
Announcements
Assignments:

▪ HW5

▪ Due Tue 2/26, 10 pm

▪ HW6 and P3

▪ Coming soon

Travel

▪ Pat out Wed 2/27, back for Mon 3/4

o SIGCSE 2019, Minneapolis

AI: Representation and Problem Solving

First-Order Logic

Instructors: Pat Virtue & Stephanie Rosenthal

Slide credits: CMU AI, http://aima.eecs.berkeley.edu

Outline
1. Need for first-order logic

2. Syntax and semantics

3. Planning with FOL

4. Inference with FOL

Pros and Cons of Propositional Logic
▪ Propositional logic is declarative: pieces of syntax correspond to facts

▪ Propositional logic allows partial/disjunctive/negated information

(unlike most data structures and databases)

▪ Propositional logic is compositional:
meaning of B1,1 ∧P1,2 is derived from meaning of B1,1 and of P1,2

▪ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends oncontext)

▪ Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

Pros and Cons of Propositional Logic
Rules of chess:

▪ 100,000 pages in propositional logic

▪ 1 page in first-order logic

Rules of pacman:

▪x,y,t At(x,y,t) [At(x,y,t-1) u,v Reachable(x,y,u,v,Action(t-1))] v

[u,v At(u,v,t-1) Reachable(x,y,u,v,Action(t-1))]

First-Order Logic (First-Order Predicate Calculus)

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

▪ Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries, ...

▪ Relations: red, round, bogus, prime, multistoried ...,
brother of, bigger than, inside, part of, has color, occurred after, owns,…

▪ Functions: father of, best friend, third inning of, one more than, end of, …

Logics in General

Language What exists in the world What an agent believes about facts

Propositional logic Facts true / false / unknown

First-order logic facts, objects, relations true / false / unknown

Probability theory facts degree of belief

Fuzzy logic facts + degree of truth known interval value

Syntax of FOL
Basic Elements

Constants

Predicates

Functions

Variables

Connectives

Equality

Quantifiers

KingJ ohn, 2, CMU, . . .

Brother, >, . . .

Sqrt, LeftLegOf, . . .

x, y, a, b, . . .

∧∨¬ ⇒ ⇔

=

∀∃

Syntax of FOL

Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant

or variable

Examples

Brother(KingJ ohn, RichardT heLionheart)

> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJ ohn)))

Syntax of FOL

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒S2, S1 ⇔ S2

Examples

Sibling(KingJ ohn, Richard) ⇒ Sibling(Richard, KingJ ohn)

>(1, 2) ∨ ≤(1,2)

>(1, 2) ∧ ¬>(1,2)

Models for FOL
Example

R J
$

left leg left leg

brother

brother

person
on head

person
king

crown

Models for FOL
Brother(Richard, John)

Consider the interpretation in which:

Richard → Richard the Lionheart

John → the evil King John
Brother → the brotherhood relation

R J$

left leg left leg

brother

brother

person
on head

person king

crown

Model for FOL

Lots of models!

R J$

left leg left leg

brother

brother

person
on head

person king

crown

Model for FOL
Lots of models!

Entailment in propositional logic can be computed by enumerating
models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞

For each k-ary predicate Pk in the vocabulary
For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary
For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Truth in First-Order Logic
Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true:

iff the objects referred to by term1, . . . ,termn

are in the relation referred to bypredicate

Models for FOL

Consider the interpretation in which:

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is

true just in the case Richard the Lionheart and the evil
King John are in the brotherhood relation in the model

R J$

left leg left leg

brother

brother

person
on head

person king

crown

Universal Quantification

∀(variables) (sentence)

Everyone at the banquet is hungry:
∀x At(x, Banquet) ⇒ Hungry(x)

∀x P is true in a model m iff P is true with x being

each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJ ohn, Banquet) ⇒ Hungry(KingJ ohn))

∧ (At(Richard, Banquet) ⇒ Hungry(Richard))

∧ (At(Banquet, Banquet) ⇒ Hungry(Banquet))
∧ . . .

Universal Quantification

Common mistake

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x, Banquet) ∧ Hungry(x)

means “Everyone is at the banquet and everyone is hungry”

Existential Quantification

∃ (variables) (sentence)

Someone at the tournament is hungry:
∃xAt(x, Tournament) ∧ Hungry(x)

∃xP is true in a model m iff P is true with x being

some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJ ohn, Tournament) ∧ Hungry(KingJ ohn))

∨ (At(Richard, Tournament) ∧ Hungry(Richard))

∨ (At(Tournament, Tournament) ∧ Hungry(Tournament))
∨ . . .

Existential Quantification

Common mistake

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃xAt(x, Tournament) ⇒ Hungry(x)

is true if there is anyone who is not at the tournament!

Properties of Quantifiers
∀x ∀y is the same as ∀y ∀x

∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x

∃x ∀yLoves(x, y)

“There is a person who loves everyone in the world”

∀y∃x Loves(x, y)

“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream)

∃x Likes(x, Broccoli)

¬∃x ¬Likes(x, IceCream)

¬∀x ¬Likes(x, Broccoli)

Fun with Sentences

Brothers are siblings

∀x, yBrother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, ySibling(x, y) ⇔ Sibling(y, x).

A first cousin is a child of a parent’s sibling

∀x, yFirstCousin(x, y) ⇔ ∃p,ps Parent(p, x) ∧ Sibling(ps,p) ∧ Parent(ps, y)

Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x × (Sqrt(x), Sqrt(x)) = x are satisfiable

2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔

[¬(x = y) ∧ ∃ m, f ¬(m = f) ∧
Parent(m, x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

Piazza Poll 1
Given the following two FOL sentences:

𝛾: ∀ 𝑥 𝐻𝑢𝑛𝑔𝑟𝑦 𝑥

𝛿: ∃ 𝑥 𝐻𝑢𝑛𝑔𝑟𝑦(𝑥)

Which of these is true?

A) 𝛾 ⊨ 𝛿

B) 𝛿 ⊨ 𝛾

C) Both

D) Neither

Piazza Poll 1
Given the following two FOL sentences:

𝛾: ∀ 𝑥 𝐻𝑢𝑛𝑔𝑟𝑦 𝑥

𝛿: ∃ 𝑥 𝐻𝑢𝑛𝑔𝑟𝑦(𝑥)

Which of these is true?

A) 𝛾 ⊨ 𝛿

B) 𝛿 ⊨ 𝛾

C) Both

D) Neither

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, P ercept([Smell, Breeze, N one],5))
Ask(KB, ∃a Action(a, 5))

i.e., does KB entail any particular actions at t = 5?

Answer: Yes

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/EVE, y/WALL-E}

Sσ = Smarter(EVE, WALL-E)

Ask(KB, S) returns some/all σ such that KB |= Sσ

, {a/Shoot} ← substitution (binding list) Notation Alert!

Notation Alert!

Knowledge Base for Wumpus World

“Perception”
∀b,g, t P ercept([Smell, b,g], t) ⇒ Smelt(t)

∀s, b, t P ercept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀t AtGold(t) ∧¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

Deducing Hidden Properties

Properties of locations:
∀x, t At(Agent, x, t) ∧Smelt(t) ⇒ Smelly(x)

∀x, t At(Agent, x, t) ∧Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀y Breezy(y) ⇒ ∃x Pit(x) ∧ Adjacent(x,y)

Causal rule—infer effect from cause
∀x, y Pit(x) ∧Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete — e.g., the causal rule doesn’t say whether squares far
away from pits can be breezy

Definition for the Breezy predicate:
∀y Breezy(y) ⇔ [∃x Pit(x) ∧ Adjacent(x,y)]

Keeping Track of Change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate E.g., Now in
Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

Describing Actions

“Effect” axiom—describe changes due toaction
∀s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀a, s Holding(Gold, Result(a, s)) ⇔

[(a = Grab ∧ AtGold(s))

∨ (Holding(Gold, s) ∧ ¬(a = Release))]

Describing Actions

Initial condition in KB:
At(Agent, [1, 1], S0)

At(Gold, [1,2],S0)

Query: Ask(KB, ∃s Holding(Gold, s))

i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(Forward,S0))}

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB

Making Plans
Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃p Holding(Gold, PlanResult(p, S0)))

has the solution {p/[Forward, Grab]}

Definition of PlanResult in terms of Result:
∀s PlanResult([], s) = s

∀a, p,s PlanResult([a, p], s) = PlanResult(p, Result(a, s))

Outline
1. Need for first-order logic

2. Syntax and semantics

3. Planning with FOL

4. Inference with FOL

Inference in First-Order Logic
A) Reducing first-order inference to propositional inference

▪ Removing ∀

▪ Removing ∃

▪ Unification

B) Lifting propositional inference to first-order inference

▪ Generalized Modus Ponens

▪ FOL forward chaining

Universal Instantiation

Every instantiation of a universally quantified sentence is entailed by it:

∀v α

Subst({v/g}, α)

for any variable v and ground term g

E.g., ∀x King(x) ∧Greedy(x) ⇒ Evil(x) yields

King(John) ∧ Greedy(John) ⇒ Evil(John) K ing(Richard) ∧
Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧Greedy(Father(John))⇒ Evil(Father(John))

Existential Instantiation
For any sentence α, variable v, and constant symbol k

that does not appear elsewhere in the knowledge base:
∃v α

Subst({v/k}, α)

E.g., ∃x Crown(x) ∧ OnHead(x, John) yields

Crown(C1) ∧OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Reduction to Propositional Inference
Suppose the KB contains just the following:

∀x K ing(x) ∧Greedy(x) ⇒ Evil(x)

King(John)

Greedy(J ohn)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(J ohn) ∧ Greedy(John) ⇒ Evil(John)

K ing(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)

King(John)

Greedy(J ohn)

Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to Propositional Inference
Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result Problem: with function symbols,

there are infinitely many ground terms,

e.g., Father(Father(Father(J ohn)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,it is entailed by a finite

subset of the propositional KB

Idea: For n = 0 to ∞ do

create a propositional KB by instantiating with depth-n terms see if α is entailed by this

KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with Propositionalization
Propositionalization seems to generate lots of irrelevant sentences. E.g., from

∀x K ing(x) ∧Greedy(x) ⇒Evil(x)

King(John)

∀yGreedy(y)

Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of facts
such as Greedy(Richard) that are irrelevant

Unification

We can get the inference immediately if we can find a substitutionθ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y, OJ) {x/OJ, y/John}

Knows(John,x) Knows(y, M other(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)

Generalized Modus Ponens (GMP)

p1
t, p2

t, . . . , pn
t, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ
twhere pi θ = piθ for all i

p1
t is King(J ohn)

p2
t is Greedy(y)

p1 is King(x)

p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)

qθ is Evil(J ohn)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

FOL Forward Chaining

