Announcements

Assignments:

- HW6
- Due Tue $3 / 5,10 \mathrm{pm}$
- P3
- Due Thu 3/7, 10 pm

Spring Break!

- No recitation this Friday
- HW7 (online): out Wed 3/6, due Tue 3/19
- P4: out after break, due Thu 3/28

AI: Representation and Problem Solving

Knowledge Representation

Instructors: Pat Virtue \& Stephanie Rosenthal

What is this?

What is this?

Ontologies

WordNet/ImageNet

WordNet

A Lexical Database for English

Ontologies

ImageNet
ImageNet server is under maintenance. Synsets outside ILSVRC are temporarily unavailable.

Golden retriever

An English breed having a long silky golden coat

1607 pictures Popularity Percentile
https://wordnet.princeton.edu/
http://www.image-net.org/

An "upper ontology" of the world

Taxonomic Hierarchies

Phylogenetic Tree of Life

Archaea

10 million living and extinct species.

Categories and Objects

First-order logic for ontological representations
Category: Basketball

- Predicate: Basketball(b)
- Object for category: Basketballs
- Member(b,Basketballs)
- Notation shortcut: $b \in$ Basketballs
- Subset(Basketballs, Balls)
- Notation shortcut: Basketball \subset Balls
- Specific object
- Basketball $12 \in$ Basketballs

Reification: converting category predicate into an object

Categories and Objects

Decompositions and Partitions

Disjoint(\{Animals,Vegetables\})

ExhaustiveDecomposition(\{Canadians, Americans, Mexicans\}, NorthAmericans)

Partition(\{Canada, United States, Mexico\}, NorthAmericanCountries\})

Categories and Objects

Parts

PartOf(Bucharest, Romania)
PartOf (Romania, EasternEurope)
PartOf(EasterEurope, Europe)

Transitive
$\operatorname{PartOf}(x, y) \wedge \operatorname{PartOf}(y, z) \Rightarrow \operatorname{PartOf}(x, z)$

Reflexive
PartOf (x, x)

Categories and Objects

Measurements

Number are objects
Units are typically functions to convert number constants to measurements
$\operatorname{Length}\left(L_{1}\right)=\operatorname{Inches}(1.5)=\operatorname{Centimeters}(3.81)$

Piazza Poll 1

Which of these measurement statements makes sense? Select ALL that apply.
A) Diameter(Basketball)
B) Diameter(Basketball ${ }_{12}$)
C) Weight(Apple)
D) W eight $\left(\right.$ Apple $_{1} \wedge$ Apple $_{2} \wedge$ Apple $\left._{3}\right)$
E) None of the above

Categories and Objects

Bunches of Things and Stuff

BunchOf (\{Apple ${ }_{1}$, Apple $_{2}$, Apple $\left.\left._{3}\right\}\right)$
Things

- Countable
- "The" apple, "an" apple

Stuff

- More of a mass
- "Some" water
- $\quad b \in$ Butter $\wedge \operatorname{PartOf}(p, b) \Rightarrow p \in$ Butter

Events

How to handle fluents?

> President $(U S A)$
> President $(U S A, t)$

T(Equals(President(USA), GeorgeWashington), AD1790)

Events

How to handle time?

Semantic Networks

A graphical representation for some types of knowledge

- Once viewed as an "alternative" to logic (it's not really)
- The IS-A relation often forms the backbone of a semantic network

Vertebrate

Elephant

Clyde

Semantic Networks

Reasoning with default information

Dog
Buster

- Barks
- Has Fur
- Has four legs

Semantic Networks

Reasoning with default information

Input, More Input!

Knowledge Representation in the Wild

- WordNet
- ImageNet
- Wikimedia: Wikipedia, WikiData
- Google Knowledge Graph
- Schema.org
- The "Semantic Web"
- NELL: Never Ending Language Learning

Knowledge panels in Google search results

The panels are generated from what's called the Google Knowledge Graph.

Data comes from Wikipedia, CIA World Factbook, and other online sources.

As of Oct. 2016, held 70 billion facts.

Thomas Jefferson

3rd U.S. President

Thomas Jefferson was an American Founding Father who was the principal author of the Declaration of Independence and later served as the third President of the United States from 1801 to 1809. Previously, he had been elected the second Vice President of the United States, serving under John Adams from 1797 to 1801. Wikipedia

Born: April 13, 1743, Shadwell, VA
Died: July 4, 1826, Monticello, VA
Presidential term: March 4, 1801 - March 4, 1809
Spouse: Martha Jefferson (m. 1772-1782)
Children: Martha Jefferson Randolph, Madison Hemings, MORE
Vice presidents: Aaron Burr (1801-1805), George Clinton (1805-1809)
People also search for
View 15+ more

John
Adams

George
Washington

James
Madison

Benjamin Franklin

Abraham Lincoln

Google Knowledge Graph API Access

```
import json
import urllib
api_key = open('.api_key').read()
query = 'Taylor Swift'
service_url = 'https://kgsearch.googleapis.com/v1/entities:search'
params = {
    'query': query,
    'limit': 10,
    'indent': True,
    'key': api_key,
}
url = service_url + '?' + urllib.urlencode(params)
response = jsōn.loads(urllib.urlopen(url).read())
for element in response['itemListElement']:
    print element['result']['name'] + ' (' + str(element['resultScore']) + ')'
```


Partial result

```
{ "@type": "EntitySearchResult",
"result": {
        "@id": "kg:/m/0dl567",
        "name": "Taylor Swift",
        "@type": [
            "Thing",
            "Person"
        ],
        "description": "Singer-songwriter",
        "image": {
            "contentUrl": "https://t1.gstatic.com/images?q=tbn:ANd9GcQm...",
            "url": "https://en.wikipedia.org/wiki/Taylor_Swift",
            "license": "http://creativecommons.org/licenses/by-sa/2.0"
        },
        "detailedDescription": { ...
```


"Person" schema at schema.org

Person

Canonical URL: http://schema.org/Person
Thing > Person
A person (alive, dead, undead, or fictional).

Usage: Over 1,000,000 domains

Property	Expected Type	Description
Properties from Person	Text	An additional name for a Person, can be used for a middle name.
additionalName	PostalAddress or	Physical address of the item.
address	Text	An organization that this person is affiliated with. For example, a

The Semantic Web

- Term coined by Tim Berners-Lee
- Common framework for exchange of data across application, enterprise, and community boundaries
- HTML defines how text should look when presented to humans
- Semantic web markup defines how information should be organized to be interpretable by machines
- "Ontology engineer" is a job description now

NELL: Never-Ending Language Learner

Inputs:

- initial ontology
- few examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:

1. extract more facts from the web to populate the initial ontology
2. learn to read (perform \#1) better than yesterday

NELL Overview

Running 24x7, since January, 12, 2010
Inputs:

- ontology defining >600 categories and relations
-10-20 seed examples of each
- 500 million web pages
- 100,000 web search queries per day
- ~ 5 minutes/day of human guidance

Result:

- KB with >15 million candidate beliefs, growing daily
- learning to reason, as well as read
- automatically extending its ontology

NELL knowledge fragment

NELL Website

－http：／／rtw．ml．cmu．edu \leftarrow follow NELL here
－eg．＂diabetes＂，＂Avandia＂，，＂tea＂，＂IBM＂，＂love＂＂baseball＂＂BacteriaCausesCondition＂．．．

Recently－Learned Facts twitter

instance	iteration	date learned	confidence
shamattawa＿river is a river	1111	06－jul－2018	100.0 ת
capitol＿theatre＿oh is a stadium or event venue	1111	06－jul－2018	100.0 \％＜
japanese＿judge is a judge	1111	06－jul－2018	98.4 \％\％
saturday＿meetings is a TV show	1111	06－jul－2018	100.0 \％
trolley museum is a museum	1111	06－jul－2018	100.0 \％
subaru makes the automobile legacy．	1114	25－aug－2018	98.4 \％\％
jacksonville＿jaguars is a sports team also known as steelers	1112	24－jul－2018	98.4 为
steve001 is an athlete who injured his／her knee	1112	24－jul－2018	99.6 \％क्ष安
dodge is a specific automobile maker dealer in ohio	1115	03－sep－2018	96.9 \％\％
cristhian＿martinez plays the sport baseball	1116	12－sep－2018	96.9 为

Default Approach

Extract cities:

Paris
Pittsburgh
Seattle Cupertino

mayor of arg1
live in $\arg 1$

San Francisco anxiety Austin denial
selfishness Berlin

arg1 is home of traits such as arg1

Key Idea 1: Coupled semi-supervised training of many functions

much easier (more constrained) semi-supervised learning problem

Type 1 Coupling: Co-Training, Multi-View Learning

[Blum \& Mitchell; 98]
[Dasgupta et al; 01]
[Ganchev et al., 08]
[Sridharan \& Kakade, 08]
[Wang \& Zhou, ICML10]

NP:

Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008]
[Bakhir et al., eds. 2007] [Roth et al., 2008]

[Taskar et al., 2009]
[Carlson et al., 2009]
$\longrightarrow \quad$ athlete(NP) \rightarrow person(NP)
$\longrightarrow \quad$ athlete(NP) \rightarrow NOT sport(NP)
NOT athlete(NP) $\leftarrow \operatorname{sport}(N P)$

Multi-view, Multi-Task Coupling

Learning Relations between NP's

Type 3 Coupling: Argument Types

playsSport(NP1,NP2) \rightarrow athlete(NP1), sport(NP2)

Basic NELL Architecture

NELL: Learned reading strategies

```
Plays_Sport(arg1,arg2):
arg1_was_playing_arg2 arg2_megastar_arg1 arg2_icons_arg1
arg2_player_named_arg1 arg2_prodigy_arg1
arg1_is_the_tiger_woods_of_arg2 arg2_career_of_arg1
arg2_greats_as_arg1 arg1_plays_arg2 arg2_player_is_arg1
arg2_legends_arg1 arg1_announced_his_retirement_from_arg2
arg2_operations_chief_arg1 arg2_player_like_arg1
arg2_and_golfing_personalities_including_arg1 arg2_players_like_arg1
arg2_greats_like_arg1 arg2_players_are_steffi_graf_and_arg1
arg2_great_arg1 arg2_champ_arg1 arg2_greats_such_as_arg1
arg2_professionals_such_as_arg1 arg2_hit_by_arg1 arg2_greats_arg1
arg2_icon_arg1 arg2_stars_like_arg1 arg2_pros_like_arg1
arg1_retires_from_arg2 arg2_phenom_arg1 arg2_lesson_from_arg1
arg2_architects_robert_trent_jones_and_arg1 arg2_sensation_arg1
arg2_pros_arg1 arg2_stars_venus_and_arg1 arg2_hall_of_famer_arg1
arg2_superstar_arg1 arg2_legend_arg1 arg2_legends_such_as_arg1
arg2_players_is_arg1 arg2_pro_arg1 arg2_player_was_arg1
arg2_good_arg1 arg2_idol_arg1 arg1_was_born_to_play_arg2
arg2_star_arg1 arg2_hero_arg1 arg2_players_are_arg1
arg1_retired_from_professional_arg2 arg2_legends_as_arg1
arg2_autographed_by_arg1 arg2_champion_arg1 ...
```

If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2:
 Discover New Coupling Constraints

- first order, probabilistic horn clause constraints:
0.93 athletePlaysSport(?x,?y) \leftarrow athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)
- connects previously uncoupled relation predicates
- infers new beliefs for KB

Example Learned Horn Clauses

0.95 athletePlaysSport(?x,basketball) \leftarrow athleteInLeague $(? x, N B A)$

0.93 athletePlaysSport(?x,?y) \leftarrow athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)
0.91 teamPlaysInLeague $(? x, N H L) \leftarrow$ teamWonTrophy(?x,Stanley_Cup)
0.90 athleteInLeague $(? x, ? y) \leftarrow$ athletePlaysForTeam $(? x, ? z)$, teamPlaysInLeague(?z,?y)
0.88 cityInState $(? x, ? y) \leftarrow$ cityCapitalOfState($? x, ? y)$, cityInCountry $(? y, U S A)$
0.62* newspaperInCity(?x,New_York) \leftarrow companyEconomicSector(?x,media) generalizations(?x,blog)

Some rejected learned rules

cityCapitalOfState\{?x ?y\} \leftarrow cityLocatedInState\{?x ?y\}, teamPlaysInLeague\{?y nba\}
teamplayssport\{?x, basketball\} \leftarrow generalizations\{?x, university\}

Learned Probabilistic Horn Clause Rules

```
0 . 9 3 \text { playsSport(?x,?y) < playsForTeam(?x,?z), teamPlaysSport(?z,?y)}
```


Key Idea 3:
Automatically extend ontology

Ontology Extension (1) [Mohamed et al., EMNLP 2011]

Goal:

- Add new relations to ontology

Approach:

- For each pair of categories C1, C2,
- co-cluster pairs of known instances, and text contexts that connect them

Example Discovered Relations

Category Pair	Text contexts	Extracted Instances	Suggested Name
MusicInstrument Musician	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar, George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	Master
Disease Disease	ARG1 is due to ARG2 ARG1 is caused by ARG2	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	IsDueTo
CellType Chemical	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ThatRelease
Mammals	ARG1 eat ARG2 Plant	koala bears, eucalyptus sheep, grasses goats, saplings	Eat
River City	ARG1 in heart of ARG2 ARG1 which flows through ARG2	Seine, Paris Nile, Cairo Tiber river, Rome	InHeartOf

NELL: recently self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease
- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Key Idea 4: Cumulative, Staged Learning

Learning X improves ability to learn Y

1. Classify noun phrases (NP's) by category
2. Classify NP pairs by relation
3. Discover rules to predict new relation instances
4. Learn which NP's (co)refer to which concepts
5. Discover new relations to extend ontology
6. Learn to infer relation instances via targeted random walks
7. Learn to assign temporal scope to beliefs
8. Learn to microread single sentences
9. Vision: co-train text and visual object recognition
10. Goal-driven reading: predict, then read to corroborate/correct
11. Make NELL a conversational agent on Twitter
