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QR Factorization
Motivation
• Solving least squares problems is equivalent to solving the normal equation .


• Suppose A is square and invertible, we have

AT Ax = ATb

• Thus, when the columns of A are nearly linearly dependent, solving  is likely to 
exhibit considerable error compared to directly working on .

AT Ax = ATb
A



QR Factorization
Motivation (cont.)
• The easiest linear system to solve is , where  is the identity matrix.


• For a least squares problem, an ideal setup would be .

In×nx = b I

AT A = I

The columns of Q are unit-length 
and orthogonal to one another.



QR Factorization
Orthogonal Matrix

• Identity matrix is orthogonal.


• If  is square and invertible with , multiplying both sides by  shows .


• If Q is orthogonal, its action does not affect the length and angle of vectors:

Q QTQ = I Q−1 Q−1 = QT

— the map  is isometric:x → Qx



QR Factorization
The Idea
• For a general matrix, we can do some computations and connect it to an orthogonal matrix.

• We can find a product  starting from A and applying invertible operation 
matrices  such that  has orthonormal columns (assuming A has full column rank).


• Proposition 5.1 shows that col Q = col A. Inverting these operations yields a factorization 
 for . With careful design we can make R upper triangular.

Q = AE1E2 . . . Ek
Ei Q

A = QR R = E−1
k E−1

k−1 . . . E−1
1



QR Factorization
Application to Least Squares Systems
• When A = QR, by orthogonality of Q we have .


• Then, the normal equations  imply , or .


• If we design R to be a triangular matrix, then  can be solved efficiently by back-
substitution,


• without computing  and suffering from a squared condition number!

AT A = RTQTQR = RTR

AT Ax = ATb RTRx = RTQTb Rx = QTb

AT Ax = ATb

AT A
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Gram-Schmidt Orthogonalization
Projections
• Given two vectors  and , with . Which multiple of  is closest to ?


• Solve by minimizing  over all possible . 


• Normal equations show , or

a b a ≠ 0 a b

∥ca − b∥2 c ∈ ℝ

aTac = aTb



Gram-Schmidt Orthogonalization
Vector Decomposition via Projection

• We have decomposed  into a component  parallel to  and another component 
 orthogonal to .


• This extends to projection onto the span of a set of vectors.

b projab a
b − projab a



Gram-Schmidt Orthogonalization
Projection onto a Span
• Suppose that  are orthonormal,


• We can project  onto span {  } by minimizing

â1, â2, . . . , âk

b â1, â2, . . . , âk



Gram-Schmidt Orthogonalization
Gram-Schmidt Algorithm



Gram-Schmidt Orthogonalization
Example



Gram-Schmidt Orthogonalization
Computing QR Factorization
• Start with a matrix  whose columns are , we can implement Gram-Schmidt 

using a series of column operations on :


• Dividing column  of  by its norm  post-multiplying  by a diagonal matrix.


• The projection step for column  involves subtracting only multiples of columns , and 
thus can be implemented with an upper-triangular elimination matrix. 


• Thus, we can use Gram-Schmidt to obtain a factorization , where  has 
orthonormal columns and  is upper triangular.


• When the columns of  are linearly independent, one way to find R is as the product ; 
a more stable approach is to keep track of operations as we did for Gaussian elimination.

A ∈ ℝm×n v1, . . . , vn
A

i A ⇔ A

i j < i

A = QR Q ∈ ℝm×n

R ∈ ℝn×n

A R = QT A



Gram-Schmidt Orthogonalization
Computing QR Factorization (cont.)
• Computing QR Factorization using Gram-Schmidt Orthogonalization may result in a non-

square matrix  with orthonormal columns, which implies that .


• But if  is non-square, we do not know whether  also equals the identity. 


• Due to the division step, the algorithm will fail if the columns of  are linearly dependent, 
which means the dimension of the column space of  is less than .


• The Gram-Schmidt algorithm is well known to be numerically unstable, partly because ’s 
may not be completely orthogonal after the projection step.

Q QTQ = In×n

Q QQT

A
A n

âi



Gram-Schmidt Orthogonalization
Modified Gram-Schmidt Algorithm

• Once  is computed, it is projected out of , and we never have to consider  again. 


• This way, even if the basis globally is not completely orthogonal due to rounding, the projection is valid. 


• In the absence of rounding, modified Gram-Schmidt and classical Gram-Schmidt generate identical output.

âi vi+1, . . . , vn âi



Gram-Schmidt Orthogonalization
Gram-Schmidt v.s. Modified Gram-Schmidt
• Image source: https://laurenthoeltgen.name/post/gram-schmidt/

Ill-conditioned but invertible



Gram-Schmidt Orthogonalization
Issues of (Modified) Gram-Schmidt Algorithm
• Given vectors  and  as input to Gram-Schmidt for some .


• A reasonable basis for span  might be , but we would get:

v1 = (1,1) v2 = (1 + ϵ,1) 0 < ϵ ≪ 1

{v1, v2} {(1,0), (0,1)}

• Computing  requires division by a small number.â2
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Householder Transformations
Motivation
• Rather than post-multiplying  by column operations to obtain , we can also 

pre-multiply  by orthogonal matrices  to obtain .


• These ’s act like row operations to eliminate elements of  until it becomes upper triangular. 


• Due to orthogonality, we can obtain the QR factorization as .


• But this QR will be different from the one given by Gram-Schmidt algorithm. Here:


•  is invertible,


•  will be potentially non-square and not invertible.


• We will introduce a common orthogonal row operation by Householder [1958].

A Q = AE1 . . . Ek
A Qi Qk . . Q1A = R

Q A

A = (QT
1 . . . QT

k )R

Q ∈ ℝm×m

R ∈ ℝm×n



Householder Transformations
Choice of Orthogonal Elimination Matrices
• The space of orthogonal n × n matrices is very large, so we seek a smaller set of possible ’s 

that is easier to work with for elimination.


• From geometric intuition, we know that orthogonal matrices must preserve angles and 
lengths, so intuitively they only can rotate and reflect vectors. 


• Householder proposed using only reflection operations to reduce  to upper triangular. 


• A well-known alternative by Givens uses only rotations to accomplish the same task (to be 
explored in the assignment).

Qi

A



Householder Transformations
Reflection via Projection
• One way to write an orthogonal reflection matrix is in terms of projections. 


• To reflect a vector  over a vector , we’ve shown that the residual  is 
perpendicular to . Following the reverse of this direction twice reflects  over :

b v r := b − projvb
v b v



Householder Transformations
Row Elimination via Reflection (1st Column)
• Like in forward-substitution, in our first step we wish to pre-multiply  by a matrix that takes 

the first column of , which we will denote , to some multiple of the first identity vector .


• Using reflections, we need to find some ,  such that :

A
A a e1

v c Hva = ce1



Householder Transformations
Row Elimination via Reflection (Remaining Columns)

• To fully reduce  to upper triangular, we repeat the steps. During the -th step, we take  to be 
the -th column of , and split  into two components:

A k a
k Qk−1 . . . Q1A a



Householder Transformations
Householder QR Algorithm

When , it 
may be preferable 
to store  implicitly 
as a list of vectors 

, which fits in the 
lower triangle that 
otherwise would be 
empty in .

m < n

Q

v

R



Householder Transformations
Gram-Schmidt QR v.s. Householder QR
• Both algorithms can factor non-square matrices  into products , but:


• For Gram-Schmidt, we do column operations on  to obtain  by orthogonalization. Thus, 
the dimension of  is that of , yielding  and .


•  if  has linearly independent columns, but it is likely that 

• When using Householder reflections, we obtain  as the product of m × m reflection 
matrices, leaving .


•  is orthogonal but  might not be square; 


• Still works when ’s columns are linearly dependent, but in this case the upper triangle 
of  may not be invertible.

A ∈ ℝm×n QR

A Q
A Q Q ∈ ℝm×n R ∈ ℝn×n

QTQ = In×n A QQT ≠ Im×m

Q
R ∈ ℝm×n

Q R

A
R



Householder Transformations
Reduced QR Factorization
• In typical least-squares problems, m ≫ n. We still prefer the Householder method due to its 

numerical stability, but now the m × m matrix Q might be too large to store. 


• To save space, we can utilize the upper-triangular structure of R. For instance, consider the 
structure of a 5 × 3 matrix R:

• Here,  has orthonormal columns and  still contains the upper triangle of 
. The factorization  is called the “reduced” QR factorization of .


• We can still recover least-squares solutions to  by solving 

Q1 ∈ ℝm×n R1 ∈ ℝn×n

R A = Q1R1 A

Ax = b R1x = QT
1 b
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