Lec 7: Eigenvectors

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues

Nonlinearity and Optimization Form

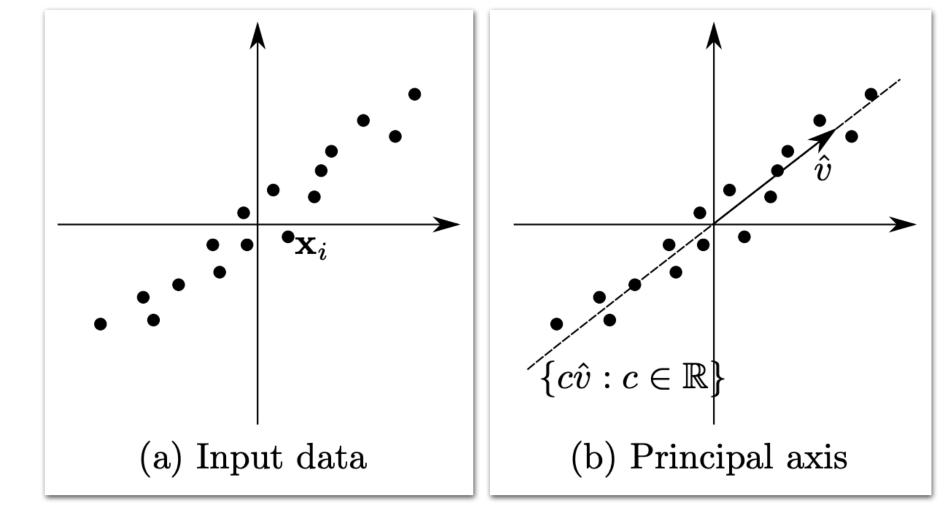
- We turn our attention now to a nonlinear problem about matrices: Finding their eigenvalues and eigenvectors, i.e. solving $Ax = \lambda x$.
- To see it is nonlinear, there is a product of unknowns λ and x.
 - Furthermore, to avoid the trivial solution x = 0, we constrain $||\mathbf{x}||_2 = 1$; keeping x on the unit sphere, which is not a vector space.
- Due to this structure, algorithms for finding eigenspaces will be considerably different from solving and analyzing linear systems.

When A is symmetric, the eigenvectors of A are the critical points of $\mathbf{x}^{\top}A\mathbf{x}$ under the constraint $\|\mathbf{x}\|_2 = 1$.

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T A \mathbf{x}) - \lambda \frac{\partial}{\partial \mathbf{x}} (\|\mathbf{x}\|^2 - 1) = 0$$
$$\Rightarrow A \mathbf{x} = \lambda \mathbf{x}$$

An Example in Statistics

- In a medical study, we may collect the age, weight, blood pressure, and heart rate of patients.
- Each patient *i* can be represented by a point $\mathbf{x}_i \in \mathbb{R}^4$ storing these 4 values.



- These statistics may exhibit strong correlations between the different dimensions, e.g., patients with higher blood pressures may be likely to have higher weights or heart rates.
- Thus, in reality the data may approximately live in a lower-dimensional space capturing the relationships between the different dimensions.
- Suppose there exists a 1-dimensional space approximating our dataset, we expect that there exists a vector \mathbf{v} such that each data point \mathbf{x}_i can be written as $\mathbf{x}_i = c_i \mathbf{v}$ for a different $c_i \in \mathbb{R}$.

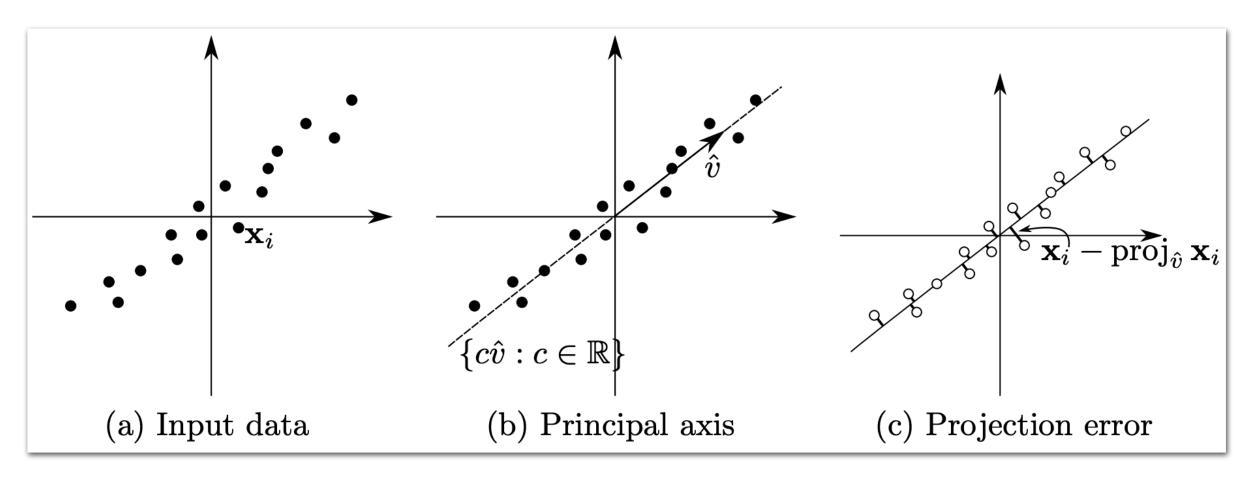
An Example in Statistics, Formulation

• The best approximation of \mathbf{x}_i parallel to \mathbf{v} is $\text{proj}_{\mathbf{v}}\mathbf{x}_i$. Let $\hat{\mathbf{v}} = \mathbf{v}/\|\mathbf{v}\|_2$, we have:

$$\operatorname{proj}_{\mathbf{v}} \mathbf{x}_{i} = \frac{\mathbf{x}_{i} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \text{ by definition}$$
$$= (\mathbf{x}_{i} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}} \text{ since } \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|_{2}^{2}.$$

• Since $\|\mathbf{v}\|$ does not matter, we can restrict our search to the space of unit vectors $\hat{\mathbf{v}}$:

$$\begin{aligned} & \underset{i}{\text{minimize}} \hat{\mathbf{v}} & \sum_{i} \|\mathbf{x}_{i} - \text{proj}_{\hat{\mathbf{v}}} \mathbf{x}_{i}\|_{2}^{2} \\ & \text{subject to } \|\hat{\mathbf{v}}\|_{2} = 1. \end{aligned}$$



An Example in Statistics, Derivation and Solution

$$\sum_{i} \|\mathbf{x}_{i} - \operatorname{proj}_{\hat{\mathbf{v}}} \mathbf{x}_{i}\|_{2}^{2} = \sum_{i} \|\mathbf{x}_{i} - (\mathbf{x}_{i} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}}\|_{2}^{2} \text{ as explained above}$$

$$= \sum_{i} (\|\mathbf{x}_{i}\|_{2}^{2} - 2(\mathbf{x}_{i} \cdot \hat{\mathbf{v}})(\mathbf{x}_{i} \cdot \hat{\mathbf{v}}) + (\mathbf{x}_{i} \cdot \hat{\mathbf{v}})^{2} \|\hat{\mathbf{v}}\|_{2}^{2}) \text{ since } \|\mathbf{w}\|_{2}^{2} = \mathbf{w} \cdot \mathbf{w}$$

$$= \sum_{i} (\|\mathbf{x}_{i}\|_{2}^{2} - (\mathbf{x}_{i} \cdot \hat{\mathbf{v}})^{2}) \text{ since } \|\hat{\mathbf{v}}\|_{2} = 1$$

$$= \operatorname{const.} - \sum_{i} (\mathbf{x}_{i} \cdot \hat{\mathbf{v}})^{2} \text{ since the unknown here is } \hat{\mathbf{v}}$$

$$= \operatorname{const.} - \|X^{\top} \hat{\mathbf{v}}\|_{2}^{2}, \text{ where the columns of } X \text{ are the vectors } \mathbf{x}_{i}.$$

- Minimizing approximation error

 Maximizing variance.
- We know $||X^T\hat{\mathbf{v}}||^2 = \hat{\mathbf{v}}^T X X^T \hat{\mathbf{v}}$, thus, $\hat{\mathbf{v}}$ is the eigenvector of $X X^T$ with the highest eigenvalue. The vector $\hat{\mathbf{v}}$ is known as the **first principal component** of the dataset.

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues

Definition

Definition 6.1 (Eigenvalue and eigenvector). An eigenvector $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ of a matrix $A \in \mathbb{R}^{n \times n}$ is any vector satisfying $A\mathbf{x} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{R}$; the corresponding λ is known as an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with $\lambda \in \mathbb{C}$ and $\mathbf{x} \in \mathbb{C}^n$.

Definition 6.2 (Spectrum and spectral radius). The *spectrum* of A is the set of eigenvalues of A. The *spectral radius* $\rho(A)$ is the maximum value $|\lambda|$ over all eigenvalues λ of A.

- The scale of an eigenvector is not important, since $A(c\mathbf{x}) = cA\mathbf{x} = c\lambda\mathbf{x} = \lambda(c\mathbf{x})$, so $c\mathbf{x}$ is an eigenvector with the same eigenvalue.
- Thus, we can restrict our search to those eigenvectors \mathbf{x} with $\|\mathbf{x}\|^2 = 1$. But still, $\pm \mathbf{x}$ are both eigenvectors with the same eigenvalue.

Existence, Linear Dependency, and Diagonalizability

Proposition 6.1 ([5], Theorem 2.1). Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (potentially complex) eigenvector.

Proposition 6.2 ([5], Proposition 2.2). Eigenvectors corresponding to different eigenvalues must be linearly independent.

- An $n \times n$ matrix can have at most n distinct eigenvalues.
- The maximum number of linearly independent eigenvectors corresponding to an eigenvalue λ is the **geometric multiplicity** of λ .
- A matrix that does not have exactly *n* linearly independent eigenvectors are called defective.

Definition 6.3 (Nondefective). A matrix $A \in \mathbb{R}^{n \times n}$ is nondefective or diagonalizable if its eigenvectors span \mathbb{R}^n .

An Example of Defective Matrix

Example 6.1 (Defective matrix). The matrix

$$A\coloneqq\left(egin{array}{cc}2&1\0&2\end{array}
ight)$$

has only one linearly independent eigenvector (1,0), with eigenvalue $\lambda=2$.

To see this, suppose $\mathbf{x} = (u, v)$ is an eigenvector of A. Expanding the relationships $A\mathbf{x} = \lambda \mathbf{x}$ and $\|\mathbf{x}\|_2^2 = 1$, we find

$$2u + v - \lambda u = 0$$
$$2v - \lambda v = 0$$
$$u^2 + v^2 = 1$$

Factoring the second expression, we find $(2 - \lambda)v = 0$, so either $\lambda = 2$ or v = 0. If $\lambda = 2$, however, the first expression shows v = 0 anyway. Hence, all eigenvectors (u, v) of A satisfy v = 0, leaving us with a unique eigenvector $\mathbf{x} = (1, 0)$, up to sign.

Similarity Transformation

- If a matrix is nondefective, then it has n eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^n$ with corresponding (possibly nonunique) eigenvalues $\lambda_1, \dots, \lambda_n$.
- Take $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and $D = \text{diag}(\lambda_1, \dots, \lambda_n)$, we have AX = XD: a "stacked" version of $A\mathbf{x}_i = \lambda \mathbf{x}_i$. Further, $D = X^{-1}AX$, meaning A is **diagonalized** by a **similarity transformation**.

Definition 6.4 (Similar matrices). Two matrices A and B are *similar* if there exists an invertible matrix T with $B = T^{-1}AT$.

• Similar matrices have the same eigenvalues:

$$B\mathbf{x} = \lambda \mathbf{x} \qquad \Longrightarrow \qquad T^{-1}AT\mathbf{x} = \lambda \mathbf{x} \qquad \Longrightarrow \qquad AT\mathbf{x} = \lambda T\mathbf{x} \qquad \Longrightarrow \qquad T\mathbf{x} \text{ is an eigenvector of } A \text{ with eigenvalue } \lambda$$

We can apply all the similarity transformations we want to a matrix without modifying its set of eigenvalues.

Hermitian Matrix

- Our original definition of eigenvalues allows them to be complex even if *A* is a real matrix.
- However, in the symmetric case we do not need complex arithmetic. We first generalize symmetric matrices to matrices in $\mathbb{C}^{n\times n}$:

Definition 6.5 (Complex conjugate). The complex conjugate of a number $z = a + bi \in \mathbb{C}$, where $a, b \in \mathbb{R}$, is $\bar{z} := a - bi$. The complex conjugate \bar{A} of a matrix $A \in \mathbb{C}^{m \times n}$ is the matrix with elements \bar{a}_{ij} .

Definition 6.6 (Conjugate transpose). The *conjugate transpose* of $A \in \mathbb{C}^{m \times n}$ is $A^H := \bar{A}^\top$.

Definition 6.7 (Hermitian matrix). A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if $A = A^H$.

Spectral Theorem

Proposition 6.3. All eigenvalues of Hermitian matrices are real.

Proposition 6.4. Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Theorem 6.1 (Spectral Theorem). Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{C}^n$ with—possibly repeated—eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ (if $A \in \mathbb{R}^{n \times n}$, then $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^n$). In other words, there exists an orthogonal matrix X of eigenvectors and diagonal matrix D of eigenvalues such that $D = X^{\top}AX$.

$$A^{-1} = XD^{-1}X^{\top}$$

Proposition 6.5. All eigenvalues of positive definite matrices are positive.

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues

Power Iterations, Motivation

- Assume $A \in \mathbb{R}^{n \times n}$ is symmetric with a full set of eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}^n \in \mathbb{R}^n$, sorted such that their corresponding eigenvalues satisfy $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$.
- Take an arbitrary vector $\mathbf{v} \in \mathbb{R}^n$ and write it in the \mathbf{x}_i basis as $\mathbf{v} = c_1 \mathbf{x}_1 + \ldots + c_n \mathbf{x}_n$

$$A\mathbf{v} = c_1 A \mathbf{x}_1 + \dots + c_n A \mathbf{x}_n$$

$$= c_1 \lambda_1 \mathbf{x}_1 + \dots + c_n \lambda_n \mathbf{x}_n \text{ since } A \mathbf{x}_i = \lambda_i \mathbf{x}_i$$

$$= \lambda_1 \left(c_1 \mathbf{x}_1 + \frac{\lambda_2}{\lambda_1} c_2 \mathbf{x}_2 + \dots + \frac{\lambda_n}{\lambda_1} c_n \mathbf{x}_n \right)$$

$$A^2 \mathbf{v} = \lambda_1^2 \left(c_1 \mathbf{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^2 c_2 \mathbf{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^2 c_n \mathbf{x}_n \right)$$

$$\vdots$$

$$A^k \mathbf{v} = \lambda_1^k \left(c_1 \mathbf{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \mathbf{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \mathbf{x}_n \right).$$

Power Iterations

$$A^k \mathbf{v} = \lambda_1^k \left(c_1 \mathbf{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \mathbf{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \mathbf{x}_n \right).$$

- As $k \to \infty$, the ratio $(\lambda_i/\lambda_1)^k \to 0$ unless $\lambda_i = \pm \lambda_1$, since $|\lambda_1| = \max(|\lambda_1|, \dots, |\lambda_n|)$.
- If **x** is the projection of **v** onto the space of eigenvectors with eigenvalues λ_1 , then (when the absolute values $|\lambda_i|$ are unique) as $k \to \infty$, $A^k \mathbf{v} \approx \lambda_1^k \mathbf{x}$.

This argument leads to an exceedingly simple algorithm for computing a single eigenvector \mathbf{x}_1 of A corresponding to its largest-magnitude eigenvalue λ_1 :

- 1. Take $\mathbf{v}_1 \in \mathbb{R}^n$ to be an arbitrary nonzero vector.
- 2. Iterate for increasing k: $\mathbf{v}_k = A\mathbf{v}_{k-1}$ until $\mathbf{v}_k/\|\mathbf{v}_k\|_2 \approx \pm \mathbf{v}_{k-1}/\|\mathbf{v}_{k-1}\|_2$ up to some tolerance.

Power Iterations, Remarks

- Although we have not considered the defective case,
 Power Iterations is still guaranteed to converge.
- The method converges the most quickly when $|\lambda_2|/|\lambda_1| \ll 1$.
- This technique may fail if we accidentally choose \mathbf{v}_1 such that $c_1 = 0$, but it rarely happens.

```
function Power-Iteration(A)
\mathbf{v} \leftarrow \text{Arbitrary}(n)
\mathbf{for} \ k \leftarrow 1, 2, 3, \dots
\mathbf{v} \leftarrow A\mathbf{v}
\mathbf{return} \ \mathbf{v}
```

```
function Normalized-Iteration(A)
\mathbf{v} \leftarrow \text{Arbitrary}(n)
\mathbf{for} \ k \leftarrow 1, 2, 3, \dots
\mathbf{w} \leftarrow A\mathbf{v}
\mathbf{v} \leftarrow \mathbf{w}/\|\mathbf{w}\|
\mathbf{return} \ \mathbf{v}
```

- The method can also fail if λ and $-\lambda$ are both eigenvalues of A with the largest magnitude.
- If $|\lambda_1| > 1$, then $||\mathbf{v}_k|| \to \infty$ as $k \to \infty$. Since scale doesn't matter, we can normalize \mathbf{v}_k at each step. Any norms would work.

Inverse Iterations

• If $A\mathbf{x} = \lambda \mathbf{x}$, then $\mathbf{x} = \lambda A^{-1}\mathbf{x}$, and so $A^{-1}\mathbf{x} = (1/\lambda)\mathbf{x}$. Thus, $1/\lambda$ is an eigenvalue of A^{-1} with eigenvector \mathbf{x} , and the smallest-magnitude eigenvalue of A corresponds to the largest-magnitude eigenvector of A^{-1} .

```
function Inverse-Iteration(A)
\mathbf{v} \leftarrow \text{Arbitrary}(n)
\mathbf{for} \ k \leftarrow 1, 2, 3, \dots
\mathbf{w} \leftarrow A^{-1}\mathbf{v}
\mathbf{v} \leftarrow \mathbf{w}/\|\mathbf{w}\|
\mathbf{return} \ \mathbf{v}
```

```
function Inverse-Iteration-LU(A)
\mathbf{v} \leftarrow \text{Arbitrary}(n)
L, U \leftarrow \text{LU-Factorize}(A)
for k \leftarrow 1, 2, 3, \dots
\mathbf{y} \leftarrow \text{Forward-Substitute}(L, \mathbf{v})
\mathbf{w} \leftarrow \text{Back-Substitute}(U, \mathbf{y})
\mathbf{v} \leftarrow \mathbf{w}/\|\mathbf{w}\|
return \mathbf{v}
```

Shifted Inverse Iterations

- Suppose $\sigma \in \mathbb{R}$ is close to (but not exactly) an eigenvalue λ of an $n \times n$ symmetric matrix A.
- If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$, then the eigenvalues of $(A \sigma I_{n \times n})^{-1}$ are $(\lambda_1 \sigma)^{-1}, \ldots, (\lambda_n \sigma)^{-1}$.
- Since σ is close to λ , the difference $|\lambda \sigma|$ is close to zero, and hence $(\lambda \sigma)^{-1}$ is likely to be the dominant eigenvalue of $(A \sigma I_{n \times n})^{-1}$.
- Thus, applying eigenvalue iteration to $(A \sigma I_{n \times n})^{-1}$, a slight generalization of inverse iteration, allows us to find the eigenvalue of A closest to σ .
- However, $(A \sigma I_{n \times n})^{-1}$ would be close to singular. But somewhat surprisingly, this possible issue does not substantially affect shifted inverse iteration.

Rayleigh Quotient Iterations, Motivation

- Recall that power iteration converges fastest when ratio $|\lambda_2/\lambda_1|$ is close to zero.
- For shifted inverse iteration applied to $A \sigma I_{n \times n}$, the dominant eigenvalue $(\lambda \sigma)^{-1}$ becomes huge in magnitude as $\sigma \to \lambda$, which also makes the algorithm converge faster.
- But, the role of power iteration is exactly to improve our eigenvalue estimate! Hence, we might construct an algorithm by alternating between two steps:
 - Carry out one or more iterations of shifted inverse iteration on $(A \sigma I_{n \times n})^{-1}$ to refine an estimate of the eigenvalue closest to σ .
 - Update σ to our improved estimate.

Rayleigh Quotient Iterations

• Suppose we have a fixed guess of an eigenvector \mathbf{x} of A. Minimizing $||A\mathbf{x} - \sigma \mathbf{x}||^2$ over possible eigenvalue estimates $\sigma \in \mathbb{R}$ yields a least-squares approximation given by

$$\sigma = rac{\mathbf{x}^{ op}A\mathbf{x}}{\|\mathbf{x}\|_2^2}.$$
 — The Rayleigh quotient

```
function Rayleigh-Quotient-Iteration(A, \sigma)
\mathbf{v} \leftarrow \text{Arbitrary}(n)
\mathbf{for} \ k \leftarrow 1, 2, 3, \dots
\mathbf{w} \leftarrow (A - \sigma I_{n \times n})^{-1} \mathbf{v}
\mathbf{v} \leftarrow \mathbf{w}/\|\mathbf{w}\|
\sigma \leftarrow \frac{\mathbf{v}^\top A \mathbf{v}}{\|\mathbf{v}\|_2^2}
\mathbf{return} \ \mathbf{v}
```

- Compared to Shifted Inverse Iterations:
 - More expensive iteration ($A \sigma I_{n \times n}$ is changing and cannot be pre-factorized) but converges faster.

Summary

- Power Iterations: compute the eigenvalue with the largest magnitude
- Inverse Iterations: compute the eigenvalue with the smallest magnitude
- ullet Shifted Inverse Iterations: compute the eigenvalue closest to an input estimate σ
- Rayleigh Quotient Iterations: compute the eigenvalue closest to an input estimate σ , a faster-converging variant of the Shifted Inverse Iterations
 - But each iteration is more expensive, thus overall performance is problem dependent.

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues

Deflation, Motivation

- In power iterations, when the initial eigenvector guess \mathbf{v}_1 is orthogonal to the first eigenvector \mathbf{x}_1 , no matter how many times we apply A, the result will still be orthogonal to \mathbf{x}_1 .
- Suppose we find \mathbf{x}_1 and λ_1 via power iteration, we can then restart the iteration after projecting \mathbf{x}_1 out of the initial guess \mathbf{v}_1 .
 - Since the eigenvectors of *A* are orthogonal, power iteration after this projection will recover its second-largest eigenvalue!
- Due to finite-precision arithmetic, applying A to a vector may inadvertently introduce a small component parallel to \mathbf{x}_1 . We can avoid this by projecting in each iteration.

Deflation

```
function Projected-Iteration(symmetric A,k)
for \ell \leftarrow 1, 2, ..., k
\mathbf{v}_{\ell} \leftarrow \text{Arbitrary}(n)
for p \leftarrow 1, 2, 3, ...
\mathbf{u} \leftarrow \mathbf{v}_{\ell} - \text{proj}_{\text{span}\{\mathbf{v}_{1}, ..., \mathbf{v}_{\ell-1}\}} \mathbf{v}_{\ell}
\mathbf{w} \leftarrow A\mathbf{u}
\mathbf{v}_{\ell} \leftarrow \mathbf{w}/\|\mathbf{w}\|
return \mathbf{v}_{1}, ..., \mathbf{v}_{k}
```

The inner loop of projected iteration is equivalent to power iteration on the matrix AP, where P projects out $\mathbf{v}_1, \dots, \mathbf{v}_{\ell-1}$:

$$P\mathbf{x} = \mathbf{x} - \operatorname{proj}_{\operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{\ell-1}\}} \mathbf{x}.$$

AP has the same eigenvectors as A with eigenvalues $0,\ldots,0,\lambda_{\ell},\ldots,\lambda_{n}$.

Deflation via Householder Transformations

- In the previous strategy, AP might not be symmetric even if A is symmetric, and the iteration can fail if A is defective.
- Suppose $A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$ with $\|\mathbf{x}_1\| = 1$. Take H to be the Householder matrix such that $H\mathbf{x}_1 = \mathbf{e}_1$. Since similarity transforms do not affect the set of eigenvalues, HAH^T will have the same eigenvalues as A. When we multiply HAH^T by \mathbf{e}_1 :

$$HAH^{\top}\mathbf{e}_{1} = HAH\mathbf{e}_{1} \text{ since } H \text{ is symmetric}$$

$$= HA\mathbf{x}_{1} \text{ since } H\mathbf{x}_{1} = \mathbf{e}_{1} \text{ and } H^{2} = I_{n \times n}$$

$$= \lambda_{1}H\mathbf{x}_{1} \text{ since } A\mathbf{x}_{1} = \lambda_{1}\mathbf{x}_{1}$$

$$= \lambda_{1}\mathbf{e}_{1} \text{ by definition of } H.$$

$$HAH^{\top} = \begin{pmatrix} \lambda_{1} & \mathbf{b}^{\top} \\ \mathbf{0} & B \end{pmatrix}.$$

• The matrix $B \in \mathbb{R}^{(n-1)\times (n-1)}$ has eigenvalues $\lambda 2, \ldots, \lambda n$. Recursively applying this and power iteration we can find all eigenvalues.

QR Iterations, Motivation

- Deflation has the drawback that each eigenvector must be computed separately, which can be slow and can accumulate error.
- To find more than one eigenvector simultaneously, consider

$$A^k = A^{k-1} \cdot A = \left(\begin{array}{ccc} | & | & | \\ A^{k-1} \mathbf{a}_1 & A^{k-1} \mathbf{a}_2 & \cdots & A^{k-1} \mathbf{a}_n \\ | & | & | \end{array} \right).$$

- When $k \to \infty$, we know $A^{k-1}\mathbf{a}_1 \to b_1\mathbf{x}_1$. By the deflation method, if we initially projected \mathbf{x}_1 out of \mathbf{a}_2 , then $A^{k-1}P_{\mathbf{x}_1}\mathbf{a}_2 \to b_2\mathbf{x}_2$, where $P_{\mathbf{x}_1} = I \mathbf{x}_1\mathbf{x}_1^T$ is a projection matrix.
- Interestingly, $AP_{\mathbf{x}} = P_{\mathbf{x}}A$ if \mathbf{x} is an eigenvector of A, which means $P_{\mathbf{x}_1}A^{k-1}\mathbf{a}_2 \to b_2\mathbf{x}_2$.
- Thus, if we QR factorize $A^k = QR$, the columns of **Q** will converge to the eigenvectors of *A*.

Finding Multiple Eigenvalues QR Iterations

```
 \begin{array}{c} \textbf{function} \ \operatorname{QR-ITERATION}(A \in \mathbb{R}^{n \times n}) \\ \textbf{for} \ k \leftarrow 1, 2, 3, \dots \\ Q, R \leftarrow \operatorname{QR-FACTORIZE}(A) \\ A \leftarrow RQ \\ \textbf{return} \ \operatorname{diag}(R) \end{array}
```

- However, directly factorizing A^k would result in numerical issues, since cond $A^k \approx (\text{cond } A)^k$.
- What if we first factorize $A = Q_1 R_1$, and then factorize $(R_1 Q_1) = Q_2 R_2$, ...?

$$A^2 = (Q_1R_1)(Q_1R_1)$$

 $= Q_1(R_1Q_1)R_1$ by regrouping
 $= Q_1Q_2R_2R_1$ since $A_2 = R_1Q_1 = Q_2R_2$
 $A^3 = A^2 \cdot A$
 $= Q_1Q_2R_2R_1 \cdot Q_1R_1$ by the previous step
 $= Q_1Q_2R_2(Q_2R_2)R_1$ since $A_2 = R_1Q_1 = Q_2R_2$
 $= Q_1Q_2Q_3R_3R_2R_1$ since $A_3 = R_2Q_2 = Q_3R_3$
 \vdots
 $A^k = Q_1Q_2 \cdots Q_kR_kR_{k-1} \cdots R_1$ by induction.

- Grouping the Q_i variables and the R_i variables separately provides a QR factorization of A^k .
- In practice, we first tri-diagonalize A using Householder matrices in $O(n^3)$ time, and then apply the QR iterations.

QR Iterations, Example

• Applying QR iterations on
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$$
:

$$A_{1} = \begin{pmatrix} 2.000 & 3.000 \\ 3.000 & 2.000 \end{pmatrix} = \begin{pmatrix} -0.555 & 0.832 \\ -0.832 & -0.555 \end{pmatrix} \begin{pmatrix} -3.606 & -3.328 \\ 0.000 & 1.387 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 5.000 & -0.048 \\ -0.048 & -1.000 \end{pmatrix} = \begin{pmatrix} -1.000 & -0.010 \\ 0.010 & -1.000 \end{pmatrix} \begin{pmatrix} -5.000 & 0.038 \\ 0.000 & 1.000 \end{pmatrix}$$

$$\Rightarrow A_{2} = R_{1}Q_{1} = \begin{pmatrix} 4.769 & -1.154 \\ -1.154 & -0.769 \end{pmatrix} = \begin{pmatrix} -0.972 & -0.235 \\ 0.235 & -0.972 \end{pmatrix} \begin{pmatrix} -4.907 & 0.941 \\ 0.000 & 1.019 \end{pmatrix} \qquad A_{5} = \begin{pmatrix} 5.000 & 0.010 \\ 0.010 & -1.000 \end{pmatrix} = \begin{pmatrix} -1.000 & 0.002 \\ -0.002 & -1.000 \end{pmatrix} \begin{pmatrix} -5.000 & -0.008 \\ 0.000 & 1.000 \end{pmatrix}$$

$$\Rightarrow A_{3} = R_{2}Q_{2} = \begin{pmatrix} 4.990 & 0.240 \\ 0.240 & -0.990 \end{pmatrix} = \begin{pmatrix} -0.999 & 0.048 \\ -0.048 & -0.999 \end{pmatrix} \begin{pmatrix} -4.996 & -0.192 \\ 0.000 & 1.001 \end{pmatrix} \qquad A_{6} = \begin{pmatrix} 5.000 & -0.002 \\ -0.002 & -1.000 \end{pmatrix} = \begin{pmatrix} -1.000 & -0.000 \\ 0.000 & -1.000 \end{pmatrix} \begin{pmatrix} -5.000 & 0.002 \\ 0.000 & 1.000 \end{pmatrix}$$

$$\Rightarrow A_{4} = R_{3}Q_{3} = \begin{pmatrix} 5.000 & -0.048 \\ -0.048 & -1.000 \end{pmatrix} \qquad \Rightarrow A_{7} = R_{6}Q_{6} = \begin{pmatrix} 5.000 & 0.000 \\ 0.000 & -1.000 \end{pmatrix}$$

$$\Rightarrow A_{7} = R_{6}Q_{6} = \begin{pmatrix} 5.000 & 0.000 \\ 0.000 & -1.000 \end{pmatrix}$$

Table of Content

- Motivation of the Eigenvalue Problem
- Properties of Eigenvectors
- Computing a Single Eigenvalue
- Finding Multiple Eigenvalues