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Positive Definiteness and the Cholesky Factorization
Properties of AT A
• Recall: solving the least-squares problem  is equivalent to solving .


• Regardless of , the matrix  is:


• Symmetric: ;


• Positive Semi-Definite (PSD): .

Ax ≈ b AT Ax = ATb

A AT A

(AT A)T = AT(AT)T = AT A

∀x ≠ 0, xT AT Ax = ∥Ax∥2 ≥ 0

•  is positive definite and invertible when ’s column vectors are linearly independent.AT A A

When a matrix is symmetric and positive definite,

it is called Symmetric Positive Definite (SPD).



Positive Definiteness and the Cholesky Factorization
Block Matrix Notation
• To solve SPD systems, we would like to build faster solvers utilizing the special structure.


• For convenience, we will use the block matrix notation:


• Suppose ,  , , and , we could construct a larger matrix:A ∈ ℝm×n B ∈ ℝm×k C ∈ ℝp×n D ∈ ℝp×k

• The mechanisms of matrix algebra generally extend to this case, e.g.,



Positive Definiteness and the Cholesky Factorization
Writing SPD Matrix in Block Matrix Form

= c11



Positive Definiteness and the Cholesky Factorization
Gaussian Elimination on SPD Matrix



Positive Definiteness and the Cholesky Factorization
Eliminating the 1st Row and Column

•  because we constructed , and so .


• We have eliminated the 1st row and col of , and  is SPD (to be proved in your assignment).

c11rT +
1
c11

vT = 0T ri−1c11 = − ci1 = − vi−1 rc11 = − v

C D



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization Example, Initial Step



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization Example, Remaining Steps



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization, Practical Properties
• Takes half the memory to store the factor  compared to the LU factorization.


• The product  is symmetric and PSD regardless of L; 


• If we factored  but made rounding and other mistakes, in degenerate cases the 
computed product  may no longer satisfy these criteria exactly.


• Code for Cholesky factorization can be very succinct.

L

LLT

C = LU
C′￼ ≈ LU



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization, Implementation
• Suppose we choose an arbitrary k ∈ {1, . . . , n} and write L in block form isolating the k-th row 

and column:

• , where  is lower-
triangular and already computed 
when processing the k-th row


• Solve  via forward-substitution


•

• Then calculate  and choose the 
positive value

L11ℓk = ck L11

ℓk

ckk = ℓT
k ℓk + ℓ2

kk

ℓkk



Positive Definiteness and the Cholesky Factorization
Cholesky Factorization, Pseudo-Code

• Runs in  time; 


• Takes around  
operations, half the 
work needed for LU.

O(n3)

n3

3
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Sparsity
Definition, Example, and Storage
• Sparse matrix: most of the entries are exactly zero, e.g.


• Image processing systems link each pixel’s value to its up/down/left/right neighbors. The 
system matrix  for  pixels is sparse with only  nonzeros per row.


• Machine learning: Graphical models use nodes for variables and edges for dependencies. 
Linear systems have one row per node, with nonzeros only for that node and its neighbors.


• There is no reason to store  entries of an  sparse matrix.


• Sparse matrix storage techniques only store the  nonzeros in a more reasonable data 
structure, e.g., a list of row/column/value triplets.

A ∈ ℝp×p p O(p)

n2 n × n

O(n)



Sparsity
Linear Solvers
• The LU (and Cholesky) factorizations of a sparse matrix  may not result in sparse  and  

matrices; 


• There are many direct sparse solvers that produce an LU-like factorization without inducing 
much additional nonzeros;


• T. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. Society for 
Industrial and Applied Mathematics, 2006.


• Alternatively, iterative techniques can obtain approximate solutions to linear systems using 
only multiplication by  and .

A L U

A AT



Sparsity
Tridiagonal Matrix

• Remark: Gaussian elimination provides only one option for solving linear system. It may be 
possible to show that the system matrix can be solved more easily by identifying special 
properties like symmetry, positive-definiteness, and sparsity. 


• G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical 
Sciences. Johns Hopkins University Press, 2012.
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Sensitivity Analysis
Vector Norm
• Before we can discuss the sensitivity of a linear system, we need to define what it means for a 

change  to be “small.”δx

• e.g., 2-norm:



Sensitivity Analysis
P-Norm

•  when ∥v∥p ≤ ∥v∥q p > q



Sensitivity Analysis
Matrix Norm
• We can “unroll” any matrix in  to a vector in  to adapt any vector norm to matrices


• e.g., Frobenius norm: 


• But matrix norm constructed this way may not have a clear connection to the effect of  for 
different vectors 

ℝm×n ℝmn

Ax
x



Sensitivity Analysis
Induced 2-Norm



Sensitivity Analysis
Condition Numbers
• Suppose we are given perturbation  and  to the linear system . For small , we can 

write a vector-valued function as the solution to
δA δb Ax = b ϵ

x(ϵ)

• Thus, we can expand the relative error made by solving the perturbed system:

≤



Sensitivity Analysis
*Derivation of Condition Numbers



Sensitivity Analysis
Properties of Condition Numbers
• For nearly any matrix norm, cond  for all .


• Scaling  has no effect on its condition number.


• Large cond  indicate that solutions to  can be unstable under perturbations of A or b.

A ≥ 1 A

A

A Ax = b
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