Announcements

Assignments:

- HW5
- Due Tue $2 / 26,10 \mathrm{pm}$
- HW6 and P3
- Coming soon

Travel

- Pat out Wed 2/27, back for Mon 3/4
- SIGCSE 2019, Minneapolis

AI: Representation and Problem Solving

First-Order Logic

Instructors: Pat Virtue \& Stephanie Rosenthal

Outline

1. Need for first-order logic
2. Syntax and semantics
3. Planning with FOL
4. Inference with FOL

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is compositional:
meaning of $\underline{B_{1,1} \wedge P_{1,2}}$ is derived from meaning of $B_{1,1}$ and of $\underline{P_{1,2}}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends oncontext)
- Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares"
except by writing one sentence for each square

Pros and Cons of Propositional Logic

Rules of chess:

- 100,000 pages in propositional logic
- 1 page in first-order logic

Rules of pacman:

- $\forall x, y, t \operatorname{At}(x, y, t) \Leftrightarrow[\operatorname{At}(x, y, t-1) \wedge \neg \exists u, v \operatorname{Reachable}(x, y, u, v, \operatorname{Action}(t-1))] \vee$ $[\exists \mathrm{u}, \mathrm{v} \operatorname{At}(u, v, t-1) \wedge \operatorname{Reachable}(x, y, u, v$, Action(t-1))]

First-Order Logic (First-Order Predicate Calculus)

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, ...
- Functions: father of, best friend, third inning of, one more than, end of, ...

Logics in General

Language	What exists in the world	What an agent believes about facts
Propositional logic	Facts	true / false / unknown
First-order logic	facts, objects, relations	true / false / unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL

Basic Elements
Constants
Predicates Brother, >,...
Functions
Sqrt, LeftLegOf, . . .
\rightarrow Variables
x, y, a, b, \ldots
Connectives

$$
\wedge \vee \neg \Rightarrow \Leftrightarrow
$$

Equality
Quantifiers
$\forall \exists$

Syntax of FOL

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$

$$
\text { or }_{1} \operatorname{term}_{1}=\operatorname{term}_{2}
$$

$$
\begin{aligned}
& \text { Term }^{\text {or }}=\text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or variable }
\end{aligned}
$$

Examples

Brother(KingJ ohn, RichardT heLionheart)
$\geq\left(L^{\text {Length(LeftLegOf(Richard))), Length(LeftLegOf(KingJohn))) }}\right.$

Syntax of FOL

Complex sentences are made from atomic sentences using connectives
$\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}$

Examples
Sibling(KingJ ohn, Richard) \Rightarrow Sibling(Richard, KingJ ohn)

$$
\frac{>(1,2)}{>(1,2) \wedge} \stackrel{\leq(1,2)}{ }
$$

Models for FOL
Example

Models for FOL

Brother(Richard, John)

Consider the interpretation in which:
Richard \rightarrow Richard the Lionheart John \rightarrow the evil King John Brother \rightarrow the brotherhood relation

Model for FOL
Lots of models!

Model for FOL

Lots of models!
Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:
For each number of domain elements n from 1 to ∞
For each k-ary predicate P_{k} in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary
For each choice of referent for C from n objects . . .
Computing entailment by enumerating FOL models is not easy!

Truth in First-Order Logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations among them
Interpretation specifies referents for constant symbols \rightarrow bjects model predicate symbols - relations
function symbols \rightarrow functional relations
An atomic sentence predicate(term te $_{1}, \ldots$, term ${ }_{n}$) is true:
iff the objects referred to by term $_{1}, \ldots$, , term n_{n}
are in the relation referred to by predicate

Models for FOL

Consider the interpretation in which:
Richard \rightarrow Richard the Lionheart John \rightarrow the evil King John
Brother \rightarrow the brotherhood relation -

Under this interpretation, Brother(Richard, John) is true just in the case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Universal Quantification

\forall (variables) (sentence)

Everyone at the banquet is hungry:
$\forall x \quad$ At $(x$, Banquet $) \Rightarrow$ Hungry (x)
$\forall x \quad P$ is true in a model m iff P is true with x being
each possible object in the model
Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
&(\text { At }(\text { KingJohn, Banquet }) \Rightarrow \text { Hungry(KingJohn })) \\
& \wedge(\text { At }(\text { Richard, Banquet }) \Rightarrow \text { Hungry(Richard) }) \\
&\wedge(\text { At Banquet, Banquet }) \Rightarrow \text { Hungry(Banquet }))
\end{aligned}
$$

$$
\wedge \ldots
$$

Universal Quantification

Common mistake
Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \operatorname{At}(x, \text { Banquet }) \wedge \text { Hungry }(x)
$$

means "Everyone is at the banquet and everyone is hungry"

Existential Quantification

\exists (variables) (sentence)
Someone at the tournament is hungry:
$\exists x A t(x$, Tournament $) \wedge$ Hungry (x)
$\exists x P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\left.\begin{array}{l}
(\text { At }(\text { KingJohn, Tournament }) \wedge \text { Hungry }(\text { KingJohn })) \\
\vee(\text { At }(\text { Richard, Tournament }) \wedge \text { Hungry }(\text { Richard })) \\
\vee \\
\vee \\
\vee
\end{array}\right)
$$

Existential Quantification

Common mistake
Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x A t(x \text {, Tournament }) \Rightarrow \text { Hungry }(x)
$$

is true if there is anyone who is not at the tournament!

Properties of Quantifiers
$\forall x \quad \forall y$ is the same as $\forall y \quad \forall x$
$\exists x \quad \exists y$ is the same as $\exists y \quad \exists x$
$\exists x \quad \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"

$$
\operatorname{Pred}(x, y)
$$

$$
\forall y \exists x \operatorname{Loves}(x, y)
$$

"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other
$\forall x$ Likes $(x$, IceCream) $\quad \neg \exists x \neg$ Likes $(x$, IceCream)
$\exists x \operatorname{Likes}(x$, Broccoli) $\quad \neg \forall x \neg \operatorname{Likes}(x$, Broccoli)

Fun with Sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
A first cousin is a child of a parent's sibling
$\forall x, y[\operatorname{FirstCousin}(x, y) \Leftrightarrow \underset{1}{\exists p, p s} \quad \operatorname{Parent}(p, \underline{x}) \wedge \underline{\operatorname{Sibling}(p s, p)} \wedge \operatorname{Parent}(p s, y)]$

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation
if and only if term term $_{1}$ and term refer to the same object
E.g., $1=2$ and $\forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqrt}(x))=x$ are satisfiable $2=2$ is valid
E.g., definition of (full) Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow$

$$
[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge
$$

$$
\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
$$

Piazza Poll 1

Given the following two FOL sentences:

$$
\begin{aligned}
& \gamma: \forall x \\
& \delta: \quad \exists \operatorname{ungry}(x) \\
& \delta: \quad \operatorname{Hungry}(x)
\end{aligned}
$$

Which of these is true?
A) $\gamma \vDash \delta$
B) $\delta \vDash \gamma$
C) Both
D) Neither

Piazza Poll 1

Given the following two FOL sentences:

$$
\begin{aligned}
& \gamma: \forall x \text { Hungry }(x) \\
& \delta: \exists x \text { Hungry }(x)
\end{aligned}
$$

Which of these is true?
A) $\gamma \vDash \delta>$
B) $\delta \vDash \gamma$
C) Both
D) Neither

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:
Tell(KB, Percept [Smell, Breeze, None], 5))
$\operatorname{Ask}(K B, \exists$ a Action $(a, 5))$
i.e., does $K B$ entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \leftarrow$ substitution (binding list) Notation Alert!
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$\rightarrow S=\operatorname{Smarter}(x, y)$
$\sigma=\{x / E V E, y / W A L L-E\}$
So = Smarter(EVE, WALL-E)
Ask $(K B, S)$ returns some/all σ such that $K B \mid=S \sigma$

Knowledge Base for Wumpus World

```
"Perception"
\forallb,g,t Percept([Smell, b, g],t) = Smelt(t)
\foralls,b,t P ercept([s, b, Glitter],t) => AtGold(t)
```

Reflex: $\forall t \quad$ AtGold $(t) \Rightarrow$ Action(Grab, $t)$

Reflex with internal state: do we have the gold already?
$\forall t \quad$ AtGold $(t) \wedge \neg$ Holding $($ Gold, $t) \Rightarrow$ Action $($ Grab, $t)$
Holding(Gold, t) cannot be observed
\Rightarrow keeping track of change is essential

Deducing Hidden Properties

Properties of locations:
$\forall x, t \quad \operatorname{At}($ Agent $, x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x)$
$\forall x, t \quad$ At $($ Agent, $x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)$
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \quad \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

Neither of these is complete - e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \stackrel{\exists l}{\exists x} \quad \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Keeping Track of Change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate E.g., Nowin
Holding(Gold, Now) denotes a situation
Situations are connected by the Result function Result(a, s) is the situation that results from doing ain s

Describing Actions

"Effect" axiom-describe changes due to action
$\forall s$ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))
"Frame" axiom-describe non-changes due to action
$\forall s$ HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))

Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):
P true afterwards \Leftrightarrow [an action made P true
$\vee \quad P$ true already and no action made P false]
For holding the gold:

$$
\begin{aligned}
& \forall a, s \quad \text { Holding }(\text { Gold, Result }(a, s)) \Leftrightarrow \\
& {[(a=\text { Grab } \wedge \text { AtGold }(s))} \\
& \vee(\text { Holding }(\text { Gold, } s) \wedge \neg(a=\text { Release }))]
\end{aligned}
$$

Describing Actions

Initial condition in KB :
At (Agent, $\left.[1,1], \underline{S_{0}}\right)$
At(Gold, [1, 2], $\left.\overline{S_{0}}\right)$
Query: $\operatorname{Ask}(K B, \exists s$ Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: $\left\{s /\right.$ Result (Grab, Result(Forward, $\left.S_{0}\right)$) \}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_{0} and that S_{0} is the only situation described in the KB

Making Plans

Represent plans as action sequences $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$,
PlanResult (p, s) is the result of executing pin s
Then the query $\operatorname{Ask}\left(K B, \exists p \operatorname{Holding}\left(\right.\right.$ Gold, $\left.\left.\operatorname{PlanResult}\left(p, S_{0}\right)\right)\right)$
has the solution $\{p /[$ Forward, Grab] $\}$
Definition of PlanResult in terms of Result:

$$
\begin{aligned}
& \forall s \quad \text { PlanResult }([], s)=s \\
& \forall a, p, s \quad \text { PlanResult }([a, p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))
\end{aligned}
$$

Outline

1. Need for first-order logic
2. Syntax and semantics
3. Planning with FOL
4. Inference with FOL

Inference in First-Order Logic

A) Reducing first-order inference to propositional inference

- Removing \forall
- Removing \exists
- Unification
B) Lifting propositional inference to first-order inference
- Generalized Modus Ponens
- FOL forward chaining

Universal Instantiation

Every instantiation of a universally quantified sentence is entailed by it:
$\downarrow \forall \underline{v} a$
Subst $(\{v / g\}, a)$
for any variable v and ground term g
E.g., $\forall x \quad \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil(}(x)$ yields

$$
\begin{aligned}
& \text { King(John) } \wedge \text { Greedy(John) } \Rightarrow \text { Evil(John) King(Richard) } \wedge \\
& \text { Greedy (Richard) } \Rightarrow \text { Evil(Richard) } \\
& \text { King(Father(John)) } \wedge \text { Greedy(Father(John)) } \Rightarrow \text { Evil(Father(John)) }
\end{aligned}
$$

Existential Instantiation

For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
$\exists v \quad a$
Subst $(\{v / k\}, a)$
E.g., $\exists x \quad \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John) yields

Crown $\left(C_{1}\right) \wedge$ OnHead (C_{1}, John)
provided C_{1} is a new constant symbol, called a Skolem constant

Reduction to Propositional Inference

Suppose the KB contains just the following:
$\left[\begin{array}{rl} & \forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x) \\ & \text { King }(\text { John }) \\ \rightarrow & \text { Greedy(John) } \\ \text { Brother(Richard, John) }\end{array}\right.$

Instantiating the universal sentence in all possible ways, we have

```
King(John) ^ Greedy(John) }=>\mathrm{ Evil(John)
King(Richard) ^ Greedy(Richard) }=>\mathrm{ Evil(Richard)
King(John)
GGreedy(J ohn)
Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are
King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to Propositional Inference

Claim: a ground sentence*is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailment
Idea: propositionalize KB and query, apply resolution, return result Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)),

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB, it is entailed by a finite subset of the propositional KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth- n terms seeif a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed
Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with Propositionalization

Propositionalization seems to generate lots of irrelevant sentences. E.g., from $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)]$ King(John)
$\rightarrow \forall y$ Greedy (y)
Brother(Richard, John)
it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy (Richard), that are irrelevant

Unification

We can get the inference immediately if we can find a substitution θ such that King (x) and Greedy(x) match King(John) and Greedy(y) $\Delta \theta=\{x /$ John, $y /$ John $\}$ works
$\operatorname{Unify}(\underline{a}, \underline{\beta})=\theta$ if $a \theta=\beta \theta$

Standardizing apart eliminates overlap of variables, e.g., Knows $\left(z_{1} 7, O J\right)$

Generalized Modus Ponens (GMP)

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

FOL Forward Chaining

function FOL-FC-Ask $(K B, \alpha)$ returns a substitution orfalse repeat until new is empty
$n e w \leftarrow\}$
for each sentence r in $K B$ do
$\left(p_{\mathbf{1}} \wedge \ldots \wedge p_{\boldsymbol{n}} \Rightarrow q\right)$ Standardize-Apart(r)
for each θ such that $\left(p_{1} \wedge \ldots \wedge p_{\mathbf{n}}\right) \theta=\left(p_{1}^{t} \wedge \ldots \wedge p^{t}\right)_{n}$
for some $p_{1}^{t}, \ldots, p_{n}^{t}$ in $K B$
$q^{t}-\operatorname{Subst}(\theta, q)$
if q^{t} is not a renaming of a sentence already in $K B$ or new then do
add q to new
$\varphi —$ Unify $\left(q^{t}, a\right)$
if φ is not fail then return φ
add new to $K B$
return false

