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Motivation of the Eigenvalue Problem
Nonlinearity and Optimization Form
• We turn our attention now to a nonlinear problem about matrices: Finding their eigenvalues 

and eigenvectors, i.e. solving Ax = λx. 


• To see it is nonlinear, there is a product of unknowns λ and x. 


• Furthermore, to avoid the trivial solution x = 0, we constrain ; keeping x on the unit 
sphere, which is not a vector space.


• Due to this structure, algorithms for finding eigenspaces will be considerably different from 
solving and analyzing linear systems.

∥x∥2 = 1

∂
∂x

(xT Ax) − λ
∂

∂x
(∥x∥2 − 1) = 0

⇒ Ax = λx



Motivation of the Eigenvalue Problem
An Example in Statistics
• In a medical study, we may collect the age, weight, 

blood pressure, and heart rate of patients.


• Each patient  can be represented by a point 
 storing these 4 values. 

i
xi ∈ ℝ4

• These statistics may exhibit strong correlations between the different dimensions, e.g., patients 
with higher blood pressures may be likely to have higher weights or heart rates. 


• Thus, in reality the data may approximately live in a lower-dimensional space capturing the 
relationships between the different dimensions. 


• Suppose there exists a 1-dimensional space approximating our dataset, we expect that there 
exists a vector  such that each data point  can be written as  for a different . v xi xi = civ ci ∈ ℝ



Motivation of the Eigenvalue Problem
An Example in Statistics, Formulation
• The best approximation of  parallel to  is . Let , we have:xi v projvxi v̂ = v/∥v∥2

• Since  does not matter, we can restrict our search to the space of unit vectors :∥v∥ v̂



Motivation of the Eigenvalue Problem
An Example in Statistics, Derivation and Solution

• Minimizing approximation error  Maximizing variance.


• We know , thus,  is the eigenvector of  with the highest eigenvalue. The 
vector  is known as the first principal component of the dataset.

⇔

∥XTv̂∥2 = v̂TXXTv̂ v̂ XXT

v̂
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Properties of Eigenvectors
Definition

• The scale of an eigenvector is not important, since , so  is an 
eigenvector with the same eigenvalue. 


• Thus, we can restrict our search to those eigenvectors  with . But still,  are both 
eigenvectors with the same eigenvalue.

A(cx) = cAx = cλx = λ(cx) cx

x ∥x∥2 = 1 ±x



Properties of Eigenvectors
Existence, Linear Dependency, and Diagonalizability

• An  matrix can have at most  distinct eigenvalues. 


• The maximum number of linearly independent eigenvectors corresponding to an eigenvalue λ 
is the geometric multiplicity of λ. 


• A matrix that does not have exactly  linearly independent eigenvectors are called defective.

n × n n

n



Properties of Eigenvectors
An Example of Defective Matrix



Properties of Eigenvectors
Similarity Transformation
• If a matrix is nondefective, then it has  eigenvectors  with corresponding 

(possibly nonunique) eigenvalues . 


• Take  and , we have : a “stacked” version of 
 . Further, , meaning  is diagonalized by a similarity transformation.

n x1, . . . , xn ∈ ℝn

λ1, . . . , λn

X = [x1, . . . , xn] D = diag(λ1, . . . , λn) AX = XD
Axi = λxi D = X−1AX A

• Similar matrices have the same eigenvalues:

Bx = λx T−1ATx = λx ATx = λTx  is an eigenvector of 
 with eigenvalue 

Tx
A λ

B = T−1AT
⇒ ⇒ ⇒



Properties of Eigenvectors
Hermitian Matrix
• Our original definition of eigenvalues allows them to be complex even if  is a real matrix. 


• However, in the symmetric case we do not need complex arithmetic. We first generalize 
symmetric matrices to matrices in :

A

ℂn×n



Properties of Eigenvectors
Spectral Theorem
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Computing a Single Eigenvalue
Power Iterations, Motivation
• Assume  is symmetric with a full set of eigenvectors , sorted such that 

their corresponding eigenvalues satisfy .


• Take an arbitrary vector  and write it in the  basis as ,

A ∈ ℝn×n x1, . . . , xn ∈ ℝn

|λ1 | ≥ |λ2 | ≥ . . . ≥ |λn |

v ∈ ℝn xi v = c1x1 + . . . + cnxn

…



Computing a Single Eigenvalue
Power Iterations

• As , the ratio  unless , since . 


• If  is the projection of  onto the space of eigenvectors with eigenvalues , then (when the 
absolute values  are unique) as , .

k → ∞ (λi/λ1)k → 0 λi = ± λ1 |λ1 | = max( |λ1 | , . . . , |λn | )

x v λ1
|λi | k → ∞ Akv ≈ λk

1x

until



Computing a Single Eigenvalue
Power Iterations, Remarks
• Although we have not considered the defective case, 

Power Iterations is still guaranteed to converge.


• The method converges the most quickly when 
.


• This technique may fail if we accidentally choose  
such that , but it rarely happens.

|λ2 | / |λ1 | ≪ 1

v1
c1 = 0

• The method can also fail if λ and −λ are both eigenvalues of A with the largest magnitude.


• If , then  as . Since scale doesn’t matter, we can normalize  at each 
step. Any norms would work.

|λ1 | > 1 ∥vk∥ → ∞ k → ∞ vk



Computing a Single Eigenvalue
Inverse Iterations
• If , then , and so . Thus,  is an eigenvalue of  with 

eigenvector , and the smallest-magnitude eigenvalue of  corresponds to the largest-
magnitude eigenvector of .

Ax = λx x = λA−1x A−1x = (1/λ)x 1/λ A−1

x A
A−1



Computing a Single Eigenvalue
Shifted Inverse Iterations
• Suppose  is close to (but not exactly) an eigenvalue  of an  symmetric matrix . 


• If the eigenvalues of  are , then the eigenvalues of  are , …, 
. 


• Since  is close to , the difference  is close to zero, and hence  is likely to be 
the dominant eigenvalue of . 


• Thus, applying eigenvalue iteration to , a slight generalization of inverse iteration, 
allows us to find the eigenvalue of  closest to .


• However,  would be close to singular. But somewhat surprisingly, this possible 
issue does not substantially affect shifted inverse iteration.

σ ∈ ℝ λ n × n A

A λ1, . . . , λn (A − σIn×n)−1 (λ1 − σ)−1

(λn − σ)−1

σ λ |λ − σ | (λ − σ)−1

(A − σIn×n)−1

(A − σIn×n)−1

A σ

(A − σIn×n)−1



Computing a Single Eigenvalue
Rayleigh Quotient Iterations, Motivation
• Recall that power iteration converges fastest when ratio  is close to zero. 


• For shifted inverse iteration applied to , the dominant eigenvalue  becomes 
huge in magnitude as , which also makes the algorithm converge faster.


• But, the role of power iteration is exactly to improve our eigenvalue estimate! Hence, we might 
construct an algorithm by alternating between two steps:

|λ2/λ1 |

A − σIn×n (λ − σ)−1

σ → λ



Computing a Single Eigenvalue
Rayleigh Quotient Iterations
• Suppose we have a fixed guess of an eigenvector  of . Minimizing  over possible 

eigenvalue estimates  yields a least-squares approximation given by 
x A ∥Ax − σx∥2

σ ∈ ℝ

— The Rayleigh quotient

• Compared to Shifted Inverse Iterations:


• More expensive iteration (  is 
changing and cannot be pre-factorized) 
but converges faster.

A − σIn×n



Computing a Single Eigenvalue
Summary
• Power Iterations: compute the eigenvalue with the largest magnitude


• Inverse Iterations: compute the eigenvalue with the smallest magnitude


• Shifted Inverse Iterations: compute the eigenvalue closest to an input estimate 

• Rayleigh Quotient Iterations: compute the eigenvalue closest to an input estimate , a faster-
converging variant of the Shifted Inverse Iterations


• But each iteration is more expensive, thus overall performance is problem dependent.

σ

σ
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Finding Multiple Eigenvalues
Deflation, Motivation
• In power iterations, when the initial eigenvector guess  is orthogonal to the first eigenvector 

, no matter how many times we apply , the result will still be orthogonal to .


• Suppose we find  and  via power iteration, we can then restart the iteration after projecting 
 out of the initial guess . 


• Since the eigenvectors of  are orthogonal, power iteration after this projection will recover 
its second-largest eigenvalue!


• Due to finite-precision arithmetic, applying  to a vector may inadvertently introduce a small 
component parallel to . We can avoid this by projecting in each iteration.

v1
x1 A x1

x1 λ1
x1 v1

A

A
x1



Finding Multiple Eigenvalues
Deflation



Finding Multiple Eigenvalues
Deflation via Householder Transformations
• In the previous strategy, AP might not be symmetric even if A is symmetric, and the iteration 

can fail if A is defective.


• Suppose  with . Take  to be the Householder matrix such that . 
Since similarity transforms do not affect the set of eigenvalues,  will have the same 
eigenvalues as . When we multiply  by :

Ax1 = λ1x1 ∥x1∥ = 1 H Hx1 = e1
HAHT

A HAHT e1

• The matrix  has eigenvalues λ2, . . . , λn. Recursively applying this and power 
iteration we can find all eigenvalues.

B ∈ ℝ(n−1)×(n−1)



Finding Multiple Eigenvalues
QR Iterations, Motivation
• Deflation has the drawback that each eigenvector must be computed separately, which can be 

slow and can accumulate error. 


• To find more than one eigenvector simultaneously, consider 

• When , we know . By the deflation method, if we initially projected  
out of , then , where  is a projection matrix.


• Interestingly,  if  is an eigenvector of , which means .


• Thus, if we QR factorize , the columns of  will converge to the eigenvectors of .

k → ∞ Ak−1a1 → b1x1 x1
a2 Ak−1Px1

a2 → b2x2 Px1
= I − x1xT

1

APx = PxA x A Px1
Ak−1a2 → b2x2

Ak = QR Q A



Finding Multiple Eigenvalues
QR Iterations
• However, directly factorizing  would result in numerical issues, since .


• What if we first factorize , and then factorize , …?

Ak cond Ak ≈ (cond A)k

A = Q1R1 (R1Q1) = Q2R2

…

• Grouping the  variables and the 
 variables separately provides a 

QR factorization of .


• In practice, we first tri-diagonalize 
 using Householder matrices in 

 time, and then apply the 
QR iterations. 

Qi
Ri

Ak

A
O(n3)



Finding Multiple Eigenvalues
QR Iterations, Example

• Applying QR iterations on :A = [2 3
3 2]
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