Lec 6: Column Spaces and QR

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Table of Content

- QR Factorization
- Gram-Schmidt Orthogonalization
- Householder Transformations

Table of Content

- QR Factorization
- Gram-Schmidt Orthogonalization
- Householder Transformations

$lackbox{a}_1 \ lackbox{a}_2$

Motivation

- Solving least squares problems is equivalent to solving the normal equation $A^T A \mathbf{x} = A^T \mathbf{b}$.
- Suppose A is square and invertible, we have

cond
$$A^{\top} A = ||A^{\top} A|| ||(A^{\top} A)^{-1}||$$

 $\approx ||A^{\top}|| ||A|| ||A^{-1}|| ||(A^{\top})^{-1}||$ for many choices of $||\cdot||$
 $= ||A||^2 ||A^{-1}||^2$
 $= (\text{cond } A)^2$.

• Thus, when the columns of A are nearly linearly dependent, solving $A^T A \mathbf{x} = A^T \mathbf{b}$ is likely to exhibit considerable error compared to **directly working on** A.

Motivation (cont.)

- The easiest linear system to solve is $I_{n\times n}\mathbf{x} = \mathbf{b}$, where I is the identity matrix.
- For a least squares problem, an ideal setup would be $A^TA = I$.

We can examine the case $Q^{\top}Q = I_{n\times n}$ to see how it becomes so favorable. Write the columns of Q as vectors $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^m$. Then, the product $Q^{\top}Q$ has the following structure:

$$Q^{\top}Q = \begin{pmatrix} - & \mathbf{q}_1^{\top} & - \\ - & \mathbf{q}_2^{\top} & - \\ & \vdots & \\ - & \mathbf{q}_n^{\top} & - \end{pmatrix} \begin{pmatrix} | & | & | & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} \mathbf{q}_1 \cdot \mathbf{q}_1 & \mathbf{q}_1 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_1 \cdot \mathbf{q}_n \\ \mathbf{q}_2 \cdot \mathbf{q}_1 & \mathbf{q}_2 \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_2 \cdot \mathbf{q}_n \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_n \cdot \mathbf{q}_1 & \mathbf{q}_n \cdot \mathbf{q}_2 & \cdots & \mathbf{q}_n \cdot \mathbf{q}_n \end{pmatrix}.$$

$$\mathbf{q}_i \cdot \mathbf{q}_j = \begin{cases} 1 & \text{when } i = j \\ 0 & \text{when } i \neq j. \end{cases}$$

 $\mathbf{q}_i \cdot \mathbf{q}_j = \left\{ egin{array}{ll} \mathrm{when} \ i = j & \mathrm{The \ columns \ of \ Q \ are \ unit-length} \\ \mathrm{when} \ i \neq j. & \mathrm{and \ orthogonal \ to \ one \ another.} \end{array} \right.$ and orthogonal to one another.

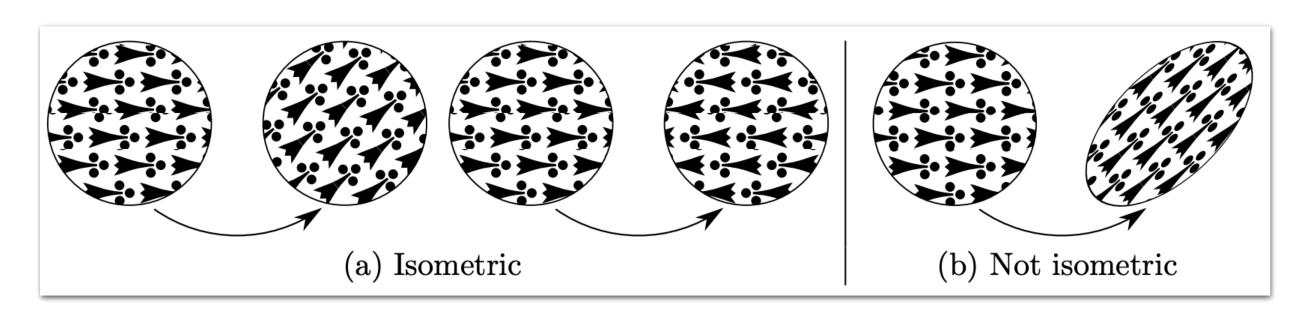
Orthogonal Matrix

Definition 5.1 (Orthonormal; orthogonal matrix). A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is orthonormal if $\|\mathbf{v}_i\|_2 = 1$ for all i and $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $i \neq j$. A square matrix whose columns are orthonormal is called an orthogonal matrix.

- Identity matrix is orthogonal.
- If Q is square and invertible with $Q^TQ = I$, multiplying both sides by Q^{-1} shows $Q^{-1} = Q^T$.
- If Q is orthogonal, its action does not affect the length and angle of vectors:

$$\|Q\mathbf{x}\|_2^2 = \mathbf{x}^\top Q^\top Q\mathbf{x} = \mathbf{x}^\top I_{n\times n}\mathbf{x} = \mathbf{x}\cdot\mathbf{x} = \|\mathbf{x}\|_2^2. \qquad (Q\mathbf{x})\cdot(Q\mathbf{y}) = \mathbf{x}^\top Q^\top Q\mathbf{y} = \mathbf{x}^\top I_{n\times n}\mathbf{y} = \mathbf{x}\cdot\mathbf{y}.$$

— the map $\mathbf{x} \to Q\mathbf{x}$ is isometric:



The Idea

• For a general matrix, we can do some computations and connect it to an orthogonal matrix.

Proposition 5.1 (Column space invariance). For any $A \in \mathbb{R}^{m \times n}$ and invertible $B \in \mathbb{R}^{n \times n}$, col A = col AB.

Proof. Suppose $\mathbf{b} \in \operatorname{col} A$. By definition, there exists \mathbf{x} with $A\mathbf{x} = \mathbf{b}$. If we take $\mathbf{y} = B^{-1}\mathbf{x}$, then $AB\mathbf{y} = (AB) \cdot (B^{-1}\mathbf{x}) = A\mathbf{x} = \mathbf{b}$, so $\mathbf{b} \in \operatorname{col} AB$. Conversely, take $\mathbf{c} \in \operatorname{col} AB$, so there exists \mathbf{y} with $(AB)\mathbf{y} = \mathbf{c}$. In this case, $A \cdot (B\mathbf{y}) = \mathbf{c}$, showing that $\mathbf{c} \in \operatorname{col} A$.

- We can find a product $Q = AE_1E_2...E_k$ starting from A and applying invertible operation matrices E_i such that Q has orthonormal columns (assuming A has full column rank).
- Proposition 5.1 shows that col Q = col A. Inverting these operations yields a factorization A = QR for $R = E_k^{-1}E_{k-1}^{-1}\dots E_1^{-1}$. With careful design we can make R upper triangular.

Application to Least Squares Systems

- When A = QR, by orthogonality of Q we have $A^TA = R^TQ^TQR = R^TR$.
- Then, the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$ imply $R^T R \mathbf{x} = R^T Q^T \mathbf{b}$, or $R \mathbf{x} = Q^T \mathbf{b}$.
- If we design R to be a triangular matrix, then $A^T A \mathbf{x} = A^T \mathbf{b}$ can be solved efficiently by back-substitution,
 - without computing A^TA and suffering from a squared condition number!

Table of Content

- QR Factorization
- Gram-Schmidt Orthogonalization
- Householder Transformations

Projections

- Given two vectors \mathbf{a} and \mathbf{b} , with $\mathbf{a} \neq \mathbf{0}$. Which multiple of \mathbf{a} is closest to \mathbf{b} ?
- Solve by minimizing $||c\mathbf{a} \mathbf{b}||^2$ over all possible $c \in \mathbb{R}$.
- Normal equations show $\mathbf{a}^T \mathbf{a} c = \mathbf{a}^T \mathbf{b}$, or

$$c = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|_2^2}.$$

We denote the resulting projection of **b** onto **a** as:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} \coloneqq c\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|_{2}^{2}} \mathbf{a}.$$

By design, $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is parallel to \mathbf{a} . What about the remainder $\mathbf{b} - \operatorname{proj}_{\mathbf{a}} \mathbf{b}$?

Vector Decomposition via Projection

$$\mathbf{a} \cdot (\mathbf{b} - \operatorname{proj}_{\mathbf{a}} \mathbf{b}) = \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|_{2}^{2}} \mathbf{a}\right) \text{ by definition of } \operatorname{proj}_{\mathbf{a}} \mathbf{b}$$

$$= \mathbf{a} \cdot \mathbf{b} - \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|_{2}^{2}} (\mathbf{a} \cdot \mathbf{a}) \text{ by moving the constant outside the dot product}$$

$$= \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} \text{ since } \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|_{2}^{2}$$

$$= 0.$$

- We have decomposed **b** into a component $proj_a b$ parallel to **a** and another component $b proj_a b$ orthogonal to **a**.
- This extends to projection onto the span of a set of vectors.

Projection onto a Span

- Suppose that $\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \dots, \hat{\mathbf{a}}_k$ are orthonormal, $\operatorname{proj}_{\hat{\mathbf{a}}_i} \mathbf{b} = (\hat{\mathbf{a}}_i \cdot \mathbf{b}) \hat{\mathbf{a}}_i$.
- We can project **b** onto span $\{\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \dots, \hat{\mathbf{a}}_k\}$ by minimizing

$$E(c_1, c_2, \dots, c_k) \coloneqq ||c_1 \hat{\mathbf{a}}_1 + c_2 \hat{\mathbf{a}}_2 + \dots + c_k \hat{\mathbf{a}}_k - \mathbf{b}||_2^2$$

$$=\left(\sum_{i=1}^k\sum_{j=1}^kc_ic_j(\hat{\mathbf{a}}_i\cdot\hat{\mathbf{a}}_j)
ight)-2\mathbf{b}\cdot\left(\sum_{i=1}^kc_i\hat{\mathbf{a}}_i
ight)+\mathbf{b}\cdot\mathbf{b}$$

by applying and expanding $\|\mathbf{v}\|_2^2 = \mathbf{v} \cdot \mathbf{v}$

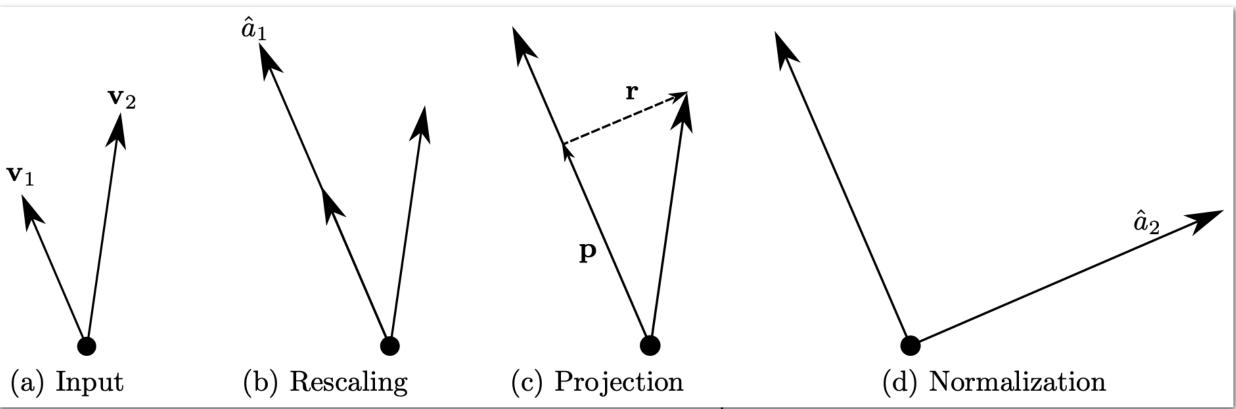
$$= \sum_{i=1}^k \left(c_i^2 - 2c_i \mathbf{b} \cdot \hat{\mathbf{a}}_i\right) + \|\mathbf{b}\|_2^2 \text{ since the } \hat{\mathbf{a}}_i\text{'s are orthonormal.}$$

$$0 = \frac{\partial E}{\partial c_i} = 2c_i - 2\mathbf{b} \cdot \hat{\mathbf{a}}_i \implies c_i = \hat{\mathbf{a}}_i \cdot \mathbf{b}.$$

$$\operatorname{proj}_{\operatorname{span}\left\{\hat{\mathbf{a}}_{1},\cdots,\hat{\mathbf{a}}_{k}\right\}}\mathbf{b} = (\hat{\mathbf{a}}_{1}\cdot\mathbf{b})\hat{\mathbf{a}}_{1} + \cdots + (\hat{\mathbf{a}}_{k}\cdot\mathbf{b})\hat{\mathbf{a}}_{k}.$$

$$\hat{\mathbf{a}}_i \cdot (\mathbf{b} - \operatorname{proj}_{\operatorname{span} \{\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_k\}} \mathbf{b}) = 0.$$

Gram-Schmidt Algorithm



function Gram-Schmidt $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$

- \triangleright Computes an orthonormal basis $\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_k$ for span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$
- \triangleright Assumes $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

$$\hat{\mathbf{a}}_1 \leftarrow \mathbf{v}_1 / \|\mathbf{v}_1\|_2$$

for
$$i \leftarrow 2, 3, \ldots, n$$

$$\mathbf{p} \leftarrow \mathbf{0}$$

for
$$j \leftarrow 1, 2, ..., i - 1$$

$$\mathbf{p} \leftarrow \mathbf{p} + (\mathbf{v}_i \cdot \hat{\mathbf{a}}_j)\hat{\mathbf{a}}_j$$

$$\mathbf{r} \leftarrow \mathbf{v}_i - \mathbf{p}$$

$$\hat{\mathbf{a}}_i \leftarrow \mathbf{r}/\|\mathbf{r}\|_2$$

return $\{\hat{\mathbf{a}}_1,\ldots,\hat{\mathbf{a}}_n\}$

▶ Nothing to project out of the first vector

 \triangleright Projection of \mathbf{v}_i onto span $\{\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_{i-1}\}$

▶ Projecting onto orthonormal basis

▶ Residual is orthogonal to current basis

▶ Normalize this residual and add it to the basis

Example

Example 5.1 (Gram-Schmidt orthogonalization). Suppose we are given $\mathbf{v}_1 = (1,0,0)$, $\mathbf{v}_2 = (1,1,1)$, and $\mathbf{v}_3 = (1,1,0)$. The Gram-Schmidt algorithm proceeds as follows:

- 1. The first vector \mathbf{v}_1 is already unit-length, so we take $\hat{\mathbf{a}}_1 = \mathbf{v}_1 = (1, 0, 0)$.
- 2. Now, we remove the span of $\hat{\mathbf{a}}_1$ from the second vector \mathbf{v}_2 :

$$\mathbf{v}_2 - \operatorname{proj}_{\hat{\mathbf{a}}_1} \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}. \qquad \hat{\mathbf{a}}_2 = (0, 1/\sqrt{2}, 1/\sqrt{2}).$$

3. Finally, we remove span $\{\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2\}$ from \mathbf{v}_3 :

$$\begin{aligned} \mathbf{v}_{3} &- \operatorname{proj}_{\operatorname{span} \left\{\hat{\mathbf{a}}_{1}, \hat{\mathbf{a}}_{2}\right\}} \mathbf{v}_{3} \\ &= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right] \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \left[\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right] \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}. \end{aligned}$$

$$\hat{\mathbf{a}}_{3} = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}).$$

Computing QR Factorization

- Start with a matrix $A \in \mathbb{R}^{m \times n}$ whose columns are $\mathbf{v}_1, \dots, \mathbf{v}_n$, we can implement Gram-Schmidt using a series of column operations on A:
 - Dividing column i of A by its norm \Leftrightarrow post-multiplying A by a **diagonal** matrix.
 - The projection step for column i involves subtracting only multiples of columns j < i, and thus can be implemented with an **upper-triangular** elimination matrix.
- Thus, we can use Gram-Schmidt to obtain a factorization A = QR, where $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and $R \in \mathbb{R}^{n \times n}$ is upper triangular.
- When the columns of A are linearly independent, one way to find R is as the product $R = Q^T A$; a more stable approach is to keep track of operations as we did for Gaussian elimination.

Computing QR Factorization (cont.)

- Computing QR Factorization using Gram-Schmidt Orthogonalization may result in a non-square matrix Q with orthonormal columns, which implies that $Q^TQ = I_{n \times n}$.
 - But if Q is non-square, we do not know whether QQ^T also equals the identity.
- Due to the division step, the algorithm will fail if the columns of *A* are linearly dependent, which means the dimension of the column space of *A* is less than *n*.
- The Gram-Schmidt algorithm is well known to be numerically unstable, partly because $\hat{\mathbf{a}}_i$'s may not be completely orthogonal after the projection step.

Modified Gram-Schmidt Algorithm

```
function Modified-Gram-Schmidt(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)

▷ Computes an orthonormal basis \hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_n for span \{\mathbf{v}_1, \dots, \mathbf{v}_n\}

▷ Assumes \mathbf{v}_1, \dots, \mathbf{v}_n are linearly independent.

for i \leftarrow 1, 2, \dots, n

\hat{\mathbf{a}}_i \leftarrow \mathbf{v}_i/\|\mathbf{v}_i\|_2

▷ Normalize the current vector and store in the basis for j \leftarrow i+1, i+2, \dots, n

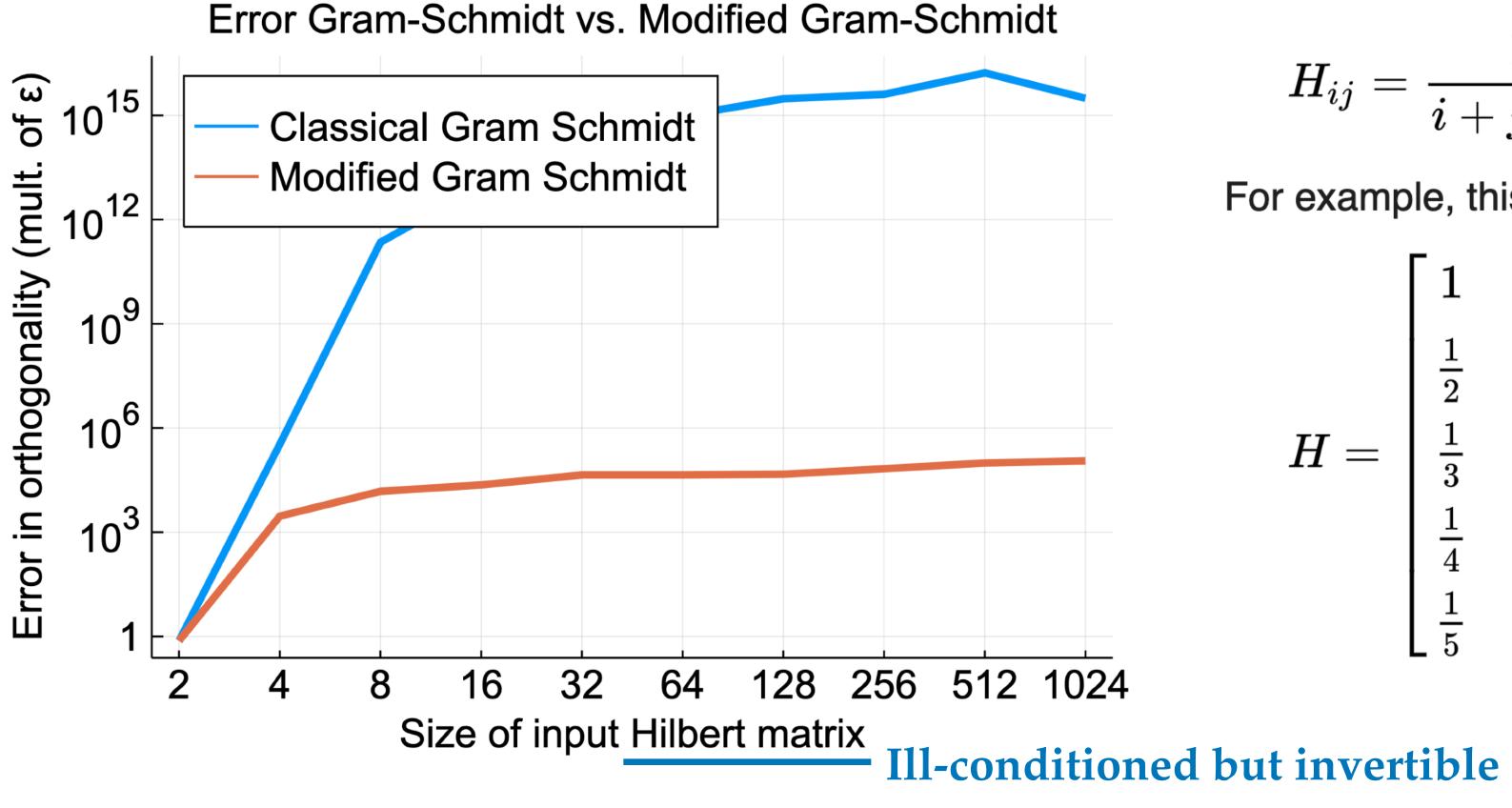
\mathbf{v}_j \leftarrow \mathbf{v}_j - (\mathbf{v}_j \cdot \hat{\mathbf{a}}_i)\hat{\mathbf{a}}_i

▷ Project \hat{\mathbf{a}}_i out of the remaining vectors return \{\hat{\mathbf{a}}_1, \dots, \hat{\mathbf{a}}_n\}
```

- Once $\hat{\mathbf{a}}_i$ is computed, it is projected out of $\mathbf{v}_{i+1}, \ldots, \mathbf{v}_n$ and we never have to consider $\hat{\mathbf{a}}_i$ again.
- This way, even if the basis globally is not completely orthogonal due to rounding, the projection is valid.
- In the absence of rounding, modified Gram-Schmidt and classical Gram-Schmidt generate identical output.

Gram-Schmidt v.s. Modified Gram-Schmidt

• Image source: https://laurenthoeltgen.name/post/gram-schmidt/



$$H_{ij}=rac{1}{i+j-1}.$$

For example, this is the 5×5 Hilbert matrix:

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}$$

Issues of (Modified) Gram-Schmidt Algorithm

- Given vectors $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1+\epsilon,1)$ as input to Gram-Schmidt for some $0 < \epsilon \ll 1$.
- A reasonable basis for span $\{v_1, v_2\}$ might be $\{(1,0), (0,1)\}$, but we would get:

$$\hat{\mathbf{a}}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{p} = \frac{2+\varepsilon}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{r} = \mathbf{v}_2 - \mathbf{p} = \begin{pmatrix} 1+\varepsilon \\ 1 \end{pmatrix} - \frac{2+\varepsilon}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} \varepsilon \\ -\varepsilon \end{pmatrix}.$$
• Computing $\hat{\mathbf{a}}_2$ requires division by a small number.

Table of Content

- QR Factorization
- Gram-Schmidt Orthogonalization
- Householder Transformations

Motivation

- Rather than post-multiplying A by column operations to obtain $Q = AE_1 \dots E_k$, we can also pre-multiply A by orthogonal matrices Q_i to obtain $Q_k \dots Q_1 A = R$.
- These Q's act like row operations to eliminate elements of A until it becomes upper triangular.
- Due to orthogonality, we can obtain the QR factorization as $A = (Q_1^T \dots Q_k^T)R$.
- But this QR will be different from the one given by Gram-Schmidt algorithm. Here:
 - $Q \in \mathbb{R}^{m \times m}$ is invertible,
 - $R \in \mathbb{R}^{m \times n}$ will be potentially non-square and not invertible.
- We will introduce a common orthogonal row operation by Householder [1958].

Choice of Orthogonal Elimination Matrices

- The space of orthogonal n × n matrices is very large, so we seek a smaller set of possible Q_i 's that is easier to work with for elimination.
- From geometric intuition, we know that orthogonal matrices must preserve **angles** and **lengths**, so intuitively they only can **rotate** and **reflect** vectors.
- Householder proposed using only reflection operations to reduce A to upper triangular.
- A well-known alternative by Givens uses only rotations to accomplish the same task (*to be explored in the assignment*).

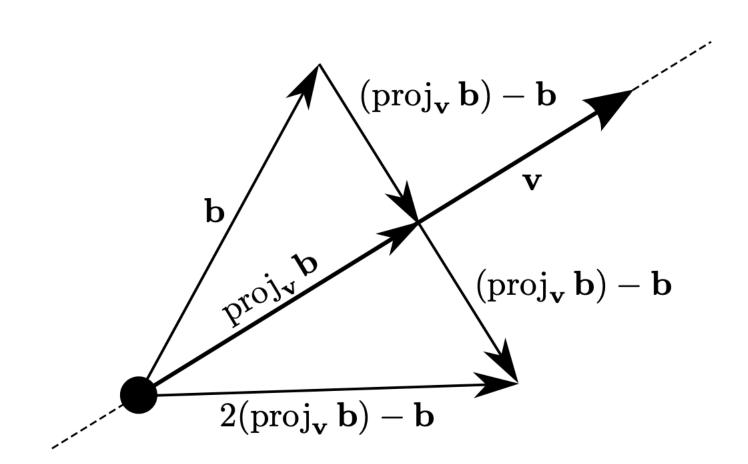
Reflection via Projection

- One way to write an orthogonal reflection matrix is in terms of projections.
- To reflect a vector \mathbf{b} over a vector \mathbf{v} , we've shown that the residual $\mathbf{r} := \mathbf{b} \text{proj}_{\mathbf{v}} \mathbf{b}$ is perpendicular to \mathbf{v} . Following the reverse of this direction twice reflects \mathbf{b} over \mathbf{v} :

$$2\operatorname{proj}_{\mathbf{v}}\mathbf{b} - \mathbf{b} = 2\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{v} \cdot \mathbf{v}}\mathbf{v} - \mathbf{b}$$
 by definition of projection
$$= 2\mathbf{v} \cdot \frac{\mathbf{v}^{\top}\mathbf{b}}{\mathbf{v}^{\top}\mathbf{v}} - \mathbf{b} \text{ using matrix notation}$$

$$= \left(\frac{2\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}} - I_{n \times n}\right)\mathbf{b}$$

$$\coloneqq -H_{\mathbf{v}}\mathbf{b}, \text{ where we define } H_{\mathbf{v}} \coloneqq I_{n \times n} - \frac{2\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}}.$$



Row Elimination via Reflection (1st Column)

- Like in forward-substitution, in our first step we wish to pre-multiply A by a matrix that takes the first column of A, which we will denote \mathbf{a} , to some multiple of the first identity vector \mathbf{e}_1 .
- Using reflections, we need to find some **v**, c such that $H_{\mathbf{v}}\mathbf{a} = c\mathbf{e}_1$:

$$c\mathbf{e}_1 = H_{\mathbf{v}}\mathbf{a}$$
, as explained above
$$= \left(I_{n \times n} - \frac{2\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}}\right)\mathbf{a}, \text{ by definition of } H_{\mathbf{v}}$$

$$= \mathbf{a} - 2\mathbf{v}\frac{\mathbf{v}^{\top}\mathbf{a}}{\mathbf{v}^{\top}\mathbf{v}}.$$

$$\mathbf{v} = (\mathbf{a} - c\mathbf{e}_1) \cdot \frac{\mathbf{v}^{\top}\mathbf{v}}{2\mathbf{v}^{\top}\mathbf{a}}.$$

choose
$$\mathbf{v} = \mathbf{a} - c\mathbf{e}_1$$
. $\mathbf{v} = \mathbf{v} \cdot \frac{\mathbf{v}^{\top} \mathbf{v}}{2\mathbf{v}^{\top} \mathbf{a}}$.

Assuming $\mathbf{v} \neq \mathbf{0}$, $1 = \frac{\mathbf{v}^{\top} \mathbf{v}}{2\mathbf{v}^{\top} \mathbf{a}}$

$$= \frac{\|\mathbf{a}\|_2^2 - 2c\mathbf{e}_1 \cdot \mathbf{a} + c^2}{2(\|\mathbf{a}\|_2^2 - c\mathbf{e}_1 \cdot \mathbf{a})}$$
or, equivalently, $0 = \|\mathbf{a}\|_2^2 - c^2 \implies c = \pm \|\mathbf{a}\|_2$.

Row Elimination via Reflection (Remaining Columns)

After choosing $c = \pm \|\mathbf{a}\|_2$, our steps above are all reversible. We originally set out to find \mathbf{v} such that $H_{\mathbf{v}}\mathbf{a} = c\mathbf{e}_1$. By taking $\mathbf{v} = \mathbf{a} - c\mathbf{e}_1$ with $c = \pm \|\mathbf{a}\|_2$, the steps above show:

$$H_{\mathbf{v}}A = \left(egin{array}{ccc} c & imes & imes & imes \ 0 & imes & imes & imes \ \vdots & \vdots & \vdots & \vdots \ 0 & imes & imes & imes \end{array}
ight).$$

• To fully reduce A to upper triangular, we repeat the steps. During the k-th step, we take \mathbf{a} to be the k-th column of $Q_{k-1} \dots Q_1 A$, and split \mathbf{a} into two components:

$$\mathbf{a} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{pmatrix}$$
. Here, $\mathbf{a}_1 \in \mathbb{R}^{k-1}$ and $\mathbf{a}_2 \in \mathbb{R}^{m-k+1}$. We wish to find \mathbf{v} such that $H_{\mathbf{v}}\mathbf{a} = \begin{pmatrix} \mathbf{a}_1 \\ c \\ \mathbf{0} \end{pmatrix}$.

Following a parallel derivation to the one above for the case k = 1 shows that $\mathbf{v} = \begin{pmatrix} \mathbf{0} \\ \mathbf{a}_2 \end{pmatrix} - c\mathbf{e}_k$ accomplishes exactly this transformation when $c = \pm \|\mathbf{a}_2\|_2$.

Householder QR Algorithm

return Q, R

```
function Householder-QR(A)
   \triangleright Factors A \in \mathbb{R}^{m \times n} as A = QR.
   \triangleright Q \in \mathbb{R}^{m \times m} is orthogonal and R \in \mathbb{R}^{m \times n} is upper triangular
   Q \leftarrow I_{m \times m}
   R \leftarrow A
   for k \leftarrow 1, 2, \ldots, m
        \mathbf{a} \leftarrow R\mathbf{e}_k
                                                                       \triangleright Isolate column k of R and store it in a
        (\mathbf{a}_1, \mathbf{a}_2) \leftarrow \text{Split}(\mathbf{a}, k-1)
                                                                   \triangleright Separate off the first k-1 elements of a
       c \leftarrow \|\mathbf{a}_2\|_2
                                           \triangleright Find reflection vector v for the Householder matrix H_{\mathbf{v}}
        R \leftarrow H_{\mathbf{v}}R
                                      \triangleright Eliminate elements below the diagonal of the k-th column
        Q \leftarrow QH_{\mathbf{v}}^{\top}
```

When m < n, it may be preferable to store Q implicitly as a list of vectors \mathbf{v} , which fits in the lower triangle that otherwise would be empty in R.

Gram-Schmidt QR v.s. Householder QR

- Both algorithms can factor non-square matrices $A \in \mathbb{R}^{m \times n}$ into products QR, but:
 - For Gram-Schmidt, we do column operations on A to obtain Q by orthogonalization. Thus, the dimension of A is that of Q, yielding $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$.
 - $Q^TQ = I_{n \times n}$ if A has linearly independent columns, but it is likely that $QQ^T \neq I_{m \times m}$
 - When using Householder reflections, we obtain Q as the product of m × m reflection matrices, leaving $R \in \mathbb{R}^{m \times n}$.
 - *Q* is orthogonal but *R* might not be square;
 - Still works when *A*'s columns are linearly dependent, but in this case the upper triangle of *R* may not be invertible.

Reduced QR Factorization

- In typical least-squares problems, $m \gg n$. We still prefer the Householder method due to its numerical stability, but now the $m \times m$ matrix Q might be too large to store.
- To save space, we can utilize the upper-triangular structure of R. For instance, consider the structure of a 5×3 matrix R:

$$R = \begin{pmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \qquad A = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = Q_1R_1.$$

- Here, $Q_1 \in \mathbb{R}^{m \times n}$ has orthonormal columns and $R_1 \in \mathbb{R}^{n \times n}$ still contains the upper triangle of R. The factorization $A = Q_1 R_1$ is called the "reduced" QR factorization of A.
- We can still recover least-squares solutions to $A\mathbf{x} = \mathbf{b}$ by solving $R_1\mathbf{x} = Q_1^T\mathbf{b}$

Table of Content

- QR Factorization
- Gram-Schmidt Orthogonalization
- Householder Transformations