Midterm Review
15-369/669/769: Numerical Computing

Instructor: Minchen Li



Midterm Exam

® Time: 80 min, in-class on Wednesday, Oct 8
® 7/ questions in total
¢ 1 double-sided letter-size cheat sheet allowed (can be printed)

e Calculator allowed

® A highly relevant practice exam with answers will be provided today.

e Assignment answers will be provided today.



e Examples:

1. Mathematics Review

. . e R": standard Euclidean space.
Vector Spaces and Linearity P

e span{(1,0,0),(0,1,0),(0,0,1)} = R>.

e Vector space: a set closed under vector addition and scalar multiplication.
Vuve V,VceR, u+veV, cueV.

e Linear combination: v =) _; a;v;. The set {vq,..., v } is linearly independent if no nontrivial
coefficients «; satisty the above.

e Span: all linear combinations of a set of vectors; forms a subspace.

e Basis: a minimal linearly independent set that spans V. Dimensionality = number of basis
vectors.



1. Mathematics Review

Linear Maps and Matrix Representation

e Amap f : R" — R" is linear if

f(ax

by) = af (x)

bf(y) Va,b,x,y.

e Any linear map can be represented by a matrix A:

e Key matrix operations:

e Matrix-vector product: Ax
e Matrix-matrix product: AB
e Transpose: A’

e Identity: /x = x

f(x) = Ax,

Aec RM™*N

e Solving linear systems: Ax = b

e If Ainvertible: x = A~ 1b.

e Residual norm: ||Ax — b||> measures error.



1. Mathematics Review

Differential Calculus and Nonlinearity

e Derivative (1D): measures rate of change: '(x) = limp_,g f(x+h,),_f(x).

e Taylor’s theorem: for small h, f(x + h) = f(x) + f'(x)h+ 5" (x)h*> + O(h3).

i 1T
e Gradient: for f : R" —» R, Vf(x) = aa% 887:

e Directional derivative: rate of change along direction v: Dyf(x) = Vf(x)'v

e Jacobian: derivative of a vector-valued function F : R" — R™: J;; = g:—
J

e Quadratic form: f(x) = x” Ax, Hessian= A+ A"



2. Numerics and Error Analysis

Representing Numbers in Computers

e Floating-point representation:

e Inspired by scientific notation: x = +(1.d1d>...dp)p X b€
e Provides wide range of magnitudes and uniform relative precision.

e Key parameters: Base b; precision p; exponent range |emin, €max); machine precision &,,: smallest
¢ > 0 such that 1 + ¢ is representable.

e Widely used standard (base b = 2):

e 1 sign bit, 52 fraction bits (mantissa), 11 exponent bits.

e Double precision exponent range: —1022 to 1023.

e Supports special values: oo, NaN (“not-a-number”) for undefined results (e.g. 1/0).



2. Numerics and Error Analysis

Representing Numbers in Computers (cont.)
e Fixed-point representation:

e Stores integers with an implied decimal point (scaled by a power of two or ten).
e Efficient: reuses integer arithmetic hardware.
e Limitations: Limited precision; cannot represent irrational numbers (e.g.7t, 1/3).

e Still used in embedded or real-time systems for efficiency.

e Other representations:

e Rational numbers: exact arithmetic but expensive and nonunique.

e Error bars: explicitly track uncertainty bounds.



2. Numerics and Error Analysis

Error Analysis and Conditioning

e Sources of error:
e Rounding error: finite-digit representation (e.g. 7t not exact).
e Discretization error: numerical approximation of continuous equations.
e Modeling error: simplified physical or mathematical model.

e Error types:
e Input error: inaccurate or noisy user-provided data. e Absolute error: |Xest — Xruel-

e Forward vs. backward error: e Relative error: |Xest — Xtrue|/ | Xtrue|-

e Backward error: how much input must change to make result exact.

e Forward error: deviation of computed result from true result.

'|forward error|
|backward error|

e Condition number: amplification factor linking backward — forward error: k¥ =
Small x: well-conditioned, large «: ill-conditioned.



3. Linear Systems and the LU Decomposition

Solving Linear Systems
e Goal: Solve Ax = b for x.

e Solvability:

e Geometric intuition: Ax is a linear combination of columns of A. The equation is solvable only if b
lies within their span.

e Three cases:
» Overdetermined: more equations than unknowns.
» Underdetermined: fewer equations than unknowns.

» Square, nonsingular: unique solution (our focus in this lecture).



3. Linear Systems and the LU Decomposition

Gaussian Elimination and Row Operations

e Gaussian elimination: iteratively eliminate variables to reach upper-triangular form.

e Equivalent to performing row operations:

e Row permutation (swap two rows).
e Row scaling (multiply by nonzero scalar).

e Row addition (add multiple of one row to another).
e Matrix form: MMy _1--- MiA = U, where U is upper triangular.
e Solving system: Ax =b = Ux = M M;_1--- M;b.

e Forward/backward substitution: triangular systems can be solved in O(n?) time.



3. Linear Systems and the LU Decomposition

LU Factorization and Practical Use

e LU factorization: A = LU, L (lower triangular), U (upper triangular).

Ly = b (forward substitution)

Solving Ax = b: LUx =b =
¢ Solving AX X {Ux =y (backward substitution)

e Complexity: Factorization: O(n3); Each solve (after factorization): O(n?).

e Pivoting: improves numerical stability and sparsity control.
e Row pivoting: A = PLU

e Full pivoting (rare): A = PLUQ

e Used for multiple right-hand sides or iterative solvers as a precomputation.



4. Designing Linear Systems

Parametric Regression

e Goal: predict outcomes f(x) for new x given observed data pairs (x;, y;).

e Linear regression:

e Model, e.g. polynomial regression, f(x) ~ ag + aix+---+apx" =a'

X.
e Data points collected into a design matrix A and target vector b.
e Solve for parameters a using least squares: Aa = b

e Nonlinear regression:

e f(x) depends nonlinearly on model parameters.

e Requires iterative solvers (e.g. Newton’s method).



4. Designing Linear Systems

Least-Squares Formulation and Normal Equations
e Motivation: Interpolation forces the fitted curve through all data points — poor for noisy data.

e Instead, allow an approximate fit minimizing squared residuals:
min |Ax — b|[3.
e If Ahas full column rank, normal equations yield:
ATAx=A"b = x=(ATA)1Ab

e Used throughout data fitting, statistics, and inverse problems.



4. Designing Linear Systems

Regularization and Applications
e Tikhonov (Ridge) Regularization: miny [|Ax — b||3 + «||x||5.
e Equivalent linear system: (AT A+al)x = A'b.
e Stabilizes inversion when A is ill-conditioned or rank-deficient.
e & > 0 controls the tradeoff between fit accuracy and smoothness.

e Applications:

e Image alignment: match corresponding points between two images. Solve for transformation A, b
minimizing }", ||Axx + b — y,||5, leading to a linear least-squares system.

e Common pattern: model relationships — form residuals — minimize squared norms — derive
linear equations.



5. Analyzing Linear Systems

Positive Definiteness and Cholesky Factorization

e For aleast-squares system A’ Ax = A’ b:
e A’ Aisalways symmetric: (ATA)T = AT A
e A’ Ais positive semi-definite (PSD): Vx # 0, x' AT Ax = ||Ax||3 > 0.

e A Ais symmetric positive definite (SPD), and thus invertible, if A’s columns are linearly
independent.

e Cholesky factorization: A= LL'", Llower triangular.

e Faster and more memory-efficient than LU (half the storage, half the flops).

e Must ensure A is SPD.

e Efficient algorithm: £, = \/ckk — ||8kll3, Lk = Ll_llck.



5. Analyzing Linear Systems
Sparsity
e Sparse matrix: majority of entries are zero.

e Example: in image processing, each pixel depends only on neighbors.

e Storage: store only nonzero entries (e.g., triplet list: row, column, value).

e Solvers:
e LU or Cholesky factorization may introduce new nonzeros (fill-in).

e Specialized direct solvers (e.g., sparse LU, multifrontal) minimize fill.

e Iterative solvers (CG, GMRES) avoid explicit factorization; require only matrix-vector products.

e Tridiagonal systems: can be solved in O(n) using specialized algorithms.



5. Analyzing Linear Systems

Sensitivity Analysis and Conditioning

e Goal: measure how small perturbations in A, b affect solution x in Ax = b.

e Vector and matrix norms:

/P

e Vector p-norms: ||v||, = (¥; |vi|P)*P, with ||v||, < ||v||q for p > q.

e Matrix norms (induced): ||All2 = max|y,—1 [|Ax|[2 = Omax(A).

e Condition number: cond(A) = [|A||[|A7L| = Z'me.]x((j\\))-

e Always > 1; scaling A doesn’t change its condition number.

e Large cond(A): system is ill-conditioned — small perturbations cause large solution errors.

e L 5 SA| | ||ob
e Error amplification: HH:HH < |e|cond(A) (H||AHH | ”HbHH) + O(€?).



6. Column Spaces and QR

OR Factorization and Orthogonal Matrices

e Motivation: Solving least-squares systems miny ||Ax — b||5 via normal equations AT Ax = A'b
may lead to numerical instability when columns of A are nearly dependent.

e Idea: Replace AT A with orthogonalization via A = @R, where Q’s columns are orthonormal
(Q" Q = I), and R is upper-triangular matrix.

e Orthogonal matrix properties: Q1 = Q7' Preserves lengths and angles: ||@Qx|[2 = ||x|[2,

(Qx)"(Qy) =x"QTQy =xTy.

o Least-squares solution: A= QR = A"A=R"R, A’b=R"Q'"b, hence Rx = Qb canbe
solved efficiently by back-substitution.

e Advantage: avoids squaring condition number asin A’ A.



6. Column Spaces and QR

Gram-Schmidt Orthogonalization

e Goal: Construct an orthonormal basis {41, &, ..., a, } for the column space of A.
e Projection of a vector: proj,(b) = %a.

. _ * 14 4., — ai A — 32—(517_32)51
e Classical Gram-Schmidt: a4 Tag] 42 Tay—(a a0)a1]

e Result: A = QR, where Q is a matrix with orthonormal columns, and R = Q" Ais upper
triangular.

e Modified Gram-Schmidt:

e Projects each remaining column immediately after computing each new basis vector.

e More numerically stable under rounding errors.



6. Column Spaces and QR

Householder Transformations and Reduced QR

e Motivation: Gram-Schmidt is conceptually simple but numerically unstable. Instead, use
orthogonal reflections (Householder, 1958).

e Householder reflection: H = | — 2%, H" H = |. Reflects a vector b across direction v.

e Algorithm:

o lteratively pre-multiply A by orthogonal reflectors Hi, Ho, ... to eliminate subdiagonal entries.

o After ksteps: R = Hy---H1A, Q= (HiHy---H,)".

e Reduced QR Factorization: A = Q1Ry, Q1 € R™" Ry € R"™".
Used when m >> n, saves storage. Solve least squares via Rjx = Q' b.

e Householder QR is stable and efficient (O(mn?)) and preferred in practice.



7. Eigenvectors

Motivation and Applications of Eigenvalue Problems

e Eigenvalue problem: find nontrivial pairs (A, x) such that Ax = Ax.
Nonlinear in unknowns A, x due to their product; constraint ||x||, = 1 avoids the trivial
solution x = 0.

e Optimization form: a% (x"Ax —A(x"x—1)) = 0= Ax = Ax.

e Example (PCA in statistics):

e Patient data (age, weight, BP, heart rate) in R* may lie approximately in a lower-dimensional
subspace.

e The best 1D subspace spanned by v minimizes projection error: ¥_; ||x; — (v x;)v/|°.

e Equivalent to maximizing variance: max |-y v T XX T'v, whose solution v is the principal
eigenvector of XX ! (the first principal component).



7. Eigenvectors

Properties of Eigenvectors

e Scale invariance: if Ax = Ax, then A(cx) = A(cx) for any scalar c. Thus eigenvectors are
determined up to scale and sign.

e Multiplicity and diagonalizability:

e An n X nmatrix has at most n distinct eigenvalues. If fewer than n linearly independent
eigenvectors exist, the matrix is defective.

e The number of linearly independent eigenvectors for A is its geometric multiplicity.

e Similarity transformation: Two matrices A and B are similar if there exists an invertible
matrix T such that A= T~1BT. Similar matrices have the same eigenvalues.

e Spectral theorem: For real symmetric (or Hermitian) A: A= QAQ', where Q is orthogonal
and A is real diagonal.



7. Eigenvectors

Computing Figenvalues and Figenvectors

e Power iteration: Start from arbitrary vg; repeat v, 1 = Avy /|| Avi]|.
Converges to eigenvector of largest |A| if |A1| > |A2|. Simple, but slow if eigenvalues are close
in magnitude.

e Inverse iteration: Apply power iteration to A~!; finds smallest |A|.
Each step requires solving a linear system, but can be pre-factorized.

e Shifted inverse iteration: Apply iteration to (A — o/)~1; converges to eigenvalue closest to ¢

.
e Rayleigh quotient iteration: Update shift each iteration with o = al/§
v/ v

Faster convergence, though more expensive per iteration.



7. Eigenvectors
Finding Multiple Eigenvalues

e Deflation:

e After finding x; with eigenvalue A1, project out its contribution: v < (/ — x1x{ )v. Run power

iteration again to find the next eigenvector.
e Can be implemented via Householder reflections to robustly preserve symmetry.
e OR iterations:
e Factor Ay = QRy, set Axi1 = Ry Q.
e Sequence Ay converges to an upper-triangular matrix with eigenvalues on the diagonal.

e Most efficient and robust method for all eigenvalues (after reducing to tridiagonal form).



8. Singular Value Decomposition

Core Concepts

e Definition: Forany A € R™*", A = ULV where

e U € R™*™M: orthogonal matrix (U" U = ),
o V c R"™": orthogonal matrix,

e > ¢ R™*": diagonal with nonnegative entrieso; > 0 > --- > 0.

e Geometric interpretation: A maps the unit sphere to an ellipsoid: Av; = o;u;, scaling and
rotating directions.

e Relation to eigenproblems: A’A= VI 2V’ AAT = Uz U'.
Singular values are square roots of eigenvalues of A" Aor AA'.

e SVD always exists and is numerically stable.



8. Singular Value Decomposition

Applications: Pseudoinverse and Low-Rank Approximation

e Solving linear systems via SVD:

e For full-rank A: x = VX~ 1Ub.

e For rank-deficient or rectangular A: use the Moore-Penrose pseudoinverse AT = VET U, where
> " inverts only nonzero singular values.

e Low-rank approximation: A, = Zf-‘zl o;u;V ,-T, capturing the dominant structure of A.
e Eckart-Young theorem:
A, = ar min A— Bllo =0%41.
k grank(B):k | |2 k+1

Truncated SVD provides optimal compression under both 2-norm and Frobenius norm.



8. Singular Value Decomposition
Matrix Norms and PCA

e Matrix norms from SVD:
e Frobenius norm: ||A||% = Y, 0%
e Spectral norm: ||A||2 = Omax.
e Condition number: ¥(A) = Omax/ Tmin-
e Principal Component Analysis (PCA):
e Given data matrix X € R"** (mean-centered) and subspace spanned by C € R"*9.

e Minimizes reconstruction error (maximizes variance) of projected data: ming7c_; || X — CCT X||2.

e Given the SVD: X = ULV, principal components = columns of U.

e SVD underlies modern data compression, noise reduction, and face recognition (eigenfaces).



9. Nonlinear Systems

Root-Finding in One Dimension

e Goal: Find x* such that f(x*) = 0.

e Bisection method: Find the root in |a, b] with f(a)f(b) < 0; Repeatedly bisect interval and
select subinterval where sign change occurs.

e Guaranteed convergence but only linear rate.

e Fixed-point iteration: Reformulate as x = g(x). Iterate x, 1 = g(xk).

e Converges if |g'(x*)| < 1; smaller |g’'(x*)| leads to faster convergence.

f(Xk)
F/(xk)

e Quadratic convergence near root if f’ smooth and xg is close.

e Newton’s method: iterate x, 1 = xi

e May diverge for poor initial guesses or discontinuous derivatives.



9. Nonlinear Systems
More Root-Finding Methods

e Secant method:

Xk —Xk—1

xk)—f(xk_l) ]

e Uses finite-difference slope instead of f'(x) and iterate x) 1 = xx — f(xk) 7 (

e Converges superlinearly if xy sufficiently close, requires no derivative evaluation.

e Hybrid methods:

e Combine robustness of bisection with speed of Newton/Secant.

e Example: Brent’s method — guaranteed convergence, often near-quadratic.

e Summary:

e Many schemes exist. Faster methods reduce iterations but typically increase per-step cost.

e Choice depends on smoothness and reliability needs.



9. Nonlinear Systems

Multivariable Systems
¢ Problem: Find x* € R"” such that F(x*) =0, F:R"” — R".

e Newton’s method: Jr(xx)Ax, = —F(Xx), Xki1 = Xk + Axk. Jr: Jacobian of F.

e Quadratic convergence near solution if J¢ is nonsingular and xg is close.

e Quasi-Newton (Broyden) methods: Approximate the Jacobian update using rank-one
correction:

Yk — Bisk)s/]
Bk+1 — Bk | ( T ) k , S = Xk+1 — Xk, Yk — F(xk+1) o F(Xk).

e Lower cost per iteration, often superlinear convergence.

e Conditioning: ||(Jg(x*))~1||; Ill-conditioned Jr leads to unstable updates.



10. Unconstrained Optimization I

Motivation and Problem Setup
e Goal: Minimize or maximize f : R" — IR without constraints.

e Examples:

e Nonlinear least squares: fit nonlinear model f(x) = ce?* to data (x;, y;):

E(a, c) = Z(y,- — ce®i)?,

o Maximum likelihood estimation: fit parameters (¢, o) for Gaussian g(h; u, o) = a\/lﬂ e~ (h—n)*/20%

maximizing the log-likelihood
{(u, o) =) _logg(hii . o).

o Simulating elastic objects: find equilibrium minimizing sum of elastic and gravitational energies.



10. Unconstrained Optimization I
Optimality Conditions
e Global vs. local minima:

¢ Global minimum: f(x*) < f(x) for all x.

e Local minimum: f(x*) < f(x) within small neighborhood.

e First-order condition: V£ (x*) = 0. A necessary condition (no descent direction).
e Second-order test: Hr(x*) = V2f(x*).
e H¢(x*) > 0: local minimum. e Hf(x*) indefinite: saddle point.
o H(x*) < 0: local maximum. e Hs(x™) singular: degenerate behaviors possible.

e Convexity: f((1 —a)x+ay) < (1—a)f(x)+af(y), Va € [0,1].

e If f convex, any local minimum is global.



10. Unconstrained Optimization I

One-Dimensional Strategies

/
e Newton’s method: x,1 = xi ;,,(();’; )) . Quadratic convergence near minima when " (x*) > 0.

e Secant and parabolic interpolation: Avoids computing f”(x) by approximating derivatives
from previous iterates.

e Converges superlinearly.

e Golden-section search:

e For unimodal f, recursively narrow search interval.

3—/5 1 _

e Evaluates at fixed fraction points determined by golden ratio: & = =

e Linear convergence, guaranteed for continuous f.



