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Deriving the SVD
Linear Map Viewpoint



Deriving the SVD
Rayleigh-Quotient Problem



Deriving the SVD
Relating  and AT A AAT



Deriving the SVD
Normalized Eigenvector Pairs



Deriving the SVD
Core Representation



Deriving the SVD
Extending to Full SVD



Deriving the SVD
Interpretation and Nomenclature



Deriving the SVD
Algebraic Derivation

• We can also algebraically derive the SVD of  from the eigendecomposition of A B = [ AT

A ]

• Take  to be a diagonal matrix containing the positive eigenvalues of B, and take the 
columns of  to be the corresponding eigenvectors: , where  and 

.


• Then  and  are the negative eigenvalues and the corresponding eigenvectors.


• For the remaining zero eigenvalues, similarly denote their eigenvectors 

Σ ∈ ℝk×k

X ∈ ℝ(m+n)×k X = [V
U] V ∈ ℝn×k

U ∈ ℝm×k

−Σ X′￼ = [ V
−U]

N = [N1
N2]



Deriving the SVD
Algebraic Derivation and SVD Computation
• With the previous setup, we can derive

• This derivation also provides us a way to compute the SVD of  via eigendecomposition on 

 without explicitly forming .


• Practical methods for computing SVD first convert  to a bidiagonal matrix, and then apply 
iterative methods, e.g. Jacobi, to compute the SVD.

A

B = [ AT

A ] AT A

A
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Solving Linear Systems and the Pseudoinverse
Solving  using SVD (Square & Invertible)Ax = b



Solving Linear Systems and the Pseudoinverse
Least-Squares When  is Not Square/InvertibleA



Solving Linear Systems and the Pseudoinverse
Rewriting the Constraint using A = UΣVT



Solving Linear Systems and the Pseudoinverse
Diagonal Decoupling in -CoordinatesΣ



Solving Linear Systems and the Pseudoinverse
Moore–Penrose Pseudoinverse
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Low-Rank Approximations
Outer-Product Expansion and Fast Application



Low-Rank Approximations
Truncation and Low-Rank Approximation



Low-Rank Approximations
Eckart–Young Theorem (Optimality of Truncation)



Low-Rank Approximations
Eckart–Young (Sketch Proof, Spectral Norm)
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Matrix Norms
Frobenius Norm: Definition and SVD Setup



Matrix Norms
Frobenius Norm and Sum of Squared Singular Values



Matrix Norms
Spectral Norm (Induced 2-Norm)



Matrix Norms
Condition Number and Relation to Singular Values



Matrix Norms
Practical Notes on Computing Norms and σmin
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Principal Component Analysis (PCA)
Setup



Principal Component Analysis (PCA)
Simplifying the Objective



Principal Component Analysis (PCA)
PCA via SVD



Principal Component Analysis (PCA)
Solution



Principal Component Analysis (PCA)
Eigenfaces: PCA for Face Recognition



Principal Component Analysis (PCA)
Eigenfaces Visualization



Principal Component Analysis (PCA)
Face Recognition with Eigenfaces



Principal Component Analysis (PCA)
Practical Notes on Eigenfaces
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