Lec 8: Singular Value Decomposition

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

Linear Map Viewpoint

• Consider $A \in \mathbb{R}^{m \times n}$ as a map

$$\mathbf{v} \mapsto A\mathbf{v} : \mathbb{R}^n \to \mathbb{R}^m$$
.

We study how lengths change:

$$R(\mathbf{v}) = \frac{\|A\mathbf{v}\|_2}{\|\mathbf{v}\|_2}, \quad \mathbf{v} \neq 0.$$

• Scale invariance:

$$R(\alpha \mathbf{v}) = \frac{\|A(\alpha \mathbf{v})\|_2}{\|\alpha \mathbf{v}\|_2} = \frac{|\alpha| \|A\mathbf{v}\|_2}{|\alpha| \|\mathbf{v}\|_2} = R(\mathbf{v}).$$

• Therefore, we may restrict to unit vectors: $\|\mathbf{v}\|_2 = 1$.

Rayleigh-Quotient Problem

• Since $R(\mathbf{v}) \geq 0$,

$$[R(\mathbf{v})]^2 = ||A\mathbf{v}||_2^2 = (A\mathbf{v})^{\top}(A\mathbf{v}).$$

• Expand:

$$(A\mathbf{v})^{\top}(A\mathbf{v}) = \mathbf{v}^{\top}A^{\top}A\mathbf{v}.$$

• Thus, finding extremal values of $R(\mathbf{v})$ is equivalent to finding extremal values of the quadratic form

$$\mathbf{v}^{\top} A^{\top} A \mathbf{v}$$
 subject to $\|\mathbf{v}\|_2 = 1$.

Critical points are eigenvectors:

$$A^{\top}A\mathbf{v}_i=\lambda_i\mathbf{v}_i, \qquad \lambda_i\geq 0.$$

Relating $A^T A$ and AA^T

Define

$$\mathbf{u}_{i}^{*} := A\mathbf{v}_{i}$$
.

• If $\lambda_i \neq 0$, then

$$AA^{\top}\mathbf{u}_{i}^{*} = A(A^{\top}A\mathbf{v}_{i}) = A(\lambda_{i}\mathbf{v}_{i}) = \lambda_{i}(A\mathbf{v}_{i}) = \lambda_{i}\mathbf{u}_{i}^{*}.$$

- So \mathbf{u}_{i}^{*} is an eigenvector of AA^{\top} with eigenvalue λ_{i} .
- Norm:

$$\|\mathbf{u}_{i}^{*}\|_{2}^{2} = \|A\mathbf{v}_{i}\|_{2}^{2} = \mathbf{v}_{i}^{\top}(A^{\top}A)\mathbf{v}_{i} = \lambda_{i}\|\mathbf{v}_{i}\|_{2}^{2} = \lambda_{i}.$$

• Therefore, if $\lambda_i > 0$, then $\|\mathbf{u}_i^*\|_2 = \sqrt{\lambda_i}$.

Normalized Eigenvector Pairs

- Normalize $\mathbf{u}_i := \mathbf{u}_i^* / \|\mathbf{u}_i^*\|$ when $\lambda_i > 0$.
- Then

$$A\mathbf{v}_i = \sqrt{\lambda_i} \mathbf{u}_i, \qquad A^{\top} \mathbf{u}_i = \sqrt{\lambda_i} \mathbf{v}_i.$$

- This shows a one-to-one pairing between:
 - eigenvectors of $A^{\top}A(\mathbf{v}_i)$,
 - eigenvectors of AA^{\top} (\mathbf{u}_i),
 - with the same eigenvalue λ_i .
 - Also, $\mathbf{u}_i^T A \mathbf{v}_i = (\frac{1}{\sqrt{\lambda_i}} \mathbf{v}_i^T A^T) A \mathbf{v}_i = \frac{1}{\sqrt{\lambda_i}} \mathbf{v}_i^T \lambda_i \mathbf{v}_i = \sqrt{\lambda_i}$

Core Representation

- Let $k = \#\{i : \lambda_i > 0\}$.
- Collect eigenvectors:

$$\bar{V} = [\mathbf{v}_1 \cdots \mathbf{v}_k] \in \mathbb{R}^{n \times k}, \quad \bar{U} = [\mathbf{u}_1 \cdots \mathbf{u}_k] \in \mathbb{R}^{m \times k}.$$

Define diagonal matrix

$$\bar{\Sigma} = \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_k}).$$

Then

$$\bar{U}^{\top}A\bar{V}=\bar{\Sigma}.$$

Extending to Full SVD

• Extend \bar{U} , \bar{V} to orthogonal bases:

$$U = [\bar{U} \ U_0] \in \mathbb{R}^{m \times m}, \qquad V = [\bar{V} \ V_0] \in \mathbb{R}^{n \times n}.$$

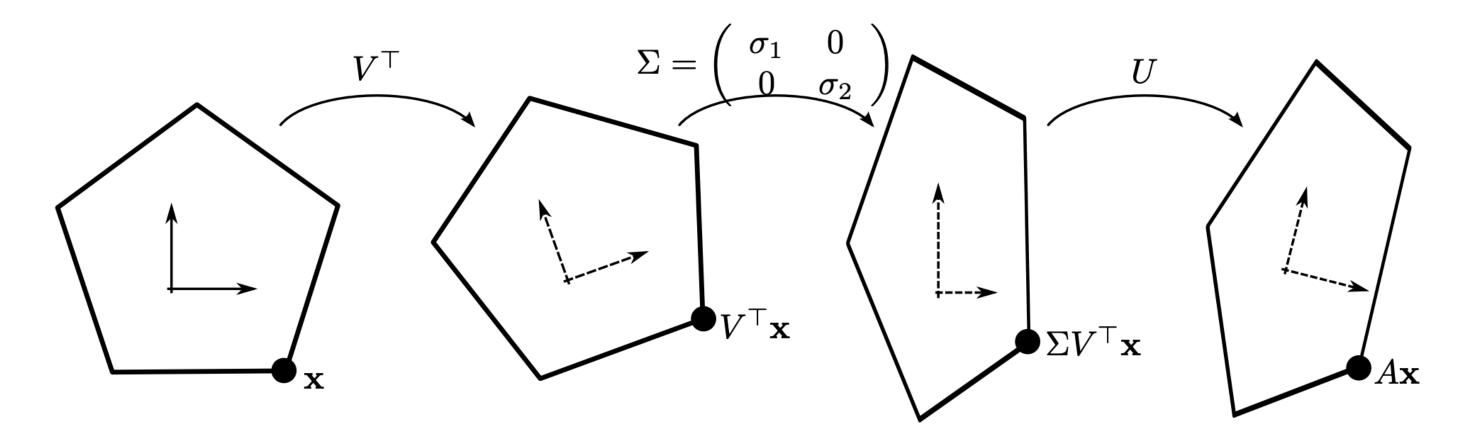
• Define $\Sigma \in \mathbb{R}^{m \times n}$ by

$$\Sigma_{ij} = \begin{cases} \sqrt{\lambda_i}, & i = j \leq k, \\ 0, & \text{otherwise.} \end{cases}$$

Orthogonality gives

$$U^{\top}AV = \Sigma$$
, \iff $A = U\Sigma V^{\top}$.

Interpretation and Nomenclature



- Columns of *U*: *left singular vectors*.
- Columns of *V*: right singular vectors.
- Diagonal entries of Σ : singular values $\sigma_i = \sqrt{\lambda_i}$.
- Ordered convention: $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$.

- Geometric interpretation:
 - V: isometry in \mathbb{R}^n .
 - Σ : axis-aligned scaling by σ_i .
 - U: isometry in \mathbb{R}^m .

Algebraic Derivation

- We can also algebraically derive the SVD of A from the eigendecomposition of $B = \begin{bmatrix} A^T \\ A \end{bmatrix}$
 - **Proposition 7.1.** Take $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^{m+n}$ to be an eigenvector of B defined above with eigenvalue λ , where $\mathbf{x}_1 \in \mathbb{R}^n$ and $\mathbf{x}_2 \in \mathbb{R}^m$. Then, $\mathbf{x}' \coloneqq (\mathbf{x}_1, -\mathbf{x}_2)$ is an eigenvector of B with eigenvalue $-\lambda$.
- Take $\Sigma \in \mathbb{R}^{k \times k}$ to be a diagonal matrix containing the positive eigenvalues of B, and take the columns of $X \in \mathbb{R}^{(m+n) \times k}$ to be the corresponding eigenvectors: $X = \begin{bmatrix} V \\ U \end{bmatrix}$, where $V \in \mathbb{R}^{n \times k}$ and $U \in \mathbb{R}^{m \times k}$.
- Then $-\Sigma$ and $X' = \begin{bmatrix} V \\ -U \end{bmatrix}$ are the negative eigenvalues and the corresponding eigenvectors.
- For the remaining zero eigenvalues, similarly denote their eigenvectors $N = \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$

Algebraic Derivation and SVD Computation

With the previous setup, we can derive

$$\begin{pmatrix} 0 & 2A^\top \\ 2A & 0 \end{pmatrix} = \begin{pmatrix} V & V & N_1 \\ U & -U & N_2 \end{pmatrix} \begin{pmatrix} \Sigma & 0 & 0 \\ 0 & -\Sigma & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} V^\top & U^\top \\ V^\top & -U^\top \\ N_1^\top & N_2^\top \end{pmatrix} = \begin{pmatrix} 0 & 2V\Sigma U^\top \\ 2U\Sigma V^\top & 0 \end{pmatrix}.$$

$$V^{\top}V = U^{\top}U = I_{k \times k}$$

- This derivation also provides us a way to compute the SVD of A via eigendecomposition on $B = \begin{bmatrix} A^T \\ A \end{bmatrix}$ without explicitly forming $A^T A$.
- Practical methods for computing SVD first convert *A* to a bidiagonal matrix, and then apply iterative methods, e.g. Jacobi, to compute the SVD.

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

Solving Ax = b using SVD (Square & Invertible)

- Factor $A = U\Sigma V^{\top}$ with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_i > 0$.
- Multiply U^{\top} on the left: $U^{\top}Ax = U^{\top}b \Rightarrow \Sigma V^{\top}x = c$ with $c := U^{\top}b$.
- Multiply *V* on the right: $V^{\top} \mathbf{x} = \Sigma^{-1} \mathbf{c} \Rightarrow \mathbf{x} = V \Sigma^{-1} U^{\top} \mathbf{b}$.
- Here $\Sigma^{-1} = \text{diag}(1/\sigma_1, \ldots, 1/\sigma_n)$.

Least-Squares When A is Not Square/Invertible

- Goal: solve $Ax \approx b$ with minimal residual $||Ax b||^2$.
- Normal equations: at any least-squares minimizer, $A^{\top}(Ax b) = 0 \Rightarrow A^{\top}Ax = A^{\top}b$.
- When $A^{\top}A$ is invertible (full column rank), the solution is unique: $\mathbf{x} = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$.
- Underdetermined or rank-deficient: many **x** satisfy $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$. Prefer the *minimum-norm* solution:

$$\min_{\mathbf{x}} \|\mathbf{x}\|^2 \quad \text{s.t.} \quad A^{\top} A \mathbf{x} = A^{\top} \mathbf{b}.$$

Rewriting the Constraint using $A = U\Sigma V^T$

- Compute $A^{\top}A = (U\Sigma V^{\top})^{\top}(U\Sigma V^{\top}) = V\Sigma^{\top}\Sigma V^{\top} = V\Sigma^{2}V^{\top}$ (since $U^{\top}U = I$).
- Constraint $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$ becomes

$$V\Sigma^2V^{\top}\mathbf{x} = V\Sigma U^{\top}\mathbf{b}.$$

- Change variables: $y := V^{\top}x$ and $d := U^{\top}b$ (orthogonal transforms preserve ℓ_2 -norm).
- Then the constrained minimum-norm problem is

$$\min_{\mathbf{y}} \|\mathbf{y}\|^2 \quad \text{s.t.} \quad \Sigma^2 \mathbf{y} = \Sigma \mathbf{d}.$$

Diagonal Decoupling in Σ -Coordinates

• $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_\ell)$ with $\ell = \min\{m, n\}$; write constraints componentwise:

$$\sigma_i^2 y_i = \sigma_i d_i$$
 for $i = 1, \ldots, \ell$.

- For $\sigma_i > 0$: $y_i = d_i / \sigma_i$.
- For $\sigma_i = 0$: the constraint imposes no condition; to minimize $\|\mathbf{y}\|_2$, choose $y_i = 0$.
- Therefore the minimizer is $\mathbf{y} = \Sigma^+ \mathbf{d}$, where the *diagonal* Σ^+ is

$$(\Sigma^+)_{ii} = \begin{cases} 1/\sigma_i, & \sigma_i > 0, \\ 0, & \sigma_i = 0. \end{cases}$$

• Undo the variables: $\mathbf{x} = V\mathbf{y} = V\Sigma^+U^\top\mathbf{b}$.

Moore-Penrose Pseudoinverse

• **Definition:** For $A = U\Sigma V^{\top}$, the pseudoinverse is

$$A^+ := V\Sigma^+U^\top \in \mathbb{R}^{n \times m}$$
.

- $\mathbf{x}^* = A^+ \mathbf{b}$ is the *minimum-norm* vector among all \mathbf{x} satisfying the normal equations.
- Special cases:
 - If *A* is square and invertible, $A^+ = A^{-1}$.
 - If *A* is overdetermined (full column rank), $A^+ = (A^\top A)^{-1}A^\top$ gives the unique least-squares solution.
 - If *A* is underdetermined (full row rank), $A^+ = A^\top (AA^\top)^{-1}$ gives the minimum-norm solution.

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

Outer-Product Expansion and Fast Application

• Using SVD, expand *A* as a sum of rank-1 terms:

$$A = \sum_{i=1}^{\ell} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}, \qquad \ell = \min\{m, n\}.$$

Action on a vector:

$$A\mathbf{x} = \sum_{i=1}^{\ell} \sigma_i \, \mathbf{u}_i \, (\mathbf{v}_i^{\top} \mathbf{x}) = \sum_{i=1}^{\ell} \sigma_i \, (\mathbf{v}_i \cdot \mathbf{x}) \, \mathbf{u}_i.$$

• **Interpretation:** project **x** onto right singular directions \mathbf{v}_i , scale by σ_i , re-express along left singular directions \mathbf{u}_i .

Truncation and Low-Rank Approximation

• If many σ_i are small, approximate

$$A \approx A_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} \quad (k < \ell).$$

• Then Ax can be approximated using only the top k terms:

$$A\mathbf{x} pprox \sum_{i=1}^k \sigma_i \left(\mathbf{v}_i^{\top} \mathbf{x} \right) \mathbf{u}_i.$$

- Pseudoinverse also truncates: $A^+ = \sum_{\sigma_i \neq 0} \frac{\mathbf{v}_i \mathbf{u}_i^\top}{\sigma_i} \approx \sum_{i=1}^k \frac{\mathbf{v}_i \mathbf{u}_i^\top}{\sigma_i}$.
- **Practical benefit:** compute/apply A_k or A_k^+ using only leading singular triplets.

Eckart-Young Theorem (Optimality of Truncation)

- Let A_k be obtained by zeroing all but the largest k singular values of A.
- Theorem (Eckart-Young, 1936). For both spectral norm and Frobenius norm,

$$A_k = \arg \min_{\operatorname{rank}(B) \le k} \|A - B\|.$$

In spectral norm, the optimal error equals the next singular value:

$$||A-A_k||_2=\sigma_{k+1}.$$

Eckart-Young (Sketch Proof, Spectral Norm)

- By SVD and definition of A_k : $A A_k = \sum_{i=k+1}^{\ell} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$, $\Rightarrow \|A A_k\|_2 = \sigma_{k+1}$.
- For any rank-k matrix $B_k = XY^{\top}$ $(X \in \mathbb{R}^{m \times k}, Y \in \mathbb{R}^{n \times k})$:
 - Let $V_{k+1:\ell} = [\mathbf{v}_{k+1} \cdots \mathbf{v}_{\ell}].$
 - Because rank $(Y^{\top}V_{k+1:\ell}) < \ell k$, there exists $z \neq 0$ with $Y^{\top}V_{k+1:\ell}z = 0$; rescale to $||z||_2 = 1$.
 - Take $\mathbf{q} := V_{k+1:\ell}\mathbf{z}$ (unit). Then $\|(A B_k)\mathbf{q}\|_2 = \|U\Sigma V^{\mathsf{T}}\mathbf{q} XY^{\mathsf{T}}\mathbf{q}\|_2 = \|\Sigma V^{\mathsf{T}}\mathbf{q}\|_2$ since $Y^{\mathsf{T}}\mathbf{q} = 0$.
 - But $V^{\top} \mathbf{q} = [\mathbf{0}; \mathbf{z}] \Rightarrow \|\Sigma V^{\top} \mathbf{q}\|_{2}^{2} = \sum_{i=k+1}^{\ell} \sigma_{i}^{2} z_{i}^{2} \geq \sigma_{k+1}^{2}$.
- Hence $||A B_k||_2 \ge \sigma_{k+1} = ||A A_k||_2$.

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

Frobenius Norm: Definition and SVD Setup

• Frobenius norm:

$$||A||_{\mathrm{F}}^2 := \sum_{i,j} a_{ij}^2 = \mathrm{tr}(A^\top A).$$

- SVD of $A \in \mathbb{R}^{m \times n}$: $A = U\Sigma V^{\top}$, where U, V orthogonal and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_{\ell})$, $\ell = \min\{m, n\}$.
- Use: $U^{\top}U = I$, $V^{\top}V = I$, cyclic trace tr(AB) = tr(BA).

Frobenius Norm and Sum of Squared Singular Values

• Compute:

$$||A||_{F}^{2} = \operatorname{tr}(A^{T}A)$$

$$= \operatorname{tr}((U\Sigma V^{T})^{T}(U\Sigma V^{T}))$$

$$= \operatorname{tr}(V\Sigma^{T}U^{T}U\Sigma V^{T})$$

$$= \operatorname{tr}(V\Sigma^{T}\Sigma V^{T})$$

$$= \operatorname{tr}(\Sigma^{T}\Sigma V^{T}V)$$

$$= \operatorname{tr}(\Sigma^{T}\Sigma V^{T}V)$$

$$= \operatorname{tr}(\Sigma^{T}\Sigma V^{T}V)$$

$$= \operatorname{tr}(\Sigma^{T}\Sigma V^{T}V)$$

ullet Squared Frobenius norm is the sum of squared singular values.

Spectral Norm (Induced 2-Norm)

• Operator 2-norm:

$$||A||_2 = \max_{\|\mathbf{x}\|_2=1} ||A\mathbf{x}||_2 = \sqrt{\max_{\|\mathbf{x}\|_2=1} \mathbf{x}^\top A^\top A\mathbf{x}}.$$

- Rayleigh quotient: $\max_{\|\mathbf{x}\|=1} \mathbf{x}^{\top} (A^{\top} A) \mathbf{x} = \lambda_{\max} (A^{\top} A)$.
- Since eigenvalues of $A^{\top}A$ are σ_i^2 ,

$$||A||_2 = \sqrt{\lambda_{\max}(A^{\top}A)} = \max_i \sigma_i = \sigma_{\max}.$$

• Similarly, $\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|_2 = \sigma_{\min}$ (possibly 0 if A is rank-deficient).

Condition Number and Relation to Singular Values

• For invertible *A*, 2-norm condition number:

$$cond_2(A) := ||A||_2 ||A^{-1}||_2.$$

- SVD implies singular values of A^{-1} are reciprocals: $\sigma_i(A^{-1}) = 1/\sigma_i(A)$.
- Hence

$$\operatorname{cond}_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}.$$

- Interpretation:
 - Large ratio $\Rightarrow \sigma_{\min}$ small \Rightarrow ill-conditioned; small relative errors in **b** may greatly amplify in **x**.
 - Well-conditioned matrices have singular values of comparable magnitude.

Practical Notes on Computing Norms and σ_{\min}

- $||A||_F$ is cheap from entries; also equals $(\sum \sigma_i^2)^{1/2}$.
- $||A||_2 = \sigma_{\text{max}}$: compute via power iterations on $A^{\top}A$ or directly via partial SVD.
- σ_{\min} can be harder:
 - Inverse iteration/shifted methods or partial SVD near smallest singular values.
 - Solving Ax = b during iterations may itself be ill-conditioned when σ_{min} is tiny.
 - Use bounds/inequalities, robust factorizations (QR/SVD), or regularization if necessary.
- **Takeaway:** SVD provides clean formulas $||A||_F^2 = \sum \sigma_i^2$, $||A||_2 = \sigma_{\text{max}}$, cond₂(A) = $\sigma_{\text{max}}/\sigma_{\text{min}}$, and guides numerical strategy.

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)

- Data matrix $X \in \mathbb{R}^{n \times k}$, k samples in n-dimensional space.
- **Goal:** find a *d*-dimensional subspace ($d \le \min\{k, n\}$) capturing maximum variance in the data.
- Choose $C \in \mathbb{R}^{n \times d}$ with orthonormal columns ($C^{\top}C = I_d$).
- Projection of *X* onto subspace spanned by $C: CC^TX$.
- Optimization problem:

$$\min_{C^{\top}C=I_d} \|X-CC^{\top}X\|_{\mathrm{F}}^2.$$

Simplifying the Objective

• Expand the Frobenius norm:

$$||X - CC^{\mathsf{T}}X||_{\mathrm{F}}^2 = \mathrm{tr}((X - CC^{\mathsf{T}}X)^{\mathsf{T}}(X - CC^{\mathsf{T}}X)).$$

• Simplify using trace properties:

$$= \operatorname{tr}(X^{\top}X) - 2\operatorname{tr}(X^{\top}CC^{\top}X) + \operatorname{tr}(X^{\top}CC^{\top}CC^{\top}X).$$

• Since $C^{\top}C = I_d$:

$$= \operatorname{tr}(X^{\top}X) - \operatorname{tr}(X^{\top}CC^{\top}X).$$

Equivalent to maximizing:

$$\|C^{\top}X\|_{F}^{2}$$
.

PCA via SVD

• Compute SVD of data matrix:

$$X = U\Sigma V^{\top}$$
.

• Let $\tilde{C} := U^{\top}C$. Then

$$\|C^{\top}X\|_{F}^{2} = \|\Sigma^{\top}\tilde{C}\|_{F}^{2}.$$

• Expanding:

$$\|\Sigma^{\top} \tilde{C}\|_{\mathrm{F}}^2 = \sum_i \sigma_i^2 \sum_j \tilde{c}_{ij}^2.$$

- Intuitively, \tilde{c}_{ij} is the projection of u_i onto c_j . Since $||u_i|| = 1$, we have $\sum_j \tilde{c}_{ij}^2 \le 1$, and so each σ_i^2 gets weight ≤ 1 .
- Maximum achieved by aligning c_i 's with u_i 's corresponding to the largest singular values.

Principal Component Analysis (PCA) Solution

- **Optimal choice:** columns of *C* are the top *d* left singular vectors of *X*.
- Equivalently: PCA directions = eigenvectors of XX^{\top} with largest eigenvalues.
- Intuition: projection maximizes variance of projected data.
- In practice: data matrix X is often centered (columns have zero mean).

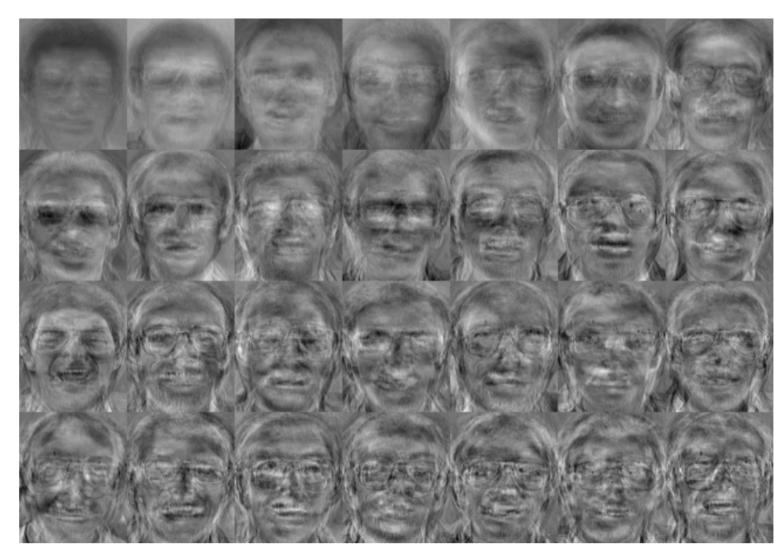
Eigenfaces: PCA for Face Recognition

- Store training set of faces in columns of matrix $X \in \mathbb{R}^{mn \times k}$.
- Subtract mean face: center the dataset.
- Apply PCA to X, compute basis $C \in \mathbb{R}^{mn \times d}$.
- Columns of C = eigenfaces, capturing main modes of variation (face shape, features, lighting).
- Each face image represented as coefficient vector:

$$\mathbf{y} = C^{\top} \mathbf{x}$$
.

Eigenfaces Visualization

(a) Input faces



(b) Eigenfaces

$$= -13.1 \times \boxed{ +5.3 \times } \boxed{ -2.4 \times } \boxed{ -7.1 \times } \boxed{ + \cdots }$$
 (c) Projection

Face Recognition with Eigenfaces

- For a new image x:
 - Project: $\mathbf{y} = \mathbf{C}^{\top} \mathbf{x}$.
 - Compare **y** to projections of training images $C^{\top}X$.
 - Closest match determines recognition result.
- Advantages:
 - Dimension reduction: $d \ll mn$.
 - Separates relevant modes (identity) from irrelevant ones (lighting, noise).

Practical Notes on Eigenfaces

- Eigenfaces effective despite simplicity; e.g., training using photos of 40 subjects and then test using 40 different photos of the same subjects achieves 80% recognition accuracy.
- Real systems use enhancements:
 - Thresholds for match/no-match detection.
 - Larger basis to capture more variation.
 - Robust preprocessing (alignment, lighting normalization).
- PCA remains foundational: inspires modern subspace and feature-based recognition methods.

Table of Content

- Deriving the SVD
- Applications of the SVD
 - Solving Linear Systems and the Pseudoinverse
 - Low-Rank Approximations
 - Matrix Norms
 - Principal Component Analysis (PCA)