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Solvability of Linear Systems
Definition of Linear Systems



Solvability of Linear Systems
The 3 Cases

Overdetermined



Solvability of Linear Systems
A Geometric View

Ax = b is solvable exactly when b is in the column space of A

Since Ax can be viewed as a linear combination of A’s column vectors with coefficients in x:



Solvability of Linear Systems
Assumptions on A



Solvability of Linear Systems
Practical Considerations
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Gaussian Elimination (A Simple Example)
Overview

• Strategy: “isolate” variables, iteratively simplifying individual equalities until each is of the 
form x = const.


• Alongside each step, we maintain a matrix encoding the current state:



Gaussian Elimination (A Simple Example)
Simplification Steps
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Gaussian Elimination (A Simple Example)
Summary
Revisiting the steps above yields a few observations about how to solve linear systems:  


• We wrote successive systems  that can be viewed as simplifications of the original .  


• We solved the system without ever writing down .  


• We repeatedly used a few elementary operations: scaling, adding, and permuting rows.  


• The same operations were applied to  and .


• The steps did not depend on . All our decisions were motivated by eliminating nonzero values in .


• We terminated when we reached the simplified system .  


We will use all of these general observations about solving linear systems to our advantage.  

Aix = bi Ax = b

A−1

A b

b A

In×nx = bk
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Gaussian Elimination (Encoding Row Operations)
Matrix Representation
• Like the previous example, we can solve 

any linear systems using these 3 row 
operations:


• permutation,


• row scaling, and


• adding a multiple of one row to another


• For convenience of analysis, we can use 
matrices to represent them.


• But in the algorithms, constructing matrices 
may not be necessary

• The following are equivalent:



Gaussian Elimination (Encoding Row Operations)
Permutation
• Indexing the rows of a matrix using the integers 1, . . . , m, a permutation of them is a function:

where  maps every index to a different target.σ



Gaussian Elimination (Encoding Row Operations)
Permutation (Example)

•  has 1’s in positions indexed  and 0’s elsewhere


• If we put 1’s in  and 0’s elsewhere, we get , and it undoes the permutation


• Thus, , or 

Pσ (k, σ(k))

(σ(k), k) PT
σ

PT
σ Pσ = PσPT

σ = I PT
σ = P−1

σ



Gaussian Elimination (Encoding Row Operations)
Row Scaling



Gaussian Elimination (Encoding Row Operations)
Elimination
• Suppose we wish to scale row k by a constant 

c, and add the result to row ℓ; ( ).


• We first construct the matrix that extract a row 
of a matrix and move it to another row:


•  picks out the k-th row of A. 


• Pre-multiplying it by  yields a matrix 
 that is 0 except on its ℓ-th row, which 

is equal to the k-th row of A.

k ≠ l

eT
k A

el
eleT

k A

Example:



Gaussian Elimination (Encoding Row Operations)
Elimination (Matrix Form)
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A System-Solving Example
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Gaussian Elimination (The Algorithm)
Forward Substitution



Gaussian Elimination (The Algorithm)
Forward Substitution (Pseudo-Code)



Gaussian Elimination (The Algorithm)
Backward Substitution



Gaussian Elimination (The Algorithm)
Complexity
• Each row operation (scaling, elimination, row swap) takes  time (operates on  elements).


• For each pivot, we perform  operations on  rows  per pivot.


• We perform elimination for  pivots in total.


• Total cost of Gaussian elimination: .

O(n) n

O(n) n ⇒ O(n2)

n

O(n3)



Gaussian Elimination (The Algorithm)
Pivoting



Gaussian Elimination (The Algorithm)
Pivoting (Example)

Applying partial pivoting: Applying full pivoting (rarely needed):

Faster speed Better numerical stability
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LU Factorization
Motivation
• Sometimes we want to solve for a sequence of linear systems with the same coefficient matrix:


• , , …, 

• Solving the system is , can we do some precomputation on  to speedup the solve?


• Computing  may not be stable, and sparse matrices often have a dense inverse matrix


• Backward-substitution on upper triangular system is actually !


• Precompute forward-substitution?

Ax = b1 Ax = b2 Ax = bn

O(n3) A

A−1

O(n2)



LU Factorization
Idea
• We will use Gaussian elimination to factorize  as .


• Then  becomes .


• This can be solved by:


• forward-substitution on , followed by 


• backward-substitution on .


• They are both triangular systems, and thus .

A A = LU

Ax = b LUx = b

Ly = b

Ux = y

O(n2)

Lower triangular

Upper triangular



LU Factorization
Construction
• After forward-substitution with row operations , , …, :M1 M2 Mk

•  is upper triangular by design, to show that  is lower triangular:


•  is either a scaling matrix, or , where  (lower triangular)


• Thus  is either a scaling matrix, or , where  (lower triangular)


• We just need to proof that the product of lower triangular matrices are still lower triangular

U L

Mi Mi = I + celeT
k l > k

M−1
i M−1

i = I − celeT
k l > k



LU Factorization
Product of Triangular Matrices



LU Factorization
Implementation

• The remaining term vanishes by orthogonality of the standard basis vectors  since .


• Thus, the product of elimination matrices that forward-substitutes a single pivot has the form:

ei k ≠ p

• Products of this kind of matrices performed in forward-substitution 
order combine the values below the diagonal:



LU Factorization
Implementation (Pseudo-Code)
• Without scaling , ’s diagonal entries are all 1 — no need to explicitly store.


• Thus, we can factorize  in place, the upper triangular part becomes , and we store  below 
the diagonal:

A L

A U L



LU Factorization
Implementation (Pivoting)



LU Factorization
Implementation (Pivoting Remarks)
• If we pivot rows, then  with different P, , and  from column pivoting. 


• Pivoting both rows and columns leads to  for two permutations P and Q.


• Any square matrix A (even not invertible) has the above factorizations. 


• Beyond stability, some algorithms design  and  to improve sparsity of  and , i.e., the 
number of nonzero entries need to be stored in the matrices.

A = PLU L U

A = PLUQ

P Q L U
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