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OR Factorization 2 o
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Motivation as

>
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e Solving least squares problems is equivalent to solving the normal equation A’ Ax = A'b.

® Suppose A is square and invertible, we have

cond A" A= [[A"A[[[(A"A)7
~ [|[A|IIAIIIIA~|I(A") || for many choices of || - ||
= | AI*IIAT°
= (cond A)°.

e Thus, when the columns of A are nearly linearly dependent, solving A’ Ax = A'b is likely to
exhibit considerable error compared to directly working on A.



OR Factorization

Motivation (cont.)

e The easiest linear system to solve is [, X = b, where [ is the identity matrix.

e For a least squares problem, an ideal setup would be ATA = 1.

We can examine the case Q'Q = I,«, to see how it becomes so favorable. Write
the columns of @ as vectors qq, - ,q, € R™. Then, the product @' Q has the following
structure:

- q; - o ‘ q;'q; d;°9y - 994,
— g — 942491 49292 -+ dz-q,
QTQ — : 9, 49 - q, = : . , :
q - q — { 1 wheni=j The columns of Q are unit-length
co 0 when ¢ # j. and orthogonal to one another.



OR Factorization
Orthogonal Matrix

Definition 5.1 (Orthonormal; orthogonal matrix). A set of vectors {vi,---,vi} is or-
thonormal if ||v;||2 = 1 for all 4 and v;-v,; = 0 for all ¢ # j. A square matrix whose
columns are orthonormal is called an orthogonal matrix.

® [dentity matrix is orthogonal.
e If O is square and invertible with 0'0=1 multiplying both sides by O~ ' shows Q7! = O

e If Qis orthogonal, its action does not affect the length and angle of vectors:

HQXH% — XTQTQX — XTIanx — XX = HXHS (QX) ' (QY) — XTQTQY — XTIany — XYy
— the map X — QX is isometric:
/ \_/f
(a) Isometric (b) Not isometric




OR Factorization
The Idea

® For a general matrix, we can do some computations and connect it to an orthogonal matrix.

Proposition 5.1 (Column space invariance). For any A € R™*" and invertible B € R"*",
col A = col AB.

Proof. Suppose b € col A. By definition, there exists x with Ax = b. If we take y = B~ !x,
then ABy = (AB) - (B7'x) = Ax = b, so b € col AB. Conversely, take ¢ € col AB, so
there exists y with (AB)y = c. In this case, A - (By) = ¢, showing that ¢ € col A.

e We can find a product Q = AEE, . .. E, starting from A and applying invertible operation
matrices E; such that Q has orthonormal columns (assuming A has full column rank).

® Proposition 5.1 shows that col Q = col A. Inverting these operations yields a factorization
A=0QRforR=E 1Ek__l1 BT L, With careful design we can make R upper triangular.



OR Factorization
Application to Least Squares Systems

e When A = QR, by orthogonality of Q we have A’A = R'"Q"OR = R'R.
e Then, the normal equations A’ Ax = A’b imply R’ Rx = R'Q"b, or Rx = Q'b.

e If we design R to be a triangular matrix, then A’ Ax = A’ b can be solved efficiently by back-
substitution,

e without computing A’ A and suffering from a squared condition number!
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Gram-Schmidt Orthogonalization

Projections

e Given two vectors a and b, with a # (. Which multiple of a is closest to b?

e Solve by minimizing ||ca — b||* over all possible ¢ € R.

e Normal equations show a’ac = a’b, or
a-b a-b
c= = .
2
a-a |allz

We denote the resulting projection of b onto a as:

proj, b :=ca = a.ba— a-b
0 a-a |alf3

a.

By design, proj, b is parallel to a. What about the remainder b — proj_b?



Gram-Schmidt Orthogonalization

Vector Decomposition via Projection

-b
a-(b—proj,b)=a-b—a- (a 2a> by definition of proj, b proj, b
|al|3
-b
=a-b "T E (a - a) by moving the constant outside the dot product
al[2

a-b—a-bsincea-a= a5
= 0.

e We have decomposed b into a component proj b parallel to a and another component
b — proj_b orthogonal to a.

¢ This extends to projection onto the span of a set of vectors.



Gram-Schmidt Orthogonalization

Projection onto a Span

e Suppose thata, a,, ..., a; are orthonormal, proj;. b = (a; - b)a;.

e We can project b onto span { a,, a,, ..., a; } by minimizing

E(Cl,CQ, c o ,Ck) — Hclél -+ Czéz -+ -+ Ckflk — ng
k k
— ZZCiCj(éi y flj) — 2b - (Z czaz) + b-b
1=1 7=1

by applying and expanding ||v||3 = v -

|
M=

1=1
OFE projspan {a1,-,ar} b = (al

(¢; — 2¢;b - &;) + ||b||5 since the &;’s are orthonormal.

0=

5 :267;—2b'é7;:>Ci:éi'b-
C; éz . (b — projspan {41, ,ar}



Gram-Schmidt Orthogonalization

Gram-Schmidt Algorithm \/

function GRAM-SCHMIDT(V1, Vs, . .. 2) Input (b) Rescaling (c) Projection ) Normalization
> Computes an orthonormal basis al, ., ag for span{vi,...,Vn}
> Assumes vq,...,V,, are linearly independent.
a; < Vi/|lv1]l: > Nothing to project out of the first vector
for 1<+ 2,3,...,n
p+<0 > Projection of v; onto span{ai,...,&a;_1}
for y «1,2,...,2—1
P P+ (vi-a;)a, > Projecting onto orthonormal basis
r< v, —p > Residual is orthogonal to current basis
a; < */|r|l > Normalize this residual and add it to the basis
return {a,,...,4,}




Gram-Schmidt Orthogonalization

Example

Example 5.1 (Gram-Schmidt orthogonalization). Suppose we are given v; = (1,0,0),
ve = (1,1,1), and v = (1,1,0). The Gram-Schmidt algorithm proceeds as follows:

1. The first vector v; is already unit-length, so we take a; = v; = (1,0, 0).

2. Now, we remove the span of a; from the second vector vs:

1 1 1 0
Vo —projz, vo = | 1 | — 0 |- 1 0O |=11].
‘ '\ 0 1 /] \0 1 as = (0,1/v2, 1/v2).
3. Finally, we remove span {a;,as} from vas:
V3 o projspan {51,52} V3

1 [ 1 1\] /1 [ 0 1\ ] 0
=1 1 |- 0O |- 1 0 | — vz || 1 1/\/2

0 '\ 0 0/ 0 -\ Y/v2 0/ 1/v2

|
p—
~—
(\W)
>



Gram-Schmidt Orthogonalization

Computing QR Factorization

e Start with a matrix A € R™" whose columns are v, ..., V,, we can implement Gram-Schmidt
using a series of column operations on A:

e Dividing column 7 of A by its norm < post-multiplying A by a diagonal matrix.

e The projection step for column i involves subtracting only multiples of columns j < i, and
thus can be implemented with an upper-triangular elimination matrix.

e Thus, we can use Gram-Schmidt to obtain a factorization A = OR, where O € R"*" has
orthonormal columns and R € R™" is upper triangular.

e When the columns of A are linearly independent, one way to find R is as the product R = Q' A;
a more stable approach is to keep track of operations as we did for Gaussian elimination.



Gram-Schmidt Orthogonalization

Computing QR Factorization (cont.)

e Computing QR Factorization using Gram-Schmidt Orthogonalization may result in a non-
square matrix Q with orthonormal columns, which implies that 0’Q =1 ., .

e But if Q is non-square, we do not know whether QQ? also equals the identity.

e Due to the division step, the algorithm will fail if the columns of A are linearly dependent,
which means the dimension of the column space of A is less than n.

® The Gram-Schmidt algorithm is well known to be numerically unstable, partly because a.s
may not be completely orthogonal after the projection step.



Gram-Schmidt Orthogonalization
Modified Gram-Schmidt Algorithm

function MODIFIED-GRAM-SCHMIDT(V1,Va,...,Vy)
> Computes an orthonormal basis ai,...,a, for span{vi,...,v,}
> Assumes viq,...,V, are linearly independent.
for:+1,2,...,n
a; < Vi/||lvill2 > Normalize the current vector and store in the basis
for «—1+1,24+2,...,n
Vi v; — (v;-a;)a, > Project &; out of the remaining vectors
return {a,,...,a,}
e Once a; is computed, it is projected outof v, 4, ..., V,, and we never have to consider a, again.

e This way, even if the basis globally is not completely orthogonal due to rounding, the projection is valid.

¢ In the absence of rounding, modified Gram-Schmidt and classical Gram-Schmidt generate identical output.



Gram-Schmidt Orthogonalization
Gram-Schmidt v.s. Modified Gram-Schmidt

® [mage source: https://laurenthoeltgen.name/post/gram-schmidt/

Error Gram-Schmidt vs. Modified Gram-Schmidt

1
’(F 15 I/____/\ H’I;j == . 1 .
5 10" [ |— Classical Gram Schmidt 1+ 7 —
é 1012 - ~— Modified Gram Schmidt For example, this is the 5 x 5 Hilbert matrix:
2 1 1L 1 1 17
= 1 2 3 4 5
5 ® i1 1 1 1
> 2 3 4 5 6
o 6|
g 1 : g—|1 1 1 1 1
S T — |3 4 5 6 7T
S 1077 1101 1 1
S " 4 5 6 7 8
T i1 1 1 1
- B .5 6 7 8 9._

2 4 8 16 32 64 128 256 512 1024
Size of input Hilbert matrix
P e e Ill-conditioned but invertible



Gram-Schmidt Orthogonalization
Issues of (Modified) Gram-Schmidt Algorithm

e Given vectors v; = (1,1) and v, = (1 + ¢,1) as input to Gram-Schmidt for some 0 < € < 1.

e A reasonable basis for span {v,, v,} might be {(1,0), (0,1)}, but we would get:

4. — V1 - 1 1
Tl T vz el 1
- 2+e (1 V2 )A
v b — 14 ¢ 2+ ¢ 1
1 g
=5 ( e ) : e Computing a, requires division by a small number.
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Householder Transformations

Motivation

e Rather than post-multiplying A by column operations to obtain Q = AE, ... E;, we can also
pre-multiply A by orthogonal matrices Q; to obtain Q, .. QA = R.

e These (’s act like row operations to eliminate elements of A until it becomes upper triangular.
e Due to orthogonality, we can obtain the QR factorization as A = (Q; ... Q, )R.
e But this QR will be different from the one given by Gram-Schmidt algorithm. Here:

e O € R"™ is invertible,

e R € R will be potentially non-square and not invertible.

e We will introduce a common orthogonal row operation by Householder [1958].



Householder Transformations

Choice of Orthogonal Elimination Matrices

e The space of orthogonal n x n matrices is very large, so we seek a smaller set of possible Q.’s
that is easier to work with for elimination.

¢ From geometric intuition, we know that orthogonal matrices must preserve angles and
lengths, so intuitively they only can rotate and reflect vectors.

e Householder proposed using only reflection operations to reduce A to upper triangular.

¢ A well-known alternative by Givens uses only rotations to accomplish the same task (to be
explored in the assignment).



Householder Transformations

Reflection via Projection

® One way to write an orthogonal reflection matrix is in terms of projections.

o To reflect a vector b over a vector v, we’ve shown that the residual r := b — proj b is
perpendicular to v. Following the reverse of this direction twice reflects b over v:

v-b
2proj, b —b =2 v — b by definition of projection
V-V
v'b , . .
=2v: — b using matrix notation
V'V

Ivv '
— ( VTV Ian) b

= — H,b, where we define Hy, := I,,x»,




Householder Transformations

Row Elimination via Reflection (1st Column)

e Like in forward-substitution, in our first step we wish to pre-multiply A by a matrix that takes
the first column of A, which we will denote a, to some multiple of the first identity vector e;.

e Using reflections, we need to find some v, ¢ such that H,a = ce;:

-
ce; = Hya, as explained above choose v=a—ce;. v=v- 2V TV .
v'a
2vv ' L.
= I ,xn = a, by definition of H,,
V'V vTiv
T Assuming v #0, 1=
_ v a 2v'a
=a—2v——. 5 >
V'V ~ |lal|3 —2ce; -a+c
e 2([alZ - ce: - a)
v=(a—cep)- VT or, equivalently, 0 = ||a||5 — ¢ = c = %||a]|».




Householder Transformations

Row Elimination via Reflection (Remaining Columns)

After choosing ¢ = *||a||2, our steps above are all reversible. We originally set out to find
v such that Hya = ce;. By taking v = a — ce; with ¢ = +£||al|2, the steps above show:

c X X X

0 X X X
H,A =

0 X X X

e To fully reduce A to upper triangular, we repeat the steps. During the k-th step, we take a to be
the k-th column of Q,_; ... (Q,A, and split a into two components:

aj

a— ( 21 ) . Here, a; € R*! and a; € R *+1. We wish to find v such that Hya = C
2

0

Following a parallel derivation to the one above for the case k = 1 shows that v = ( : ) — cey
2

accomplishes exactly this transformation when ¢ = £||as||5.



Householder Transformations
Householder QR Algorithm

function HOUSEHOLDER-QR/(A)
> Factors A € R™*™ as A = QR.
> @ € R™*™ is orthogonal and R € R™”*™ is upper triangular

Q <+ Iyxm
R+ A

for k< 1,2,...,m

(o)
V — CeL
as

Q < QH,
return (), R

a < Reyg > Isolate column k of R and store it in a
(a1,ay) < SpLiT(a,k — 1) > Separate off the first £ — 1 elements of a

c — |laz||2 > Find reflection vector v for the Householder matrix H,

When m < n, it
may be preferable
to store J implicitly
as a list of vectors

v, which fits in the
lower triangle that
otherwise would be
empty in R.

R+ HR > Eliminate elements below the diagonal of the k-th column




Householder Transformations
Gram-Schmidt QR v.s. Householder QR

e Both algorithms can factor non-square matrices A € R"*" into products OR, but:

e For Gram-Schmidt, we do column operations on A to obtain Q by orthogonalization. Thus,
the dimension of A is that of Q, yielding Q € R™" and R € R

e 010 = I .. if A has linearly independent columns, but it is likely that 00" + L,

xXm

e When using Householder reflections, we obtain Q as the product of m x m reflection
matrices, leaving R € R"".

e () is orthogonal but R might not be square;

e Still works when A’s columns are linearly dependent, but in this case the upper triangle
of R may not be invertible.



Householder Transformations
Reduced QR Factorization

e In typical least-squares problems, m » n. We still prefer the Householder method due to its
numerical stability, but now the m x m matrix Q might be too large to store.

¢ To save space, we can utilize the upper-triangular structure of R. For instance, consider the
structure of a 5 x 3 matrix R:

X X X
0 X X R
R=] 0 0 x |. A=QR=( @ Qz)( Ol)ZQlRl.
0 0 O
0 0 O

e Here, O, € R™" has orthonormal columns and R, € R still contains the upper triangle of
R. The factorization A = Q,R, is called the “reduced” QR factorization of A.

e We can still recover least-squares solutions to AX = b by solving R;x = QlT b
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