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Motivation of the Eigenvalue Problem

Nonlinearity and Optimization Form

® We turn our attention now to a nonlinear problem about matrices: Finding their eigenvalues
and eigenvectors, i.e. solving Ax = Ax.

® To see it is nonlinear, there is a product of unknowns A and x.

e Furthermore, to avoid the trivial solution x = 0, we constrain ||X||, = 1; keeping x on the unit
sphere, which is not a vector space.

® Due to this structure, algorithms for finding eigenspaces will be considerably different from
solving and analyzing linear systems.

0 0
—(xTAx) — A—(||Ix||* = 1) = 0
0X 0X

= AX = AX

When A is symmetric, the eigenvectors of A are the critical points
of x' Ax under the constraint ||x|, = 1.



Motivation of the Eigenvalue Problem

An Example in Statistics

¢ [n a medical study, we may collect the age, weight,
blood pressure, and heart rate of patients.

e Each patient i can be represented by a point
x; € R* storing these 4 values.

® These statistics may exhibit strong correlations between the different dimensions, e.g., patients

(a) Input data

(b) Principal axis

with higher blood pressures may be likely to have higher weights or heart rates.

® Thus, in reality the data may approximately live in a lower-dimensional space capturing the

relationships between the different dimensions.

® Suppose there exists a 1-dimensional space approximating our dataset, we expect that there
exists a vector v such that each data point x; can be written as X; = ¢,v for a different ¢; € R.



Motivation of the Eigenvalue Problem

An Example in Statistics, Formulation

o The best approximation of X; parallel to v is proj X;. Let vV = v/[|v||,, we have:

pI'Ojv X3

X; 'V

V-V

v by definition

(x; - V)V since v - v = ||v||5.

e Since ||v|| does not matter, we can restrict our search to the space of unit vectors v:

minimizes Z sz — prOj;, Xz”g

(/

subject to ||V]|2 = 1.

(a) Input data,

(b) Principal axis

Y <) > .
X; — Projs X;

(c) Projection error




Motivation of the Eigenvalue Problem

An Example in Statistics, Derivation and Solution

Z |x; — proj; Xi||5 = Z |x; — (x; - V)V||5 as explained above
i i

= 3" (I3 = 2(x: - 9) (i - ¥) + (x: - 9)%|9][2) since [|w[3 = w - w

= > (I3 = (xi - 9)°) since [[¥]]> =1 maximize | X V2
i
: A2
= const. — Z:(xZ . V)? since the unknown here is v subject to |[v]j3 = 1
i
— const. — || X ' ¥||2, where the columns of X are the vectors x;.

¢ Minimizing approximation error < Maximizing variance.

o We know || XT¥||* = ¥/ XX'¥, thus, ¥ is the eigenvector of XX’ with the highest eigenvalue. The

vector V is known as the first principal component of the dataset.
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Properties of Eigenvectors
Definition
Definition 6.1 (Eigenvalue and eigenvector). An eigenvector x € R™\{0} of a matrix

A € R™"*"™ is any vector satisfying Ax = Ax for some \ € R; the corresponding A is known
as an etgenvalue. Complexr eigenvalues and eigenvectors satisfy the same relationships with

A € C and x € C™.

Definition 6.2 (Spectrum and spectral radius). The spectrum of A is the set of eigenvalues
of A. The spectral radius p(A) is the maximum value |\| over all eigenvalues A of A.

e The scale of an eigenvector is not important, since A(cX) = cAX = cAX = A(cX), so ¢X is an
eigenvector with the same eigenvalue.

e Thus, we can restrict our search to those eigenvectors x with ||x||* = 1. But still, =x are both
eigenvectors with the same eigenvalue.



Properties of Eigenvectors

Existence, Linear Dependency, and Diagonalizability

Proposition 6.1 ([5], Theorem 2.1). Every matrix A € R™*" has at least one (potentially
complex) eigenvector.

Proposition 6.2 ([|5], Proposition 2.2). Eigenvectors corresponding to different eigenval-
ues must be linearly independent.

e An n X n matrix can have at most n distinct eigenvalues.

® The maximum number of linearly independent eigenvectors corresponding to an eigenvalue A
is the geometric multiplicity of A.

e A matrix that does not have exactly n linearly independent eigenvectors are called defective.

Definition 6.3 (Nondefective). A matrix A € R™"*™ is nondefective or diagonalizable if
its eigenvectors span R".



Properties of Eigenvectors
An Example of Defective Matrix

Example 6.1 (Defective matrix). The matrix

(3 1)

has only one linearly independent eigenvector (1,0), with eigenvalue A\ = 2.

To see this, suppose x = (u,v) is an eigenvector of A. Expanding the relationships
Ax = Mx and ||x||42 = 1, we find

2u+v—Au =0
20 — v =0
u® + v =1
Factoring the second expression, we find (2 — A\)v = 0, so either A =2 or v = 0. If A = 2,

however, the first expression shows v = 0 anyway. Hence, all eigenvectors (u, v) of A satisfy
v = 0, leaving us with a unique eigenvector x = (1,0), up to sign.



Properties of Eigenvectors

Similarity Transformation

e [f a matrix is nondefective, then it has n eigenvectors X, ..., X € R" with corresponding
(possibly nonunique) eigenvalues 4,,..., 4.
e Take X = [X;,...,X, ] and D = diag(4,,...,4,), we have AX = XD: a “stacked” version of
AX; = X, . Further, D = X" !AX, meaning A is diagonalized by a similarity transformation.

Definition 6.4 (Similar matrices). Two matrices A and B are similar if there exists an
invertible matrix T with B = T~ 1 AT.

® Similar matrices have the same eigenvalues:
B=T"AT

Tx ; : ¢
Bx = Ax $ T-1ATx = Ix : ATx = 1TX : X 1S an eigenvector o

A with eigenvalue /1

We can apply all the similarity transformations we want to a
matrix without modifying its set of eigenvalues.



Properties of Eigenvectors

Hermitian Matrix

e Our original definition of eigenvalues allows them to be complex even if A is a real matrix.

e However, in the symmetric case we do not need complex arithmetic. We first generalize
symmetric matrices to matrices in C"*":

Definition 6.5 (Complex conjugate). The complex conjugate of a number z = a+bi € C,
where a,b € R, is Z := a — bi. The complex conjugate A of a matrix A € C™*" is the
matrix with elements a;;.

Definition 6.6 (Conjugate transpose). The conjugate transpose of A € C™*" is AH =
Al

| Definition 6.7 (Hermitian matrix). A matrix A € C**" is Hermitian if A = AH.



Properties of Eigenvectors
Spectral Theorem

| Proposition 6.3. All eigenvalues of Hermitian matrices are real.

Proposition 6.4. Eigenvectors corresponding to distinct eigenvalues of Hermitian matri-
ces must be orthogonal.

Theorem 6.1 (Spectral Theorem). Suppose A € C™*™ is Hermitian (if A € R"*"™,
suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors x;,--- ,x, € C”
with—possibly repeated—eigenvalues A1, ..., A, € R (if A € R™*", then x1,--- ,x, € R™).

In other words, there exists an orthogonal matrix X of eigenvectors and diagonal matrix
D of eigenvalues such that D = X ' AX.

A '=xDpD1x'

| Proposition 6.5. All eigenvalues of positive definite matrices are positive.
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Computing a Single Eigenvalue

Power Iterations, Motivation

e Assume A € R™" is symmetric with a full set of eigenvectors x;, ..., X" € R", sorted such that
their corresponding eigenvalues satisfy |4, > |4,| > ... > |4 ]|.

e Take an arbitrary vector v € R" and write it in the X; basisas v =c¢;X; + ...+ ¢,X,,

Av =1 Axy +--- + ¢, Ax,
— cl)\lxl + e Cn)\nxn since AXi = >\z'xz'

p) A,
= \1 (clxl | 262X2 + .- cnxn>

A1 A1

A2y — )\2 A2 i An :
V = /\1 C1X1+ | — CoXo + 1+ | — CnXn
)\1 >\1



Computing a Single Eigenvalue

Power Iterations

thv _ 3k o k A, k
v=XA|laxi+|— ) exXo+---4+| — ) cnXn |-
/\1 /\1

e As k — oo, the ratio (/ll-//ll)k — Qunless 4, = = 4;, since |4;| = max(|4;],...,[4,]).
e If X is the projection of v onto the space of eigenvectors with eigenvalues A, then (when the

absolute values |4;| are unique) as k — oo, ARy » /lfx.

This argument leads to an exceedingly simple algorithm for computing a single eigen-
vector x; of A corresponding to its largest-magnitude eigenvalue Ai:

1. Take vi € R™ to be an arbitrary nonzero vector.

2. Iterate for increasing k: vy = Avi_1 until Vi/|lvillz & £Vk-1/|vi_1]2 up to some tolerance.



Computing a Single Eigenvalue

Power Iterations, Remarks

function POWER-ITERATION(A)
Vv < ARBITRARY(n)

e Although we have not considered the defective case, for k<« 1,2.3. ...
Power Iterations is still guaranteed to converge. v« Av
return v

® The method converges the most quickly when
‘/12 ‘ / ‘ /11 ‘ < 1. function NORMALIZED-ITERATION(A)

Vv < ARBITRARY(n)

for £+ 1,2,3,...
e This technique may fail if we accidentally choose v, W Av
such that ¢; = 0, but it rarely happens. Vv Wwl
return v

® The method can also fail if A and —A are both eigenvalues of A with the largest magnitude.

o If |4 | > 1, then ||v,|| = o0 as k — 0. Since scale doesn’t matter, we can normalize v, at each
step. Any norms would work.



Computing a Single Eigenvalue

Inverse Iterations

o IfAx = AX, then x = JA~'x, and so A7 'x = (1/2)x. Thus, 1/4 is an eigenvalue of A~! with
eigenvector X, and the smallest-magnitude eigenvalue of A corresponds to the largest-
magnitude eigenvector of A~!.

function INVERSE-ITERATION-LU(A)
function INVERSE-ITERATION(A) Vv < ARBITRARY (n)

vV < ARBITRARY(n) L,U < LU-FACTORIZE(A)
for £+ 1,2,3,... for k< 1,2,3,...

w <+ A lv y < FORWARD-SUBSTITUTE(L, V)

V — W/|lw| w < BACK-SUBSTITUTE(U,y)
return v v Wiw|

return v




Computing a Single Eigenvalue

Shifted Inverse Iterations

e Suppose 6 € R is close to (but not exactly) an eigenvalue A of an n X n symmetric matrix A.

o If the eigenvalues of A are 4, ..., 4, then the eigenvalues of (A — ol .,)" ! are (4, — 6)7}, ...,

nxn
(4, — o)~ L.

e Since o is close to 4, the difference | A — ¢| is close to zero, and hence (4 — 6)! is likely to be
the dominant eigenvalue of (A — ol ., )~

e Thus, applying eigenvalue iteration to (A — ol ,.,)~!, a slight generalization of inverse iteration,

nxn
allows us to find the eigenvalue of A closest to .

)" would be close to singular. But somewhat surprisingly, this possible
issue does not substantially affect shifted inverse iteration.

e However, (A — ol



Computing a Single Eigenvalue

Rayleigh Quotient Iterations, Motivation

e Recall that power iteration converges fastest when ratio |4,/4, | is close to zero.

v the dominant eigenvalue (4 — a)‘l becomes
huge in magnitude as 6 — 4, which also makes the algorithm converge faster.

e For shifted inverse iteration applied to A — ol

® But, the role of power iteration is exactly to improve our eigenvalue estimate! Hence, we might
construct an algorithm by alternating between two steps:

e Carry out one or more iterations of shifted inverse iteration on (A — oI, xn) ! to refine
an estimate of the eigenvalue closest to o.

e Update o to our improved estimate.



Computing a Single Eigenvalue

Rayleigh Quotient Iterations

e Suppose we have a fixed guess of an eigenvector X of A. Minimizing ||AX — oX|| over possible
eigenvalue estimates 6 € R yields a least-squares approximation given by

g —

x| Ax

13

function RAYLEIGH-QUOTIENT-ITERATION(A, o)
v < ARBITRARY (n)

for £k <+ 1,2,3,...

w < (A — UIan)_lv

V < W/|w|
v ' Av
RZE

g <

return v

— The Rayleigh quotient

¢ Compared to Shifted Inverse Iterations:

e More expensive iteration (A — ol ,, is

changing and cannot be pre-factorized)
but converges faster.



Computing a Single Eigenvalue

Summary

® Power Iterations: compute the eigenvalue with the largest magnitude
¢ Inverse Iterations: compute the eigenvalue with the smallest magnitude
e Shifted Inverse Iterations: compute the eigenvalue closest to an input estimate &

e Rayleigh Quotient Iterations: compute the eigenvalue closest to an input estimate o, a faster-
converging variant of the Shifted Inverse Iterations

® But each iteration is more expensive, thus overall performance is problem dependent.
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Finding Multiple Eigenvalues

Deflation, Motivation

e In power iterations, when the initial eigenvector guess v, is orthogonal to the first eigenvector
X |, no matter how many times we apply A, the result will still be orthogonal to Xx;.

e Suppose we find X; and 4; via power iteration, we can then restart the iteration after projecting
X, out of the initial guess v;.

e Since the eigenvectors of A are orthogonal, power iteration after this projection will recover
its second-largest eigenvalue!

e Due to finite-precision arithmetic, applying A to a vector may inadvertently introduce a small
component parallel to X,. We can avoid this by projecting in each iteration.



Finding Multiple Eigenvalues

Deflation

function PROJECTED-ITERATION (symmetric A,k)
for /< 1,2,...,k
vy < ARBITRARY(n)
for p<1,2,3,...
U < Vg — projspan{vl,...,Vg_l} V¢
w < Au
Vi W/|w|

return vi,..., Vg

The inner loop of projected iteration is equivalent to power iteration on the matrix AP,
where P projects out vi,...,Vy_1:

Px =x— pro.]span {vi,...,ve_1} X.

AP has the same eigenvectors as A with eigenvalues 0,...,0, Ay, ..., Ap.



Finding Multiple Eigenvalues

Deflation via Householder Transformations

¢ In the previous strategy, AP might not be symmetric even if A is symmetric, and the iteration
can fail if A is defective.

e Suppose AX, = 4,X; with ||x,|| = 1. Take H to be the Householder matrix such that Hx; = e;.
Since similarity transforms do not affect the set of eigenvalues, HAH" will have the same
eigenvalues as A. When we multiply HAH' by e;:

HAH'e, = HAHe, since H is symmetric

— HAXl since HX1 — € and H2 = Ian HAHT o ( )\1 bT )

= M HxX; since Ax1 = A\X1 0 B

= A\i1e; by definition of H.

e The matrix B € R""D*"=D hag eigenvalues A2, . . ., An. Recursively applying this and power
iteration we can find all eigenvalues.



Finding Multiple Eigenvalues

OR Iterations, Motivation

e Deflation has the drawback that each eigenvector must be computed separately, which can be
slow and can accumulate error.

¢ To find more than one eigenvector simultaneously, consider

| | |
M—AkVA—(AkﬁlAk%2~-Ak%n .
| | |

e When k — oo, we know A*"la; — b,x,. By the deflation method, if we initially projected X,

k—1 _ T . .. :
out of a,, then A" P, a, — b,X,, where Py =1 — XX, is a projection matrix.

o Interestingly, AP, = P, A if X is an eigenvector of A, which means P, A “la, - b,x,.

e Thus, if we QR factorize A¥ = QR, the columns of Q will converge to the eigenvectors of A.



function QR-ITERATION(A € R™"*")
for k +—1,2,3,...
Finding Multiple Eigenvalues @ 97 ermoronz=@)
OR Iterations return diag(R)

e However, directly factorizing A* would result in numerical issues, since cond A &~ (cond A)~.

e What if we first factorize A = Q,R;, and then factorize (R,Q,) = O,R,, ...?

A? = (Q1R1)(Q1Ry)

= Q1(R1Q1)R1 by regrouping e Grouping the Q; variables and the

= (Q1Q2R2R; since Ay = R1Q1 = Q2R, R; variables separately provides a
A3 — A2. A QR factorization of A*.

= Q1@2f2F - Quliy by the previous step e In practice, we first tri-diagonalize

= Q1Q2R2(Q2R2) Ry since Az = R1Q1 = Q2R: A using Householder matrices in

= Q1Q2Q3R3Rs R, since A3 = R2Qs = (Q3R3 O(n?) time, and then apply the

: OR iterations.
A¥ = Q1Q5---QrRirR)_1 - -- Ry by induction.



Finding Multiple Eigenvalues

OR Iterations, Example

2 3]

o Applying QR iterations on A = 1 ol

4. — ( 2000 3.000 ) _ ( —0.555 0.832 —3.606 —3.328 A — 5000 —0.048 \ [ —1.000 —0.010 —5.000 0.038
1=\ 3.000 2.000 /)~ \ —0.832 —0.555 0.000 1.387 4=\ —0.048 —1.000 ) — 0.010 —1.000 0.000 1.000

N N - N - -
—— ~

Q1 R4 Qa Ry

4.769  —1.154 5.000  0.010
= A2 = RO = ( ~1.154 —0.769 ) = As = RaQs = ( 0.010 —1.000 )

A, — ( 4.769 —1.154 )_( —0.972 —0.235 ) ( —4.907 0.941 ) A 5.000 0.010 ) ( —1.000  0.002 ) ( —5.000 —0.008 )
— — . = _

~1.154 —0.769 0.235  —0.972 0.000 1.019 —\ 0010 -1.000 ) =\ —0.002 —1.000 0.000  1.000
52 ;{2 QY5 1%;
B [ 4990 0.240 5.000  —0.002
= As = Q2 = ( 0.240 —0.990 ) = Ao = HsQs = ( —0.002 —1.000 )

Ao — [ 4990 0240 1\ _ ( —0.999  0.048 —4.996 —0.192 A.— ( 5000 —0.002 ) _ ( —1.000 —0.000 —5.000 0.002
37\ 0.240 —-0.990 )/ — \ —0.048 —0.999 0.000  1.001 6=\ —0.002 —1.000 / — \ 0.000 —1.000 0.000 1.000

N . o
Y Y

Qs R Qs Rg
5.000 —0.048) 5.000 0.000 )

— A4 =R3Qs = ( —0.048 —1.000 0.000  —1.000

— A7:R6Q6:(
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