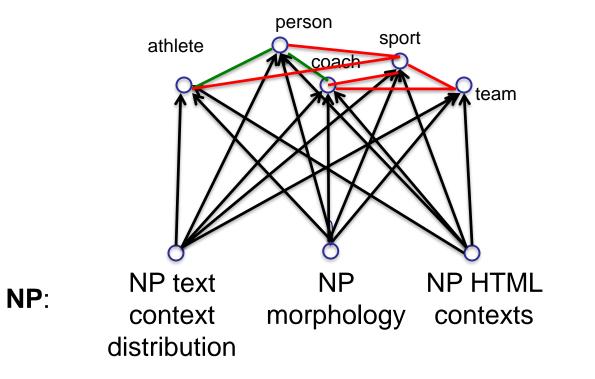


Type 2 Coupling: Multi-task, Structured Outputs

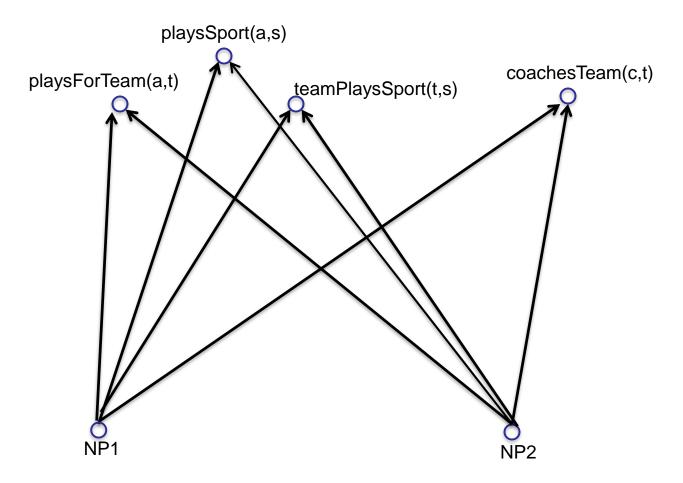


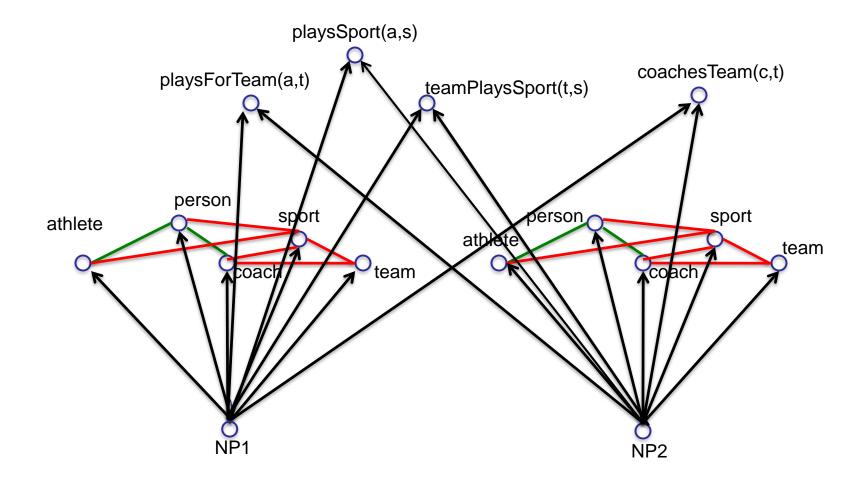
[Daume, 2008]

Multi-view, Multi-Task Coupling



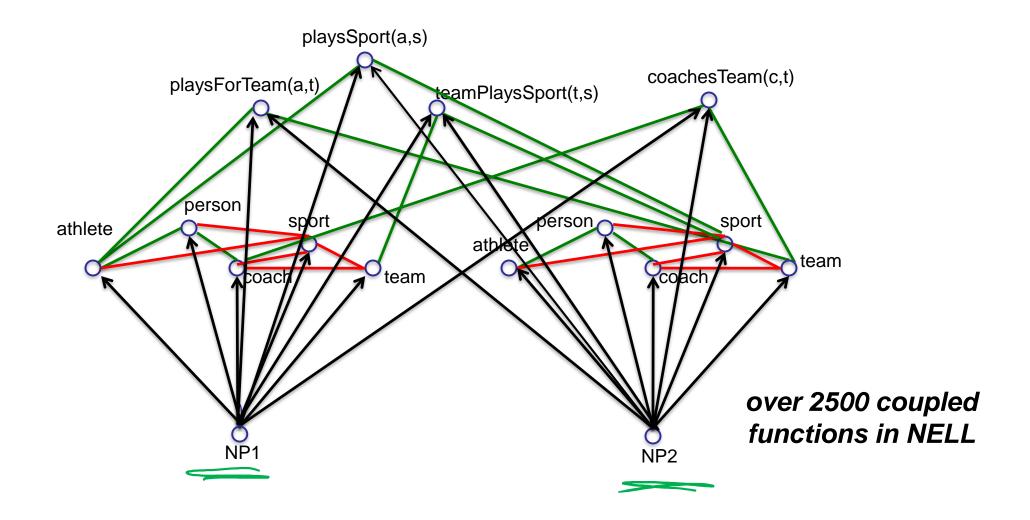
Learning Relations between NP's



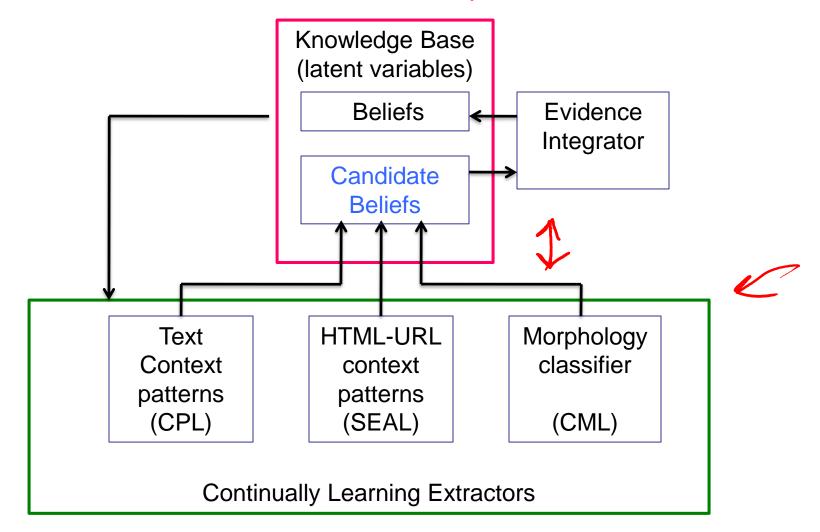


Type 3 Coupling: Argument Types

playsSport(NP1,NP2) → athlete(NP1), sport(NP2)



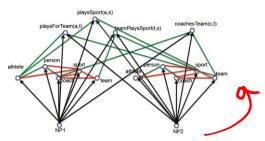
Basic NELL Architecture



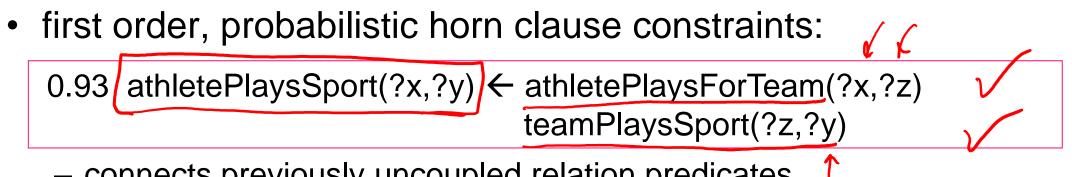
NELL: Learned reading strategies

Plays_Sport(arg1,arg2): arg1_was_playing_arg2 arg2_megastar_arg1 arg2_icons_arg1 arg2_player_named_arg1 arg2_prodigy_arg1 arg1_is_the_tiger_woods_of_arg2 arg2_career_of_arg1 arg2_greats_as_arg1 arg1_plays_arg2 arg2_player_is_arg1 arg2_legends_arg1_arg1_announced_his_retirement_from_arg2_ arg2_operations_chief_arg1_arg2_player_like_arg1 arg2_and_golfing_personalities_including_arg1 arg2_players_like_arg1 arg2_greats_like_arg1 arg2_players_are_steffi_graf_and_arg1 arg2_great_arg1 arg2_champ_arg1 arg2_greats_such_as_arg1 arg2_professionals_such_as_arg1 arg2_hit_by_arg1 arg2_greats_arg1 arg2_icon_arg1 arg2_stars_like_arg1 arg2_pros_like_arg1 arg1_retires_from_arg2_arg2_phenom_arg1_arg2_lesson_from_arg1 arg2_architects_robert_trent_jones_and_arg1 arg2_sensation_arg1 arg2_pros_arg1 arg2_stars_venus_and_arg1 arg2_hall_of_famer_arg1 arg2_superstar_arg1_arg2_legend_arg1_arg2_legends_such_as_arg1 arg2_players_is_arg1 arg2_pro_arg1 arg2_player_was_arg1 arg2_god_arg1 arg2_idol_arg1 arg1_was_born_to_play_arg2 arg2_star_arg1 arg2_hero_arg1 arg2_players_are_arg1 arg1_retired_from_professional_arg2_arg2_legends_as_arg1 arg2_autographed_by_arg1 arg2_champion_arg1 ...

If coupled learning is the key, how can we get new coupling constraints?



Discover New Coupling Constraints



- connects previously uncoupled relation predicates
- infers new beliefs for KB

Example Learned Horn Clauses

- 0.95 athletePlaysSport(?x,basketball) ← athleteInLeague(?x,NBA)
- 0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)
- 0.91 teamPlaysInLeague(?x,NHL) ← teamWonTrophy(?x,Stanley_Cup)
- 0.90 athleteInLeague(?x,?y) ←athletePlaysForTeam(?x,?z), teamPlaysInLeague(?z,?y)
- 0.88 cityInState(?x,?y) ← cityCapitalOfState(?x,?y), cityInCountry(?y,USA)

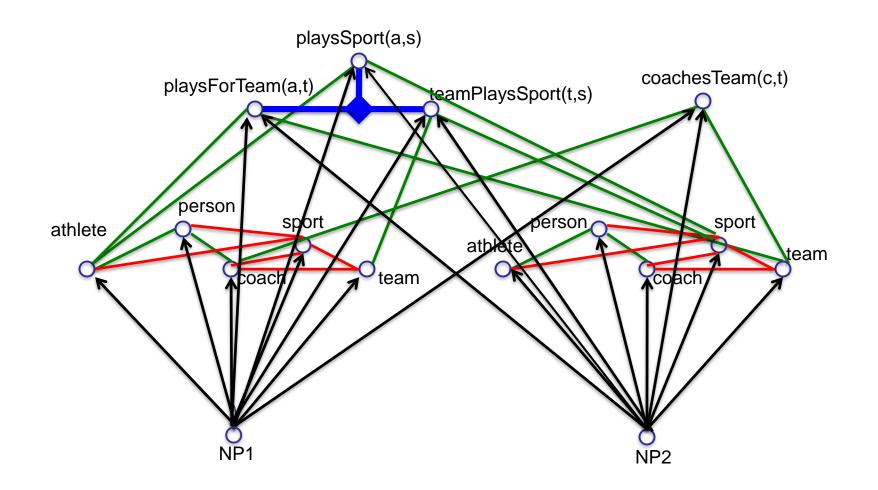
Some rejected learned rules

cityCapitalOfState{?x ?y} ← cityLocatedInState{?x ?y}, teamPlaysInLeague{?y nba}

teamplayssport{?x, basketball} ← generalizations{?x, university}

Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)



Key Idea 3: Automatically extend ontology

Ontology Extension (1)

[Mohamed et al., *EMNLP* 2011]

Goal:

Add new relations to ontology

Approach:

- For each pair of categories C1, C2,
 - co-cluster pairs of known instances, and text contexts that connect them

Example Discovered Relations

[Mohamed et al. EMNLP 2011]

Category Pair	Text contexts	Extracted Instances	Suggested Name
MusicInstrument Musician	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar , George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	Master
Disease Disease	ARG1 is due to ARG2 ARG1 is caused by ARG2	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	IsDueTo
CellType Chemical	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ThatRelease
Mammals Plant	ARG1 eat ARG2 ARG2 eating ARG1	koala bears, eucalyptus sheep, grasses goats, saplings	Eat
River City	ARG1 in heart of ARG2 ARG1 which flows through ARG2	Seine, Paris Nile, Cairo Tiber river, Rome	InHeartOf

NELL: recently self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease

- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Key Idea 4: Cumulative, Staged Learning

Learning X improves ability to learn Y

- 1. Classify noun phrases (NP's) by category
- 2. Classify NP pairs by relation
- 3. Discover rules to predict new relation instances
- 4. Learn which NP's (co)refer to which concepts
- 5. Discover new relations to extend ontology
- 6. Learn to infer relation instances via targeted random walks
- 7. Learn to assign temporal scope to beliefs
- 8. Learn to microread single sentences
- 9. Vision: co-train text and visual object recognition
- 10. Goal-driven reading: predict, then read to corroborate/correct
- 11. Make NELL a conversational agent on Twitter