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Positive Definiteness and the Cholesky Factorization
Properties of A’ A

e Recall: solving the least-squares problem Ax ~ b is equivalent to solving A’ Ax = A’b.

. T . .
® Regardless of A, the matrix A” A is: When a matrix is symmetric and positive definite,

e Symmetric: (A T A)T _ AT( A T)T AT A: it is called Symmetric Positive Definite (SPD).

e Positive Semi-Definite (PSD): Vx # 0, x' ATAx = ||Ax]|? > 0.

Definition 4.1 (Positive (Semi-)Definite). A matrix B € R™*™ is positive semidefinite if
for all x € R™, x' Bx > 0. B is positive definite if x' Bx > 0 whenever x # 0.

o A A is positive definite and invertible when A’s column vectors are linearly independent.



Positive Definiteness and the Cholesky Factorization
Block Matrix Notation

¢ To solve SPD systems, we would like to build faster solvers utilizing the special structure.
e For convenience, we will use the block matrix notation:

e Suppose A € R™" B € R™* C e RP" and D € RP**, we could construct a larger matrix:

A B
(m—+p) X (n+k)
( C D ) cR '

® The mechanisms of matrix algebra generally extend to this case, e.g.,

A B E F\ ( AE+BG AF+BH
C D G H) \ CE+DG CF+DH )




Positive Definiteness and the Cholesky Factorization
Writing SPD Matrix in Block Matrix Form

We can deconstruct the symmetric positive-definite matrix C' € R™**™ as a block matrix:

T
o C11 V~
o=(V %)

where ¢;;1 € R, v € R* 1 and C € R~ Ux(n-1) The SPD structure of C provides the
following observation:

0 < e, Ce; since C is positive definite and e; # 0

1
T 0

:(10 O)(C‘lrl VC‘,) : = Cq4
0

By the strict inequality in the first line, we do not have to use pivoting to guarantee that
c11 # 0 in the first step of Gaussian elimination.



Positive Definiteness and the Cholesky Factorization
Gaussian Elimination on SPD Matrix

Continuing with Gaussian elimination, we can apply a forward-substitution matrix E of
the form
E:(Vﬁﬁ o' )
r I(n—l)x(n—l) |

Here, the vector r € R~ ! contains forward-substitution scaling factors satisfying r;_1c11; =
—c;1. Unlike our original construction of Gaussian elimination, we scale row 1 by 1/,/e7 for
reasons that will become apparent shortly.

By design, after forward-substitution, the form of the product EC is:

| e Vv /ven
o= (Y57 )

for some D € R(n—1)x(n—-1)



Positive Definiteness and the Cholesky Factorization
Eliminating the 1st Row and Column

Now, we diverge from the derivation of Gaussian elimination. Rather than moving on
to the second row, to maintain symmetry, we post-multiply by E' to obtain ECE":

ECE' = (EC)E'

(Yo )T )

o A /Cler I VT — OTbecause we COnStI'U.Cted Fi_lcll = — Cil — — Vi—l/ and SO I’Cll — — V.
€11

e We have eliminated the 1st row and col of C, and D is SPD (to be proved in your assignment).



Positive Definiteness and the Cholesky Factorization

Cholesky Factorization

We can repeat this process to eliminate all the rows and columns of C' symmetrically:.
This method is specific to symmetric positive-definite matrices, since

e symmetry allowed us to apply the same E to both sides, and

e positive definiteness guaranteed that c;; > 0, thus implying that 1/,/e7 exists.

Similar to LU factorization, we have obtained a factorization C = LL ' for a lower-triangular
matrix L. This factorization is constructed by applying elimination matrices symmetrically
using the process above, until we reach

Ey---E2E\CE{ E] - E] = Lnyn.

L=E{'E;"'---E_'. |The product C = LL" is known as the Cholesky factorization of C.




Positive Definiteness and the Cholesky Factorization
Cholesky Factorization Example, Initial Step

Example 4.6 (Cholesky factorization, initial step). As a concrete example, consider the
following symmetric, positive definite matrix

4 -2 4
C=1| -2 5 -4 |.
4 —4 14
We can eliminate the first column of C using the elimination matrix £ defined as:
/2.0 0 2 -1 2
Eir=1| Y2 1 0 | —EC=| 0 4 -2 |.
-1 0 1 0 —2 10

We chose the upper left element of F; to be 1/2 = 1/v/a = 1/, /e17. Following the construction
above, we can post-multiply by E,' to obtain:

1 0 0
E.CE;, =0 4 -2 ].
0 —2 10



Positive Definiteness and the Cholesky Factorization

Cholesky Factorization Example, Remaining Steps

Example 4.7 (Cholesky factorization, remaining steps). Continuing Example 4.6, we can
eliminate the second row and column as follows:

1 0 0
Ey;=| 0 Y2 0 | — Ey(E.CE,)E, =
0 12 1

o O =
o = O
O O O

Rescaling brings the symmetric product to the identity matrix I3yx3:

1 0 0 1 0 0
Es=| 0 1 0 | — E3(E2E.CE/E))E; = 0 1 0
0 0 13 0 0 1

Hence, we have shown E3EyECE| E) EJ = I343. As above, define:
2 0 1 0 O 1 0 2 0O O

L=E'E;'E;'=| -1 0 0 2 0 0 1 = -1 2 0 ].
2 1 0O —1 1 0 O 2 -1 3

O = O
L O O



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization, Practical Properties

e Takes half the memory to store the factor L compared to the LU factorization.
e The product LL" is symmetric and PSD regardless of L;

e [f we factored C = LU but made rounding and other mistakes, in degenerate cases the
computed product C’ & LU may no longer satisfy these criteria exactly.

e Code for Cholesky factorization can be very succinct.



Positive Definiteness and the Cholesky Factorization

Cholesky Factorization, Implementation

® Suppose we choose an arbitrary k € {1, . . ., n} and write L in block form isolating the k-th row
and column:

Ly 0 O |
L=\ ¢ ¢. o7 |. e [, = ¢, where L, is lower-
LI; . £, L triangular and already computed

when processing the k-th row

_ - e Solve ¢, via forward-substitution
0 T p)
o (i =Lt t+ 1y

Ly O 0
C = LLT — E,;r Ekk OT Ekk (E;C)T
L3 £ L33 0 0 Lg
( X X X ) e Then calculate £}, and choose the

T T
€ Lyy L+ 47y, X positive value
X X X



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization, Pseudo-Code

function CHOLESKY-FACTORIZATION(C')
> Factors C = LL', assuming C is symmetric and positive definite

L+ C > This algorithm destructively replaces C' with L
for Kk 1,2,...,n
> Back-substitute to place E,;r at the beginning of row k& e Runs in 0(713) time:
for:«1,...,k—1 > Current element ¢ of £, ’
s <0 3
> Iterate over Li1; j < %, so the iteration maintains Lg; = (£x);. Takes around —
for j < 1,...,i—1:8< s+ L;;Ly; ¢
Lpi — Lri=s)/L,, operations, half the
work needed for LU.
> Apply the formula for £
v+ 0 > For computing ||€]|3
for < 1,...,k—1 :fU(—’U—|—Lij

Lik < v/ Lgx — v
return L
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Sparsity
Definition, Example, and Storage

® Sparse matrix: most of the entries are exactly zero, e.g.

¢ Image processing systems link each pixel’s value to its up/down/left/right neighbors. The
system matrix A € RP*? for p pixels is sparse with only O(p) nonzeros per row.

® Machine learning: Graphical models use nodes for variables and edges for dependencies.
Linear systems have one row per node, with nonzeros only for that node and its neighbors.

2

e There is no reason to store n~ entries of an n X n sparse matrix.

e Sparse matrix storage techniques only store the O(n) nonzeros in a more reasonable data
structure, e.g., a list of row /column/ value triplets.



Sparsity
Linear Solvers

e The LU (and Cholesky) factorizations of a sparse matrix A may not result in sparse L and U
matrices;

® There are many direct sparse solvers that produce an LU-like factorization without inducing
much additional nonzeros;

® 1. Dauvis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. Society for
Industrial and Applied Mathematics, 2006.

e Alternatively, iterative techniques can obtain approximate solutions to linear systems using
only multiplication by A and A”.



Sparsity
Tridiagonal Matrix

Certain matrices are not only sparse but also structured. For instance, a tridiagonal system
of linear equations has the following pattern of nonzero values:

X X
X X X
X X X
X X X
X X

® Remark: Gaussian elimination provides only one option for solving linear system. It may be
possible to show that the system matrix can be solved more easily by identifying special
properties like symmetry, positive-definiteness, and sparsity.

® G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 2012.
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Sensitivity Analysis
Vector Norm

e Before we can discuss the sensitivity of a linear system, we need to define what it means for a
change ox to be “small.”

Definition 4.2 (Vector norm). A vector norm is a function || - || : R® — |0, 00) satisfying
the following conditions:

e ||x|| =0 if and only if x =0 (“|| - || separates points”).
o ||cx|| = |c|||x|| for all scalars ¢ € R and vectors x € R™ (“absolute scalability” ).

o |[x+y| <|x|+ |ly| for all x,y € R™ (“triangle inequality”).

® c.g., 2-norm: |x||2 :==1/2% 4+ 24+ - + 22



AN AN AN DY

Sensitivity Analysis |~ |~ |

P-Norm |- s |- 1lws |- 1l2 |- 1ls |- oo

Figure 4.7 The set {x € R?: ||x|| = 1} for different vector norms || - ||.
The p-norm ||x||,, for p > 1, is given by o [Vll, < lIvll; whenp > ¢
[Xllp = (je1]” + |22l + - + |zal?) 7"

Of particular importance is the 1-norm, also known as the “Manhattan” or “taxicab”
norm:
n
x|l =D _ |-
k=1

The co-norm ||x||o is given by

HX”OO = ma.x(|:z:1|, |£I?2‘, "y |xn|)



Sensitivity Analysis
Matrix Norm

e We can “unroll” any matrix in R™" to a vector in R"" to adapt any vector norm to matrices

® e.g., Frobenius norm: |A||Fro = Z a,%j.
2,]

e But matrix norm constructed this way may not have a clear connection to the effect of AX for
different vectors x

Definition 4.4 (Induced norm). The matrix norm on R™*" induced by a vector norm
| - || is given by
| Al = max{]||Ax]| : [|x[| = 1},

That is, the induced norm is the maximum length of the image of a unit vector multiplied

by A.



Sensitivity Analysis
Induced 2-Norm

This definition in the case || || = || - ||2 is illustrated in Figure 4.8. Since vector norms satisfy
|ex|| = |c|||x||, this definition is equivalent to the expression
A
Al = max 12X

xeRm\{0} ||x||

From this standpoint, the norm of A induced by | - || is the largest achievable ratio of the
norm of Ax relative to that of the input x.

The induced two-norm, or spectral norm, of A € R™*"™ is the square root of the largest
eigenvalue of A' A. That is,

| Al|2 = max{\ : there exists x € R"\{0} with A' Ax = \x}.



Sensitivity Analysis
Condition Numbers

® Suppose we are given perturbation A and 6b to the linear system AX = b. For small ¢, we can
write a vector-valued function x(¢)as the solution to

(A+e-0A)x(e) =b+ - db.

® Thus, we can expand the relative error made by solving the perturbed system:

”X(S) _X(O)” < |€| ”A—1I|”A” (‘6]3‘ | |5A|> -|—O(82)

Ix(0) | ——— \ bl 4]
K N e’
D

Definition 4.5 (Matrix condition number). The condition number of A € R"*" with
respect to a given matrix norm || - || is

cond A := || A]|||A™].

If A is not invertible, we take cond A := oc.



Differentiating both sides with respect to € and applying the product rule shows:
dx(e)

Sensitivity Analysis o4 ) + (4 +e- )50 — oo

Using the Taylor expansion, we can write

*Derivation of Condition Numbers
[x(e) —x(0)[| _ [lex'(0) + O(e?)]

x(g) = x(0) + ex’(0) + O(€?),

by the Taylor expansion above

Ix@©) Ix(0)]
_ lleA='(éb — 564 -x(0)) + O(e?)| e derivative we compute
— (0| by the d t puted
€| 1 154 .x o2
< ”X(O)”(HA 0b|| +[[A770A - x(0))]]) + O(e”)

by the triangle inequality ||A + B|| < ||A|| + || B||

ob . .
< lelllA~Y] ( | “ H5AII> + O(e?) by the identity [|AB|| < | A[[|B|

5b|| |6 A |>
el[|[A7H||| A ( | + O(e?
— el A (o + ) O
lob[|  [|oA] 2\ o
< [ellA7* 1A ( | + O(e”) since |[Ax(0)]| < [|A[[[[x(0)]
IAx0)[ ~ [|A]
= |¢| HA 1H||A|| ( ﬁ:" | | if“) +0(g?) since by definition Ax(0) = b.

o

—

D



Sensitivity Analysis

Properties of Condition Numbers

e For nearly any matrix norm, cond A > 1 for all A.

Figure 49 The condition number of A measures the ratio of the largest to smallest

o Scahng A has no effect on 1tS COnditiOn number. distortion of any two points on the unit circle mapped under A.

e Large cond A indicate that solutions to AX = b can be unstable under perturbations of A or b.

If || - || is induced by a vector norm and A is invertible,
A 1x
|A™!|| = max ” | by definition

x#0  ||x|] 1
” _ ( HAXH) ( . ||AY||>
y| o 1 cond A = | max min .

— max by substituting y = A™"'x x#0 ||x| y#0 ||y]|
y#0 [|Ayl||

A —1
= (min ” yH) by taking the reciprocal.
y#0 ||y
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