Midterm Review

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Midterm Exam

- Time: 80 min, in-class on Wednesday, Oct 8
- 7 questions in total
- 1 double-sided letter-size cheat sheet allowed (can be printed)
- Calculator allowed

- A highly relevant practice exam with answers will be provided today.
- Assignment answers will be provided today.

1. Mathematics Review

Vector Spaces and Linearity

• Examples:

- \mathbb{R}^n : standard Euclidean space.
- span $\{(1,0,0),(0,1,0),(0,0,1)\}=\mathbb{R}^3$.
- Vector space: a set closed under vector addition and scalar multiplication.

$$\forall \mathbf{u}, \mathbf{v} \in V, \ \forall c \in \mathbb{R}, \quad \mathbf{u} + \mathbf{v} \in V, \ c\mathbf{u} \in V.$$

- **Linear combination:** $\mathbf{v} = \sum_i \alpha_i \mathbf{v}_i$. The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is *linearly independent* if no nontrivial coefficients α_i satisfy the above.
- Span: all linear combinations of a set of vectors; forms a subspace.
- **Basis:** a minimal linearly independent set that spans *V*. Dimensionality = number of basis vectors.

1. Mathematics Review

Linear Maps and Matrix Representation

• A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

$$f(ax + by) = af(x) + bf(y) \quad \forall a, b, x, y.$$

• Any linear map can be represented by a matrix *A*:

$$f(\mathbf{x}) = A\mathbf{x}, \quad A \in \mathbb{R}^{m \times n}.$$

• Key matrix operations:

- Matrix-vector product: Ax
- Matrix-matrix product: *AB*
- Transpose: A^T
- Identity: Ix = x

- Solving linear systems: Ax = b
 - If *A* invertible: $\mathbf{x} = A^{-1}\mathbf{b}$.
 - Residual norm: $||A\mathbf{x} \mathbf{b}||_2$ measures error.

1. Mathematics Review

Differential Calculus and Nonlinearity

- **Derivative (1D):** measures rate of change: $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.
- **Taylor's theorem:** for small h, $f(x + h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + O(h^3)$.
- Gradient: for $f: \mathbb{R}^n \to \mathbb{R}$, $\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^T$.
- Directional derivative: rate of change along direction v: $D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top}\mathbf{v}$.
- **Jacobian:** derivative of a vector-valued function $F : \mathbb{R}^n \to \mathbb{R}^m$: $J_{ij} = \frac{\partial F_i}{\partial x_j}$.
- Quadratic form: $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, Hessian = $A + A^T$.

2. Numerics and Error Analysis

Representing Numbers in Computers

- Floating-point representation:
 - Inspired by scientific notation: $x = \pm (1.d_1d_2...d_p)_b \times b^e$
 - Provides wide range of magnitudes and uniform relative precision.
 - Key parameters: Base b; precision p; exponent range [e_{min} , e_{max}]; machine precision ε_m : smallest $\varepsilon > 0$ such that $1 + \varepsilon$ is representable.
 - Widely used standard (base b = 2):
 - 1 sign bit, 52 fraction bits (mantissa), 11 exponent bits.
 - Double precision exponent range: −1022 to 1023.
 - Supports special values: $\pm \infty$, NaN ("not-a-number") for undefined results (e.g. 1/0).

2. Numerics and Error Analysis

Representing Numbers in Computers (cont.)

• Fixed-point representation:

- Stores integers with an implied decimal point (scaled by a power of two or ten).
- Efficient: reuses integer arithmetic hardware.
- Limitations: Limited precision; cannot represent irrational numbers (e.g. π , 1/3).
- Still used in embedded or real-time systems for efficiency.

• Other representations:

- Rational numbers: exact arithmetic but expensive and nonunique.
- Error bars: explicitly track uncertainty bounds.

2. Numerics and Error Analysis

Error Analysis and Conditioning

- Sources of error:
 - Rounding error: finite-digit representation (e.g. π not exact).
 - Discretization error: numerical approximation of continuous equations.
 - Modeling error: simplified physical or mathematical model.
 - Input error: inaccurate or noisy user-provided data.
- Forward vs. backward error:

- Error types:
 - Absolute error: $|x_{\text{est}} x_{\text{true}}|$.
 - Relative error: $|x_{est} x_{true}|/|x_{true}|$.
- Backward error: how much input must change to make result exact.
- Forward error: deviation of computed result from true result.
- **Condition number:** amplification factor linking backward \rightarrow forward error: $\kappa = \frac{|\text{forward error}|}{|\text{backward error}|}$ Small κ : well-conditioned, large κ : ill-conditioned.

3. Linear Systems and the LU Decomposition Solving Linear Systems

- Goal: Solve Ax = b for x.
- Solvability:
 - **Geometric intuition:** Ax is a linear combination of columns of A. The equation is solvable only if b lies within their span.
 - Three cases:
 - Overdetermined: more equations than unknowns.
 - Underdetermined: fewer equations than unknowns.
 - Square, nonsingular: unique solution (our focus in this lecture).

3. Linear Systems and the LU Decomposition

Gaussian Elimination and Row Operations

- Gaussian elimination: iteratively eliminate variables to reach upper-triangular form.
- Equivalent to performing row operations:
 - Row permutation (swap two rows).
 - Row scaling (multiply by nonzero scalar).
 - Row addition (add multiple of one row to another).
- Matrix form: $M_k M_{k-1} \cdots M_1 A = U$, where U is upper triangular.
- Solving system: $A\mathbf{x} = \mathbf{b} \Rightarrow U\mathbf{x} = M_k M_{k-1} \cdots M_1 \mathbf{b}$.
- Forward/backward substitution: triangular systems can be solved in $O(n^2)$ time.

3. Linear Systems and the LU Decomposition

LU Factorization and Practical Use

- LU factorization: A = LU, L (lower triangular), U (upper triangular).
- Solving $A\mathbf{x} = \mathbf{b}$: $LU\mathbf{x} = \mathbf{b} \Rightarrow \begin{cases} L\mathbf{y} = \mathbf{b} & \text{(forward substitution)} \\ U\mathbf{x} = \mathbf{y} & \text{(backward substitution)} \end{cases}$
- Complexity: Factorization: $O(n^3)$; Each solve (after factorization): $O(n^2)$.
- Pivoting: improves numerical stability and sparsity control.
 - Row pivoting: A = PLU
 - Full pivoting (rare): A = PLUQ
- Used for multiple right-hand sides or iterative solvers as a precomputation.

4. Designing Linear Systems

Parametric Regression

• **Goal:** predict outcomes f(x) for new x given observed data pairs (x_i, y_i) .

• Linear regression:

- Model, e.g. polynomial regression, $f(x) \approx a_0 + a_1 x + \cdots + a_n x^n = \mathbf{a}^T \mathbf{x}$.
- Data points collected into a design matrix *A* and target vector **b**.
- Solve for parameters **a** using least squares: $A\mathbf{a} = \mathbf{b}$

• Nonlinear regression:

- f(x) depends nonlinearly on model parameters.
- Requires iterative solvers (e.g. Newton's method).

4. Designing Linear Systems

Least-Squares Formulation and Normal Equations

- Motivation: Interpolation forces the fitted curve through all data points poor for noisy data.
- Instead, allow an approximate fit minimizing squared residuals:

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2^2.$$

• If *A* has full column rank, normal equations yield:

$$A^T A \mathbf{x} = A^T \mathbf{b} \Rightarrow \mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

Used throughout data fitting, statistics, and inverse problems.

4. Designing Linear Systems

Regularization and Applications

- Tikhonov (Ridge) Regularization: $\min_{\mathbf{x}} ||A\mathbf{x} \mathbf{b}||_2^2 + \alpha ||\mathbf{x}||_2^2$.
 - Equivalent linear system: $(A^TA + \alpha I)\mathbf{x} = A^T\mathbf{b}$.
 - Stabilizes inversion when A is ill-conditioned or rank-deficient.
 - $\alpha > 0$ controls the tradeoff between fit accuracy and smoothness.

• Applications:

- **Image alignment:** match corresponding points between two images. Solve for transformation A, b minimizing $\sum_{k} ||A\mathbf{x}_{k} + \mathbf{b} \mathbf{y}_{k}||_{2}^{2}$, leading to a linear least-squares system.
- Common pattern: model relationships \rightarrow form residuals \rightarrow minimize squared norms \rightarrow derive linear equations.

5. Analyzing Linear Systems

Positive Definiteness and Cholesky Factorization

- For a least-squares system $A^T A \mathbf{x} = A^T \mathbf{b}$:
 - $A^T A$ is always symmetric: $(A^T A)^T = A^T A$.
 - $A^T A$ is positive semi-definite (PSD): $\forall \mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^T A^T A \mathbf{x} = ||A\mathbf{x}||_2^2 \geq 0$.
 - *A*^{*T*} *A* is symmetric positive definite (SPD), and thus invertible, if *A*'s columns are linearly independent.
- Cholesky factorization: $A = LL^T$, L lower triangular.
 - Faster and more memory-efficient than LU (half the storage, half the flops).
 - Must ensure *A* is SPD.
 - Efficient algorithm: $\ell_{kk} = \sqrt{c_{kk} \|\boldsymbol{\ell}_k\|_2^2}$, $\boldsymbol{\ell}_k = L_{11}^{-1} \mathbf{c}_k$.

5. Analyzing Linear Systems Sparsity

- Sparse matrix: majority of entries are zero.
- Example: in image processing, each pixel depends only on neighbors.
- Storage: store only nonzero entries (e.g., triplet list: row, column, value).

• Solvers:

- LU or Cholesky factorization may introduce new nonzeros (fill-in).
- Specialized direct solvers (e.g., sparse LU, multifrontal) minimize fill.
- Iterative solvers (CG, GMRES) avoid explicit factorization; require only matrix-vector products.
- Tridiagonal systems: can be solved in O(n) using specialized algorithms.

5. Analyzing Linear Systems

Sensitivity Analysis and Conditioning

- Goal: measure how small perturbations in A, **b** affect solution **x** in A**x** = **b**.
- Vector and matrix norms:
 - Vector *p*-norms: $\|\mathbf{v}\|_p = (\sum_i |v_i|^p)^{1/p}$, with $\|\mathbf{v}\|_p \le \|\mathbf{v}\|_q$ for p > q.
 - Matrix norms (induced): $||A||_2 = \max_{\|\mathbf{x}\|_2 = 1} ||A\mathbf{x}||_2 = \sigma_{\max}(A)$.
- Condition number: $cond(A) = ||A|| ||A^{-1}|| = \frac{\sigma_{max}(A)}{\sigma_{min}(A)}$.
 - Always \geq 1; scaling *A* doesn't change its condition number.
 - Large cond(A): system is ill-conditioned small perturbations cause large solution errors.
- Error amplification: $\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le |\epsilon| \operatorname{cond}(A) \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \right) + O(\epsilon^2).$

6. Column Spaces and QR

QR Factorization and Orthogonal Matrices

- **Motivation:** Solving least-squares systems $\min_{\mathbf{x}} ||A\mathbf{x} \mathbf{b}||_2^2$ via normal equations $A^T A\mathbf{x} = A^T \mathbf{b}$ may lead to numerical instability when columns of A are nearly dependent.
- **Idea:** Replace A^TA with orthogonalization via A = QR, where Q's columns are orthonormal $(Q^TQ = I)$, and R is upper-triangular matrix.
- Orthogonal matrix properties: $Q^{-1} = Q^T$; Preserves lengths and angles: $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$, $(Q\mathbf{x})^T(Q\mathbf{y}) = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y}$.
- Least-squares solution: $A = QR \Rightarrow A^TA = R^TR$, $A^T\mathbf{b} = R^TQ^T\mathbf{b}$, hence $R\mathbf{x} = Q^T\mathbf{b}$ can be solved efficiently by back-substitution.
- Advantage: avoids squaring condition number as in $A^T A$.

6. Column Spaces and QR

Gram-Schmidt Orthogonalization

- Goal: Construct an orthonormal basis $\{\hat{a}_1, \hat{a}_2, \dots, \hat{a}_k\}$ for the column space of A.
- Projection of a vector: $proj_a(b) = \frac{a^T b}{a^T a}a$.
- Classical Gram-Schmidt: $\hat{\mathbf{a}}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|}$, $\hat{\mathbf{a}}_2 = \frac{\mathbf{a}_2 (\hat{\mathbf{a}}_1^T \mathbf{a}_2)\hat{\mathbf{a}}_1}{\|\mathbf{a}_2 (\hat{\mathbf{a}}_1^T \mathbf{a}_2)\hat{\mathbf{a}}_1\|}$, ...
- **Result:** A = QR, where Q is a matrix with orthonormal columns, and $R = Q^T A$ is upper triangular.
- Modified Gram-Schmidt:
 - Projects each remaining column immediately after computing each new basis vector.
 - More numerically stable under rounding errors.

6. Column Spaces and QR

Householder Transformations and Reduced QR

- Motivation: Gram-Schmidt is conceptually simple but numerically unstable. Instead, use orthogonal reflections (Householder, 1958).
- Householder reflection: $H = I 2\frac{vv^T}{v^Tv}$, $H^TH = I$. Reflects a vector **b** across direction **v**.
- Algorithm:
 - Iteratively pre-multiply A by orthogonal reflectors H_1, H_2, \ldots to eliminate subdiagonal entries.
 - After k steps: $R = H_k \cdots H_1 A$, $Q = (H_1 H_2 \cdots H_k)^T$.
- Reduced QR Factorization: $A = Q_1 R_1$, $Q_1 \in \mathbb{R}^{m \times n}$, $R_1 \in \mathbb{R}^{n \times n}$. Used when $m \gg n$, saves storage. Solve least squares via $R_1 \mathbf{x} = Q_1^T \mathbf{b}$.
- Householder QR is stable and efficient ($O(mn^2)$) and preferred in practice.

Motivation and Applications of Eigenvalue Problems

- **Eigenvalue problem:** find nontrivial pairs (λ, \mathbf{x}) such that $A\mathbf{x} = \lambda \mathbf{x}$. Nonlinear in unknowns λ , \mathbf{x} due to their product; constraint $\|\mathbf{x}\|_2 = 1$ avoids the trivial solution $\mathbf{x} = \mathbf{0}$.
- Optimization form: $\frac{\partial}{\partial x} (x^T A x \lambda (x^T x 1)) = 0 \Rightarrow A x = \lambda x$.
- Example (PCA in statistics):
 - Patient data (age, weight, BP, heart rate) in \mathbb{R}^4 may lie approximately in a lower-dimensional subspace.
 - The best 1D subspace spanned by \mathbf{v} minimizes projection error: $\sum_i \|\mathbf{x}_i (\mathbf{v}^T \mathbf{x}_i)\mathbf{v}\|^2$.
 - Equivalent to maximizing variance: $\max_{\|\mathbf{v}\|=1} \mathbf{v}^T X X^T \mathbf{v}$, whose solution \mathbf{v} is the principal eigenvector of XX^T (the first principal component).

Properties of Eigenvectors

- Scale invariance: if $Ax = \lambda x$, then $A(cx) = \lambda(cx)$ for any scalar c. Thus eigenvectors are determined up to scale and sign.
- Multiplicity and diagonalizability:
 - An $n \times n$ matrix has at most n distinct eigenvalues. If fewer than n linearly independent eigenvectors exist, the matrix is *defective*.
 - The number of linearly independent eigenvectors for λ is its *geometric multiplicity*.
- **Similarity transformation:** Two matrices *A* and *B* are similar if there exists an invertible matrix *T* such that $A = T^{-1}BT$. Similar matrices have the same eigenvalues.
- **Spectral theorem:** For real symmetric (or Hermitian) *A*: $A = Q\Lambda Q^T$, where *Q* is orthogonal and Λ is real diagonal.

Computing Eigenvalues and Eigenvectors

- **Power iteration:** Start from arbitrary \mathbf{v}_0 ; repeat $\mathbf{v}_{k+1} = A\mathbf{v}_k/\|A\mathbf{v}_k\|$. Converges to eigenvector of largest $|\lambda|$ if $|\lambda_1| > |\lambda_2|$. Simple, but slow if eigenvalues are close in magnitude.
- **Inverse iteration:** Apply power iteration to A^{-1} ; finds smallest $|\lambda|$. Each step requires solving a linear system, but can be pre-factorized.
- Shifted inverse iteration: Apply iteration to $(A \sigma I)^{-1}$; converges to eigenvalue closest to σ .
- **Rayleigh quotient iteration:** Update shift each iteration with $\sigma_k = \frac{\mathbf{v}_k^T A \mathbf{v}_k}{\mathbf{v}_k^T \mathbf{v}_k}$. Faster convergence, though more expensive per iteration.

Finding Multiple Eigenvalues

• Deflation:

- After finding \mathbf{x}_1 with eigenvalue λ_1 , project out its contribution: $\mathbf{v} \leftarrow (I \mathbf{x}_1 \mathbf{x}_1^T) \mathbf{v}$. Run power iteration again to find the next eigenvector.
- Can be implemented via Householder reflections to robustly preserve symmetry.

• QR iterations:

- Factor $A_k = Q_k R_k$, set $A_{k+1} = R_k Q_k$.
- Sequence A_k converges to an upper-triangular matrix with eigenvalues on the diagonal.
- Most efficient and robust method for all eigenvalues (after reducing to tridiagonal form).

8. Singular Value Decomposition

Core Concepts

- **Definition:** For any $A \in \mathbb{R}^{m \times n}$, $A = U\Sigma V^T$, where
 - $U \in \mathbb{R}^{m \times m}$: orthogonal matrix $(U^T U = I)$,
 - $V \in \mathbb{R}^{n \times n}$: orthogonal matrix,
 - $\Sigma \in \mathbb{R}^{m \times n}$: diagonal with nonnegative entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$.
- **Geometric interpretation:** *A* maps the unit sphere to an ellipsoid: $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$, scaling and rotating directions.
- **Relation to eigenproblems:** $A^TA = V\Sigma^T\Sigma V^T$, $AA^T = U\Sigma\Sigma^TU^T$. Singular values are square roots of eigenvalues of A^TA or AA^T .
- SVD always exists and is numerically stable.

8. Singular Value Decomposition

Applications: Pseudoinverse and Low-Rank Approximation

- Solving linear systems via SVD:
 - For full-rank A: $\mathbf{x} = V \Sigma^{-1} U^T \mathbf{b}$.
 - For rank-deficient or rectangular A: use the Moore–Penrose pseudoinverse $A^+ = V\Sigma^+U^T$, where Σ^+ inverts only nonzero singular values.
- Low-rank approximation: $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, capturing the dominant structure of A.
- Eckart-Young theorem:

$$A_k = \arg \min_{\operatorname{rank}(B)=k} ||A - B||_2 = \sigma_{k+1}.$$

Truncated SVD provides optimal compression under both 2-norm and Frobenius norm.

8. Singular Value Decomposition

Matrix Norms and PCA

- Matrix norms from SVD:
 - Frobenius norm: $||A||_F^2 = \sum_i \sigma_i^2$.
 - Spectral norm: $||A||_2 = \sigma_{\text{max}}$.
 - Condition number: $\kappa(A) = \sigma_{\text{max}}/\sigma_{\text{min}}$.
- Principal Component Analysis (PCA):
 - Given data matrix $X \in \mathbb{R}^{n \times k}$ (mean-centered) and subspace spanned by $C \in \mathbb{R}^{n \times d}$.
 - Minimizes reconstruction error (maximizes variance) of projected data: $\min_{C^TC=I} ||X CC^TX||_F^2$.
 - Given the SVD: $X = U\Sigma V^T$, principal components = columns of U.
- SVD underlies modern data compression, noise reduction, and face recognition (eigenfaces).

9. Nonlinear Systems

Root-Finding in One Dimension

- Goal: Find x^* such that $f(x^*) = 0$.
- **Bisection method:** Find the root in [a, b] with f(a)f(b) < 0; Repeatedly bisect interval and select subinterval where sign change occurs.
 - Guaranteed convergence but only linear rate.
- Fixed-point iteration: Reformulate as x = g(x). Iterate $x_{k+1} = g(x_k)$.
 - Converges if $|g'(x^*)| < 1$; smaller $|g'(x^*)|$ leads to faster convergence.
- Newton's method: iterate $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$.
 - Quadratic convergence near root if f' smooth and x_0 is close.
 - May diverge for poor initial guesses or discontinuous derivatives.

9. Nonlinear Systems

More Root-Finding Methods

Secant method:

- Uses finite-difference slope instead of f'(x) and iterate $x_{k+1} = x_k f(x_k) \frac{x_k x_{k-1}}{f(x_k) f(x_{k-1})}$.
- Converges superlinearly if x_0 sufficiently close, requires no derivative evaluation.

• Hybrid methods:

- Combine robustness of bisection with speed of Newton/Secant.
- Example: Brent's method guaranteed convergence, often near-quadratic.

• Summary:

- Many schemes exist. Faster methods reduce iterations but typically increase per-step cost.
- Choice depends on smoothness and reliability needs.

9. Nonlinear Systems

Multivariable Systems

- **Problem:** Find $\mathbf{x}^* \in \mathbb{R}^n$ such that $F(\mathbf{x}^*) = \mathbf{0}$, $F: \mathbb{R}^n \to \mathbb{R}^n$.
- Newton's method: $J_F(\mathbf{x}_k)\Delta\mathbf{x}_k = -F(\mathbf{x}_k)$, $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta\mathbf{x}_k$. J_F : Jacobian of F.
 - Quadratic convergence near solution if J_F is nonsingular and \mathbf{x}_0 is close.
- Quasi-Newton (Broyden) methods: Approximate the Jacobian update using rank-one correction:

$$B_{k+1} = B_k + \frac{(\mathbf{y}_k - B_k \mathbf{s}_k) \mathbf{s}_k^T}{\mathbf{s}_k^T \mathbf{s}_k}, \quad \mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k, \ \mathbf{y}_k = F(\mathbf{x}_{k+1}) - F(\mathbf{x}_k).$$

- Lower cost per iteration, often superlinear convergence.
- Conditioning: $||(J_F(\mathbf{x}^*))^{-1}||$; Ill-conditioned J_F leads to unstable updates.

10. Unconstrained Optimization I

Motivation and Problem Setup

• Goal: Minimize or maximize $f: \mathbb{R}^n \to \mathbb{R}$ without constraints.

• Examples:

• Nonlinear least squares: fit nonlinear model $f(x) = ce^{ax}$ to data (x_i, y_i) :

$$E(a,c) = \sum_{i} (y_i - ce^{ax_i})^2.$$

• *Maximum likelihood estimation:* fit parameters (μ, σ) for Gaussian $g(h; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(h-\mu)^2/2\sigma^2}$, maximizing the log-likelihood

$$\ell(\mu,\sigma) = \sum_{i} \log g(h_i; \mu,\sigma).$$

• Simulating elastic objects: find equilibrium minimizing sum of elastic and gravitational energies.

10. Unconstrained Optimization I

Optimality Conditions

- Global vs. local minima:
 - Global minimum: $f(x^*) \le f(x)$ for all x.
 - Local minimum: $f(x^*) \le f(x)$ within small neighborhood.
- **First-order condition:** $\nabla f(x^*) = 0$. A necessary condition (no descent direction).
- Second-order test: $H_f(x^*) = \nabla^2 f(x^*)$.
 - $H_f(x^*) \succ 0$: local minimum.
 - $H_f(x^*) \prec 0$: local maximum.

- $H_f(x^*)$ indefinite: saddle point.
- $H_f(x^*)$ singular: degenerate behaviors possible.
- Convexity: $f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y)$, $\forall \alpha \in [0,1]$.
 - If *f* convex, any local minimum is global.

10. Unconstrained Optimization I

One-Dimensional Strategies

- Newton's method: $x_{k+1} = x_k \frac{f'(x_k)}{f''(x_k)}$. Quadratic convergence near minima when $f''(x^*) > 0$.
- Secant and parabolic interpolation: Avoids computing f''(x) by approximating derivatives from previous iterates.
 - Converges superlinearly.

• Golden-section search:

- For unimodal *f* , recursively narrow search interval.
- Evaluates at fixed fraction points determined by golden ratio: $\alpha = \frac{3-\sqrt{5}}{2}$, $1 \alpha = \frac{\sqrt{5}-1}{2}$.
- Linear convergence, guaranteed for continuous *f* .