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® Deriving the SVD



Deriving the SVD

Linear Map Viewpoint

e Consider A € R™*" as a map
vi— Av:R" — R"™.

e We study how lengths change:

e Scale invariance:
_A(av) |2 ] [[Av][2

Rav) = Tavlz = Tl vl — V)

e Therefore, we may restrict to unit vectors: ||v|[o = 1.



Deriving the SVD

Rayleigh-Quotient Problem

e Since R(v) >0,
[R(v)]* = [|Av]|5 = (Av) ' (Av).

e Expand:

(Av) ' (Av) =v' AT Av.

e Thus, finding extremal values of R(v) is equivalent to finding extremal values of the quadratic
form

v' A" Av subject to ||v|> = 1.
e Critical points are eigenvectors:

A'Av: = A, A > 0.



Deriving the SVD
Relating A’ A and AA'

e Define
u; := Av;.

o If A; # 0, then

AA ' uf = A(A AV,’) — A(/\,'V,') — A,‘(AV,‘) — /\,’U%.

/ /

e So u? is an eigenvector of AA' with eigenvalue A;.

e Norm:
2
[u?||3 = ||Avi]|

NN

=v; (AT A)v; = Aillvi[l3 = Ai.

o Therefore, if A; > 0, then ||uf|2 = VA,



Deriving the SVD

Normalized Eigenvector Pairs

e Normalize u; := u?/||u?|| when A; > 0.

e Then
AV,' = )L,' u,, ATU,' — )\,’ V;.

e This shows a one-to-one pairing between:
e cigenvectors of Al A (v)),
e cigenvectors of AA' (u)),

e with the same eigenvalue A;.

® AlSO, UI-TAV,' — (\/IA—.V’-TAT)AV,' — %VI-T/\,'V,' = \//\_,




Deriving the SVD

Core Representation
o Let k=#{i:A; >0}

e Collect eigenvectors:

V=1[v -

e Define diagonal matrix

e Then



Deriving the SVD

Extending to Full SVD
e Extend U, V to orthogonal bases:

U= [UUy € R™™ V =1V W € R™".

e Define X € R™*" by

0, otherwise.

{WT i =j <k
> =

e Orthogonality gives
U'AV =%, < A=UxVv'.



Deriving the SVD

Interpretation and Nomenclature

X

e Columns of U: left singular vectors. e Geometric interpretation:

e Columns of V: right singular vectors. e V:isometry in R".

e Diagonal entries of X: singular values o; = \/A;. e 2.: axis-aligned scaling by o;.

o 1 : m
e Ordered convention: oy > 05 > --- > 0. o U:isometry in R™.



Deriving the SVD

Algebraic Derivation

T
o We can also algebraically derive the SVD of A from the eigendecomposition of B = [A A ]

Proposition 7.1. Take x = (x3,X3) € R™™" to be an eigenvector of B defined above
with eigenvalue A, where x; € R™ and x3 € R™. Then, x’ := (x1, —X2) is an eigenvector

of B with eigenvalue —\.

o Take T € R*™* to be a diagonal matrix containing the positive eigenvalues of B, and take the

columns of X € R"*k o be the corresponding eigenvectors: X =
U e R™

R

Then —X and X' =
e lhen an U

N
o For the remaining zero eigenvalues, similarly denote their eigenvectors N = [ 1]

v

U.

~where V € R™* and

are the negative eigenvalues and the corresponding eigenvectors.

N,



Deriving the SVD

Algebraic Derivation and SVD Computation

e With the previous setup, we can derive

T T
(o 2AT> B (V v N1> g 02 8 KT UUT B ( 0 QVEUT)
— B _ _ — N ,
24 0 U -U M)\ o o NTONT 2ULV 0

V'V =U'"U = Ixs

e This derivation also provides us a way to compute the SVD of A via eigendecomposition on

B Al . .. . T
B = A without explicitly forming A" A.

e Practical methods for computing SVD first convert A to a bidiagonal matrix, and then apply
iterative methods, e.g. Jacobi, to compute the SVD.
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Solving Linear Systems and the Pseudoinverse
Solving AXx = b using SVD (Square & Invertible)

e Factor A= UZV' with U € R™™, V € R"™" orthogonal, & = diag(cy, ..., 0p) with o; > 0.
e Multiply U' ontheleft: U' Ax=U'b= XV 'x=cwithc:=U"b.
e Multiply V on theright: V'x =X lc=x=VZ~1U'b.

e Here 1 = diag(1/071,..., 1/05).



Solving Linear Systems and the Pseudoinverse
Least-Squares When A is Not Square/Invertible

e Goal: solve Ax ~ b with minimal residual |/Ax — b||?.
e Normal equations: at any least-squares minimizer, A' (Ax —b) = 0= A'Ax = A'b.
e When A' Ais invertible (full column rank), the solution is unique: x = (A' A)=tA'b.

e Underdetermined or rank-deficient: many x satisfy A' Ax = A'b. Prefer the minimum-norm

solution:
min ||x||? st. A'Ax=A'b.

X



Solving Linear Systems and the Pseudoinverse
Rewriting the Constraint using A = UX V'

e Compute A' A= (UZV")(UZV')=VZ'ZV' = VE2V! (since U' U = ).
e Constraint A' Ax = A' b becomes

VSV 'x = VU b.
e Change variables: y := V 'xand d := U ' b (orthogonal transforms preserve £>-norm).

e Then the constrained minimum-norm problem is

min ||y||? st X%y = Xd.
y



Solving Linear Systems and the Pseudoinverse

Diagonal Decoupling in 2-Coordinates

o ¥ = diag(cy,..., oy) with £ = min{m, n}; write constraints componentwise:

o7

y,'=0','d,' fori=1,..., /.
e Foro; > 0: y; = d; /0.
e For g; = 0: the constraint imposes no condition; to minimize ||y||2, choose y; = 0.

e Therefore the minimizer is y = ¥"d, where the diagonal 3.7 is

(Z+),’,’ _ 1/0;, o0; >0,
0, O; = 0.

e Undo the variables: x = Vy = V=T U'b.



Solving Linear Systems and the Pseudoinverse

Moore—Penrose Pseudoinverse

e Definition: For A = ULV ', the pseudoinverse is
At = vEtU' e R™.
e x* = A"b is the minimum-norm vector among all x satisfying the normal equations.

e Special cases:

e If Aissquare and invertible, AT = AL,

e If Ais overdetermined (full column rank), AT = (A' A)"1A' gives the unique least-squares
solution.

e If Ais underdetermined (full row rank), AT = A' (AA")~} gives the minimum-norm solution.
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Low-Rank Approximations

Outer-Product Expansion and Fast Application

e Using SVD, expand A as a sum of rank-1 terms:
4
A=) 0 uv; ¢ = min{m, n}.
=1

e Action on a vector:

/ 14
Ax = E oiu; (v x) = E o; (v; - X) u;.
i=1 i=1

e Interpretation: project x onto right singular directions v;, scale by ¢}, re-express along left
singular directions u;.



Low-Rank Approximations

Truncation and Low-Rank Approximation

e If many o; are small, approximate
k
A~ Al = ZO’,’ u,-v,-T (k < E)
=1
e Then Ax can be approximated using only the top k terms:

k
Ax~ ) 0 (v; x) u;.
=1

V,'l.l_-r !

. v,u.
e Pseudoinverse also truncates: A" = A0 g N Y5, —L.
/ /

e Practical benefit: compute/apply A, or A] using only leading singular triplets.



Low-Rank Approximations
Eckart-Young Theorem (Optimality of Truncation)

o Let A, be obtained by zeroing all but the largest k singular values of A.

e Theorem (Eckart-Young, 1936). For both spectral norm and Frobenius norm,

A, = ar min A— Bll.
" grank(B)<k “ H

e In spectral norm, the optimal error equals the next singular value:

HA — AkH2 — Uk+1-



Low-Rank Approximations
Eckart—Young (Sketch Proof, Spectral Norm)

e By SVD and definitionof Ay: A— A, =Y, .joiunv], = |[[A— A2 =0kt

e For any rank-k matrix By = XY ' (X € R™*k, Y € R"™¥¥):

o Let Vi = [Vi1 -+ v

e Because rank(Y ' Vi 1.0) < £ — k, there exists z # 0 with Y ' V|, 1.yz = 0; rescale to ||z||» = 1.

e Take q:= V) 1.z (unit). Then ||(A— By)q|l> = ||[UZV 'q— XY "q|]> = ||V 'q||2 since Y 'q = 0.

e ButV'q=[0;2] = |EVTq|} =T, 0222 > 0Z,;.

e Hence ||A— BkHQ > Ok+1 — HA— Ak”2.
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Matrix Norms
Frobenius Norm: Definition and SVD Setup

e Frobenius norm:
2 2 T
|Allz := }_aj = tr(A"A).
i\

e SVDof Ae R™":. A= UZV', where U, V orthogonal and £ = diag(oy
¢ = min{m, n}.

e Use: U'U=1,V"'V =1, cyclic trace tr(AB) = tr(BA).



Matrix Norms

Frobenius Norm and Sum of Squared Singular Values

e Compute:

=tr(Z'X) Z 0? (X diagonal).

e = Squared Frobenius norm is the sum of squared singular values.



Matrix Norms
Spectral Norm (Induced 2-Norm)

e Operator 2-norm:

|Allo = max ||Ax||2 = max x'A'Ax.
Ix]|2=1 Ix[|2=1

e Rayleigh quotient: max|—1 X' (A" A)x = Amax(A' A).

e Since eigenvalues of A' A are (7,-2,

[Alz = y/Amax(ATA) = max0; = Omax

]

e Similarly, Hn‘m‘ml |Ax||2 = Omin (possibly 0 if A is rank-deficient).
X



Matrix Norms
Condition Number and Relation to Singular Values

e For invertible A, 2-norm condition number:
conda (A) := [|A]l2 A 2.
e SVD implies singular values of A~! are reciprocals: ¢; (A=) = 1/0;(A).

e Hence
O'max(A)

Omin (A) |

conds(A) =

e Interpretation:

e Large ratio = oy,j, small = ill-conditioned; small relative errors in b may greatly amplify in x.

e Well-conditioned matrices have singular values of comparable magnitude.



Matrix Norms
Practical Notes on Computing Norms and 65,in

e ||A||r is cheap from entries; also equals () 0?) 1/2

o ||A||]2 = omax: compute via power iterations on A' A or directly via partial SVD.

® 0., can be harder:

e Inverse iteration/shifted methods or partial SVD near smallest singular values.
e Solving Ax = b during iterations may itself be ill-conditioned when ¢y, is tiny.

e Use bounds/inequalities, robust factorizations (QR/SVD), or regularization if necessary.

e Takeaway: SVD provides clean formulas ||A]|z2 = Y07, ||All2 = 0max, cond2(A) = 0max/ Tmin
and guides numerical strategy.
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Principal Component Analysis (PCA)
Setup

e Data matrix X € R"*X, k samples in n-dimensional space.

e Goal: find a d-dimensional subspace (d < min{k, n}) capturing maximum variance in the
data.

e Choose C € R"*9 with orthonormal columns (C' C = I,).
e Projection of X onto subspace spanned by C: CC' X.
e Optimization problem:

min || X — CC' X||2.
cTC=1,



Principal Component Analysis (PCA)
Simplifying the Objective

e Expand the Frobenius norm:

|IX —CC'X|F=tr((X—CC'X)" (X - cCC'X)).
e Simplify using trace properties:

=tr(X'X)—2tr(X' cC'X)+tr(X'CC'CcC' X).

e Since C' C = Iy
=tr(X ' X) —tr(X' CC'X).

e Equivalent to maximizing:
T yl|2
1€ Xl



Principal Component Analysis (PCA)
PCA via SVD

e Compute SVD of data matrix:
X=UzV'

o LetC:= U'C. Then
2 ~
IC'X|g= =" C|lf

e Expanding:
T A12 2 ~2
1= Clig =)0 ZCU
i J
o Intuitively, ¢;; is the projection of u; onto ¢;. Since ||uj|| = 1, we have } y &2 < 1, and so each (7,-2

U —
gets weight < 1.

e Maximum achieved by aligning c¢;’s with u;’s corresponding to the largest singular values.



Principal Component Analysis (PCA)

Solution

e Optimal choice: columns of C are the top d left singular vectors of X.
e Equivalently: PCA directions = eigenvectors of XX ' with largest eigenvalues.
e Intuition: projection maximizes variance of projected data.

e In practice: data matrix X is often centered (columns have zero mean).



Principal Component Analysis (PCA)

Eigenfaces: PCA for Face Recognition

e Store training set of faces in columns of matrix X € R™"*X,
e Subtract mean face: center the dataset.

e Apply PCA to X, compute basis C € R™"*9,

e Columns of C = eigenfaces, capturing main modes of variation (face shape, features, lighting).

e Each face image represented as coefficient vector:

y=C'x.



Principal Component Analysis (PCA)

Eigenfaces Visualization

(b) Eigenfaces

+5.3X —2.4% —T7.1x%

(c) Projection



Principal Component Analysis (PCA)

Face Recognition with Eigenfaces

e For a new image x:
e Project: y=C'
ject: y = X.
e Compare y to projections of training images C ' X.
e Closest match determines recognition result.

e Advantages:

e Dimension reduction: d < mn.

e Separates relevant modes (identity) from irrelevant ones (lighting, noise).



Principal Component Analysis (PCA)

Practical Notes on Eigenfaces

e Figenfaces effective despite simplicity; e.g., training using photos of 40 subjects and then test
using 40 different photos of the same subjects achieves 80% recognition accuracy.

e Real systems use enhancements:

e Thresholds for match/no-match detection.
e Larger basis to capture more variation.

e Robust preprocessing (alignment, lighting normalization).

e PCA remains foundational: inspires modern subspace and feature-based recognition methods.



Table of Content

® Deriving the SVD

¢ Applications of the SVD
® Solving Linear Systems and the Pseudoinverse
¢ [ ow-Rank Approximations
® Matrix Norms

¢ Principal Component Analysis (PCA)



