Announcements

Assignments:

- HW5
 - Due Tue 2/26, 10 pm
- HW6 and P3
 - Coming soon

Travel

- Pat out Wed 2/27, back for Mon 3/4
 - SIGCSE 2019, Minneapolis

AI: Representation and Problem Solving

First-Order Logic

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, http://aima.eecs.berkeley.edu

Outline

- 1. Need for first-order logic
- 2. Syntax and semantics
- 3. Planning with FOL
- 4. Inference with FOL

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends oncontext)
- Propositional logic has very limited expressive power
 (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Pros and Cons of Propositional Logic

Rules of chess:

- 100,000 pages in propositional logic
- 1 page in first-order logic

Rules of pacman:

```
■ \forallx,y,t At(x,y,t) \Leftrightarrow [At(x,y,t-1) \land \neg \exists u,v Reachable(x,y,u,v,Action(t-1))] v [\exists u,v At(u,v,t-1) \land Reachable(x,y,u,v,Action(t-1))]
```

First-Order Logic (First-Order Predicate Calculus)

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, multistoried ...,
 brother of, bigger than, inside, part of, has color, occurred after, owns, ...
- Functions: father of, best friend, third inning of, one more than, end of, ...

Logics in General

Language	What exists in the world	What an agent believes about facts
Propositional logic	Facts	true / false / unknown
First-order logic	facts objects, relations	true / false / unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL

Basic Elements

Constants KingJohn, 2, CMU, ...

Predicates Brother, >, . . .

Functions Sqrt, LeftLegOf, . . .

 \rightarrow Variables x, y, a, b, \dots

Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$

Equality =

Syntax of FOL

```
Atomic sentence = predicate(term_1, ..., term_n)

or term_1 = term_2

Term = function(term_1, ..., term_n)

or constant

or variable
```

Examples

Brother(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Syntax of FOL

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

Examples

 $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$$>(1, 2) \vee \leq (1, 2)$$

$$>(1, 2) \land \neg > (1, 2)$$

Models for FOL

Example

Models for FOL

Brother(Richard, John)

Consider the interpretation in which:

 $Richard \rightarrow Richard$ the Lionheart $John \rightarrow the$ evil King John $Brother \rightarrow the$ brotherhood relation

Model for FOL

Lots of models!

Model for FOL

Lots of models!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞

For each k-ary predicate P_k in the vocabulary

For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Truth in First-Order Logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

```
Interpretation specifies referents for
  constant symbols → objects mode
   predicate symbols → relations
   function symbols → functional relations
An atomic sentence predicate(term_1, ..., term_n) is true:
       iff the objects referred to by term_1, \ldots, term_n
       are in the relation referred to by predicate
```

Models for FOL

Consider the interpretation in which:

 $Richard \rightarrow Richard$ the Lionheart $John \rightarrow the$ evil King John $Brother \rightarrow the$ brotherhood relation

Under this interpretation, <u>Brother(Richard, John)</u> is true just in the case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Universal Quantification

```
\forall (variables) (sentence)
```

```
Everyone at the banquet is hungry:
```

```
\forall x \ At(x, Banquet) \Rightarrow Hungry(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Banquet) \Rightarrow Hungry(KingJohn))
 \land (At(Richard, Banquet) \Rightarrow Hungry(Richard))
 \land (At(Banquet, Banquet) \Rightarrow Hungry(Banquet))
 \land \dots
```

Universal Quantification

Common mistake

Typically, \Rightarrow is the main connective with \forall

Common mistake: using ∧ as the main connective with ∀:

 $\forall x At(x, Banquet) \land Hungry(x)$

means "Everyone is at the banquet and everyone is hungry"

Existential Quantification

```
∃ (variables) (sentence)
```

Someone at the tournament is hungry: $\exists xAt(x, Tournament) \land Hungry(x)$

 $\exists xP$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of *P*

```
(At(KingJohn, Tournament) ∧ Hungry(KingJohn))
∨ (At(Richard, Tournament) ∧ Hungry(Richard))
∨ (At(Tournament, Tournament) ∧ Hungry(Tournament))
∨ . . .
```

Existential Quantification

Common mistake

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists xAt(x, Tournament) \Rightarrow Hungry(x)$

is true if there is anyone who is not at the tournament!

Properties of Quantifiers

```
\forall x \ \forall y \ \text{is the same as } \forall y \ \forall x
```

$$\exists x \exists y \text{ is the same as } \exists y \exists x$$

$$\exists x \ \forall y \ \text{is not the same as} \ \forall y \ \exists x$$

```
\exists x \forall y Loves(x, y)
```

"There is a person who loves everyone in the world"

$$\forall y \exists x Loves(x, y)$$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \quad \neg \exists x \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \neg Likes(x, Broccoli)$

Fun with Sentences

Brothers are siblings

```
\forall x, y Brother(x, y) \Rightarrow Sibling(x, y).
```

"Sibling" is symmetric

```
\forall x, y Sibling(x, y) \Leftrightarrow Sibling(y, x).
```

A first cousin is a child of a parent's sibling

$$\forall x, y | FirstCousin(x, y) \Leftrightarrow \exists p, ps | Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$$

Equality

```
term_1 = term_2 is true under a given interpretation
if and only if term<sub>1</sub> and term<sub>2</sub> refer to the same object
E.g., 1 = 2 and \forall x \times (Sqrt(x), Sqrt(x)) = x are satisfiable
       2 = 2 is valid
E.g., definition of (full) Sibling in terms of Parent:
   \forall x, y \ Sibling(x, y) \Leftrightarrow
         [\neg(x=y) \land \exists m, f \neg(m=f) \land
          Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)
```

Piazza Poll 1

Given the following two FOL sentences:

```
\gamma: \forall x \; Hungry(x)
```

 δ : $\exists x \; Hungry(x)$

Which of these is true?

- A) $\gamma \models \delta$
- B) $\delta \models \gamma$
- C) Both
- D) Neither

Piazza Poll 1

Given the following two FOL sentences:

 γ : $\forall x \; Hungry(x)$

 δ : $\exists x \; Hungry(x)$

Which of these is true?

- A) $\gamma \models \delta$
- B) $\delta \models \gamma$
- C) Both
- D) Neither

Interacting with FOL KBs

```
Suppose a wumpus-world agent is using an FOL KB
   and perceives a smell and a breeze (but no glitter) at t = 5:
   Tell(KB, Percept [Smell, Breeze, None], 5])
   Ask(KB, \exists a \ Action(a, 5))
   i.e., does KB entail any particular actions at t = 5?
   Answer: Yes, \{a/Shoot\} \leftarrow substitution (binding list)
                                                                        Notation Alert!
   Given a sentence S and a substitution \sigma,
                                                                        Notation Alert!
   S\sigma denotes the result of plugging \sigma into S; e.g.,
\rightarrow S = Smarter(x, y)
   \sigma = \{x/EVE, y/WALL-E\}
   S\sigma = Smarter(EVE, WALL-E)
   Ask(KB, S) returns some/all \sigma such that KB = S\sigma
```

Knowledge Base for Wumpus World

```
"Perception"
\forall b, g, t \quad Percept([Smell, b, g], t) \Rightarrow Smelt(t)
\forall s, b, t \quad Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
Reflex: \forall t \ AtGold(t) \Rightarrow Action(Grab, t)
Reflex with internal state: do we have the gold already?
\forall t \quad AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)
Holding (Gold, t) cannot be observed
      ⇒ keeping track of change is essential
```

Deducing Hidden Properties

Properties of locations:

```
\forall x, t \quad At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)
\forall x, t \quad At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)
```

Squares are breezy near a pit:

```
Diagnostic rule—infer cause from effect \forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x, y)
```

```
Causal rule—infer effect from cause \forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)
```

Neither of these is complete — e.g., the causal rule doesn't say whether squares far away from pits can be breezy

```
Definition for the Breezy predicate: \forall y \; Breezy(y) \Leftrightarrow [\exists x \; Pit(x) \land Adjacent(x, y)]
```

Keeping Track of Change

Facts hold in situations, rather than eternally E.g., *Holding*(*Gold*, *Now*) rather than just *Holding*(*Gold*)

Situation calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate E.g., Now in

Holding (Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s

Describing Actions

```
"Effect" axiom—describe changes due to action
\forall s \ AtGold(s) \Rightarrow \ Holding(Gold, Result(Grab, s))
"Frame" axiom—describe non-changes due to action
\forall s \; HaveArrow(s) \Rightarrow \; HaveArrow(Result(Grab, s))
Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):
  P true afterwards ( ) [an action made P true

∨ P true already and no action made P false]

For holding the gold:
    \forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
            [(a = Grab \land AtGold(s))]
```

 \vee (Holding(Gold, s) $\wedge \neg (a = Release)$)]

Describing Actions

```
Initial condition in KB: At(Agent, [1, 1], S_0) At(Gold, [1, 2], S_0) Query: Ask(KB, \exists s Holding(Gold, s)) i.e., in what situation will I be holding the gold? Answer: \{s/Result(Grab, Result(Forward, S_0))\} i.e., go forward and then grab the gold
```

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making Plans

```
Represent plans as action sequences [a_1, a_2, \ldots, a_n]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0))) has the solution \{p/[Forward, Grab]\}

Definition of PlanResult in terms of Result:

\forall s \; PlanResult([], s) = s
```

 $\forall a, p, s \ PlanResult([a, p], s) = PlanResult(p, Result(a, s))$

Outline

- 1. Need for first-order logic
- 2. Syntax and semantics
- 3. Planning with FOL
- 4. Inference with FOL

Inference in First-Order Logic

- A) Reducing first-order inference to propositional inference
- Removing ∀
- Removing 3
- Unification

- B) Lifting propositional inference to first-order inference
- Generalized Modus Ponens
- FOL forward chaining

Universal Instantiation

Every instantiation of a universally quantified sentence is entailed by it:

$$\int \forall \underline{v} a$$
Subst($\{v/g\}$, a)

for any variable v and ground term g

```
E.g., \forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) yields
King(John) \land Greedy(John) \Rightarrow Evil(John) \ King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))
```

Existential Instantiation

For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the knowledge base: $\exists v = a$ Subst $(\{v/\underline{k}\}, a)$

E.g.,
$$\exists x \quad Crown(x) \land OnHead(x, John)$$
 yields $Crown(C_1) \land OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

Reduction to Propositional Inference

Suppose the KB contains just the following:

```
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

King(John)

Greedy(John)

Brother(Richard, John)
```

Instantiating the universal sentence in *all* possible ways, we have

```
King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(John)

Greedy(John)

Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to Propositional Inference

Claim: a ground sentence* is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result Problem: with function symbols,

there are <u>infinitely many ground terms</u>, e.g., *Father*(*Father*(*John*)))

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB, it is entailed by a finite subset of the propositional KB

Idea: For n=0 to ∞ do create a propositional KB by instantiating with depth-n terms see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with Propositionalization

Propositionalization seems to generate lots of irrelevant sentences. E.g., from

```
\forall x \, King(x) \land Greedy(x) \Rightarrow Evil(x)
King(John)
```

→ ∀y Greedy(y)

Brother(Richard, John)

it seems obvious that $\underline{Evil(John)}$, but propositionalization produces lots of facts such as $\underline{Greedy(Richard)}$ that are irrelevant

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

Unify $(a, \underline{\beta}) = \theta$ if $a\theta = \beta\theta$

(p)	\overline{q}	\mid $ heta$
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John,x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
$Knows(John, \underline{x})$	Knows(y, M other(y))	$\{y/John, x/Mother(John)\}$
Knows(John, x)	Knows(x, OJ)	fail

Standardizing apart eliminates overlap of variables, e.g., $Knows(z_{17}, OJ)$

Generalized Modus Ponens (GMP)

GMP used with KB of definite dauses (exactly one positive literal) All variables assumed universally quantified

FOL Forward Chaining

```
function FOL-FC-Ask(KB, \alpha) returns a substitution or false
    repeat until new is empty
          new ← { }
          for each sentence r in KB do
                (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow \text{Standardize-Apart}(r)
                for each \theta such that (p_1 \wedge \ldots \wedge p_n)\theta = (p_1^t \wedge \ldots \wedge p^t)\theta
                                  for some p_1^t, \ldots, p_n^t in KB
                      q^t \leftarrow \text{Subst}(\theta, q)
                    if q^{t} is not a renaming of a sentence already in KB or new then do
                            add q^{t} to new
                            \varphi \leftarrow \text{Unify}(q^t, \alpha)
                            if \varphi is not fail then return \varphi
          add new to KB
    return false
```