Lec 3: Linear Systems and LU Decomposition

15-369/669/769: Numerical Computing

Instructor: Minchen Li

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Definition of Linear Systems

systems of linear equations like

$$3x + 2y = 6$$
$$-4x + y = 7$$

can be written in matrix form as in

$$\left(\begin{array}{cc} 3 & 2 \\ -4 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 6 \\ 7 \end{array}\right)$$

More generally, we can write linear systems in the form $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{b} \in \mathbb{R}^{m}$. Algorithms for *solving* the linear system $A\mathbf{x} = \mathbf{b}$ input a matrix A and a vector \mathbf{b} , and they output a vector \mathbf{x} satisfying the equation—should such an \mathbf{x} exist.

The 3 Cases

The solvability of $A\mathbf{x} = \mathbf{b}$ must fall into one of three cases:

1. The system may not admit any solutions, as in:

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 1 \end{array}\right).$$
 Overdetermined

This system enforces two incompatible conditions simultaneously: x = -1 and x = 1.

- 2. The system may admit a single solution; for instance, the system at the beginning of this section is solved by (x, y) = (-8/11, 45/11).
- 3. The system may admit infinitely many solutions, e.g., $0\mathbf{x} = \mathbf{0}$. If a system $A\mathbf{x} = \mathbf{b}$ admits two distinct solutions \mathbf{x}_0 and \mathbf{x}_1 , then it automatically has infinitely many solutions of the form $t\mathbf{x}_0 + (1-t)\mathbf{x}_1$ for all $t \in \mathbb{R}$, since

$$A(t\mathbf{x}_0 + (1-t)\mathbf{x}_1) = tA\mathbf{x}_0 + (1-t)A\mathbf{x}_1 = t\mathbf{b} + (1-t)\mathbf{b} = \mathbf{b}.$$

Because it has multiple solutions, this linear system is labeled underdetermined.

A Geometric View

The solvability of the system $A\mathbf{x} = \mathbf{b}$ depends both on A and on \mathbf{b} . For instance, if we modify the unsolvable system above to

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right),$$

then the system changes from having no solutions to infinitely many solutions of the form (1, y). Every matrix A admits a right-hand side \mathbf{b} such that $A\mathbf{x} = \mathbf{b}$ is solvable, since $A\mathbf{x} = \mathbf{0}$ always can be solved by $\mathbf{x} = \mathbf{0}$ regardless of A.

Since Ax can be viewed as a linear combination of A's column vectors with coefficients in x:

$$\left(egin{array}{cccc} & ert & ert & ert & ert \ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \ ert & ert & ert \end{array}
ight) \left(egin{array}{c} c_1 \ c_2 \ drt \ c_n \end{array}
ight) \coloneqq c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n \ drt \ c_n \end{array}
ight)$$

Ax = b is solvable exactly when b is in the column space of A

Assumptions on A

The shape of the matrix $A \in \mathbb{R}^{m \times n}$ has considerable bearing on the solvability of $A\mathbf{x} = \mathbf{b}$.

No wide matrix system admits a unique solution.

For every tall matrix A, there exists a b_0 such that $Ax = b_0$ is not solvable for x.

- We will consider only square $A \in \mathbb{R}^{n \times n}$.
- We will assume that A is nonsingular, that is, that $A\mathbf{x} = \mathbf{b}$ is solvable for any \mathbf{b} .

Practical Considerations

We do not have to solve $A\mathbf{x} = \mathbf{b}$ by explicitly computing the entire inverse matrix $A^{-1} \in \mathbb{R}^{n \times n}$ and then multiplying to find $\mathbf{x} = A^{-1}\mathbf{b}$. While this procedure is valid mathematically, it can yield a considerable amount of overkill and potential for numerical instability for several reasons:

- The matrix A^{-1} may contain values that are difficult to express in floating-point precision, in the same way that $1/\varepsilon \to \infty$ as $\varepsilon \to 0$.
- It may be possible to tune the solution strategy both to A and to b, e.g., by working with the columns of A that are the closest to b first. Strategies like these can provide higher numerical stability.
- Even if A is sparse, meaning it contains many zero values that do not need to be stored explicitly, or has other special structure, the same may not be true for A^{-1} .

Avoid computing A^{-1} explicitly unless you have a strong justification for doing so.

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Gaussian Elimination (A Simple Example) Overview

We will consider the following system:

$$y-z=-1$$
$$3x-y+z=4$$
$$x+y-2z=-3.$$

- **Strategy:** "isolate" variables, iteratively simplifying individual equalities until each is of the form x = const.
- Alongside each step, we maintain a matrix encoding the current state:

$$\left(\begin{array}{ccc|ccc|c}
0 & 1 & -1 & -1 \\
3 & -1 & 1 & 4 \\
1 & 1 & -2 & -3
\end{array}\right)$$

Gaussian Elimination (A Simple Example) Simplification Steps

Perhaps we wish to deal with the variable x first. For convenience, we can permute the rows of the system so that the third equation appears first:

We then *substitute* the first equation into the third to eliminate the 3x term. This is the same as scaling the relationship x + y - 2z = -3 by -3 and adding the result to the third equation:

Gaussian Elimination (A Simple Example) Simplification Steps

Similarly, to eliminate y from the third equation, we scale the second equation by 4 and add the result to the third:

We have now isolated z! We scale the third row by 1/3 to yield an expression for z:

Gaussian Elimination (A Simple Example) Simplification Steps

Now, we substitute z=3 into the other two equations to remove z from all but the final row:

Finally, we make a similar substitution for y to reveal the solution:

Gaussian Elimination (A Simple Example) Summary

Revisiting the steps above yields a few observations about how to solve linear systems:

- We wrote successive systems $A_i x = b_i$ that can be viewed as simplifications of the original Ax = b.
- We solved the system without ever writing down A^{-1} .
- We repeatedly used a few elementary operations: scaling, adding, and permuting rows.
- The same operations were applied to A and b.
- ullet The steps did not depend on b. All our decisions were motivated by eliminating nonzero values in A.
- We terminated when we reached the simplified system $I_{n \times n} x = b_k$.

We will use all of these general observations about solving linear systems to our advantage.

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Matrix Representation

- Like the previous example, we can solve any linear systems using these 3 **row operations**:
 - permutation,
 - row scaling, and
 - adding a multiple of one row to another
- For convenience of analysis, we can use **matrices** to represent them.
- But in the algorithms, constructing matrices may not be necessary

- The following are equivalent:
 - 1. Scale the first row of A by 2.
 - 2. Replace A with S_2A , where S_2 is defined by:

$$S_2 \coloneqq \left(egin{array}{ccccc} 2 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \end{array}
ight)$$

Permutation

• Indexing the rows of a matrix using the integers 1, . . . , m, a permutation of them is a function:

$$\sigma: \{1, ..., m\} \to \{1, ..., m\} \text{ such that } \{\sigma(1), ..., \sigma(m)\} = \{1, ..., m\}$$

where σ maps every index to a different target.

If \mathbf{e}_k is the k-th standard basis vector, then the product $\mathbf{e}_k^{\top} A$ is the k-th row of the matrix A. We can "stack" or concatenate these row vectors vertically to yield a matrix permuting the rows according to σ :

$$P_{\sigma} \coloneqq \left(egin{array}{ccc} - & \mathbf{e}_{\sigma(1)}^{ op} & - \ - & \mathbf{e}_{\sigma(2)}^{ op} & - \ & dots \ - & \mathbf{e}_{\sigma(m)}^{ op} & - \end{array}
ight).$$

The product $P_{\sigma}A$ is the matrix A with rows permuted according to σ .

Permutation (Example)

Example 3.1 (Permutation matrices). Suppose we wish to permute rows of a matrix in $\mathbb{R}^{3\times 3}$ with $\sigma(1)=2$, $\sigma(2)=3$, and $\sigma(3)=1$. According to our formula we have

$$P_{\sigma} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight).$$

- P_{σ} has 1's in positions indexed $(k, \sigma(k))$ and 0's elsewhere
- If we put 1's in $(\sigma(k), k)$ and 0's elsewhere, we get P_{σ}^{T} , and it undoes the permutation
- Thus, $P_{\sigma}^T P_{\sigma} = P_{\sigma} P_{\sigma}^T = I$, or $P_{\sigma}^T = P_{\sigma}^{-1}$

Gaussian Elimination (Encoding Row Operations) Row Scaling

Suppose we write down a list of constants a_1, \ldots, a_m and seek to scale the k-th row of A by a_k for each k. This task is accomplished by applying the scaling matrix S_a :

$$S_a \coloneqq \left(egin{array}{cccc} a_1 & 0 & 0 & \cdots \ 0 & a_2 & 0 & \cdots \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_m \end{array}
ight).$$

Assuming that all the a_k 's satisfy $a_k \neq 0$, it is easy to invert S_a by scaling back:

$$S_a^{-1} = S_{1/a} \coloneqq \begin{pmatrix} 1/a_1 & 0 & 0 & \cdots \\ 0 & 1/a_2 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/a_m \end{pmatrix}.$$

If any a_k equals zero, then S_a is not invertible.

Elimination

- Suppose we wish to scale row k by a constant c, and add the result to row ℓ ; $(k \neq l)$.
- We first construct the matrix that extract a row of a matrix and move it to another row:
 - $\mathbf{e}_k^T A$ picks out the k-th row of A.
 - Pre-multiplying it by \mathbf{e}_l yields a matrix $\mathbf{e}_l \mathbf{e}_k^T A$ that is 0 except on its ℓ -th row, which is equal to the k-th row of A.

Example:

$$\mathbf{e}_{2}\mathbf{e}_{3}^{\top}A = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 7 & 8 & 9 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 7 & 8 & 9 \\ 0 & 0 & 0 \end{pmatrix}.$$

Elimination (Matrix Form)

We have succeeded in isolating row k and moving it to row ℓ . Our original elimination operation was to add c times row k to row ℓ , which we can now carry out using the sum $A+c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}A=(I_{n\times n}+c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top})A$. Isolating the coefficient of A, the desired elimination matrix is $M:=I_{n\times n}+c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}$.

The action of M can be reversed: Scale row k by c and subtract the result from row ℓ . We can check this formally:

$$(I_{n\times n} - c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top})(I_{n\times n} + c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}) = I_{n\times n} + (-c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top} + c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}) - c^{2}\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}$$

$$= I_{n\times n} - c^{2}\mathbf{e}_{\ell}(\mathbf{e}_{k}^{\top}\mathbf{e}_{\ell})\mathbf{e}_{k}^{\top}$$

$$= I_{n\times n} \text{ since } \mathbf{e}_{k}^{\top}\mathbf{e}_{\ell} = \mathbf{e}_{k} \cdot \mathbf{e}_{\ell}, \text{ and } k \neq \ell.$$

That is, $M^{-1} = I_{n \times n} - c\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top}$.

A System-Solving Example

Example 3.3 (Solving a system). We can now encode each of our operations from Section 3.2 using the matrices we have constructed above:

1. Permute the rows to move the third equation to the first row:

$$P = \left(egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight).$$

2. Scale row one by -3 and add the result to row three:

$$E_1 = I_{3 \times 3} - 3\mathbf{e}_3\mathbf{e}_1^{\top} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}.$$

A System-Solving Example

3. Scale row two by 4 and add the result to row three:

$$E_2 = I_{3\times 3} + 4\mathbf{e}_3\mathbf{e}_2^{\mathsf{T}} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 4 & 1 \end{array}
ight).$$

4. Scale row three by $\frac{1}{3}$:

$$S = \operatorname{diag}(1, 1, \frac{1}{3}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}.$$

5. Scale row three by 2 and add it to row one:

$$E_3 = I_{3 \times 3} + 2\mathbf{e}_1\mathbf{e}_3^{ op} = \left(egin{array}{ccc} 1 & 0 & 2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight).$$

A System-Solving Example

6. Add row three to row two:

$$E_4 = I_{3 \times 3} + \mathbf{e}_2 \mathbf{e}_3^{\top} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

7. Scale row two by -1 and add the result to row one:

$$E_5 = I_{3\times 3} - \mathbf{e}_1 \mathbf{e}_2^{\top} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

A System-Solving Example

Combining these matrices, the inverse of A in Section 3.2 satisfies

$$\begin{split} A^{-1} &= E_5 E_4 E_3 S E_2 E_1 P \\ &= \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/3 \end{pmatrix} \\ &\qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1/3 & 1/3 & 0 \\ 7/3 & 1/3 & -1 \\ 4/3 & 1/3 & -1 \end{pmatrix}. \end{split}$$

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Forward Substitution

Forward Substitution (Pseudo-Code)

```
function Forward-Substitution(A, \mathbf{b})
    \triangleright Converts a system A\mathbf{x} = \mathbf{b} to an upper-triangular system U\mathbf{x} = \mathbf{y}.
   \triangleright Assumes invertible A \in \mathbb{R}^{n \times n} and \mathbf{b} \in \mathbb{R}^n.
   U, \mathbf{y} \leftarrow A, \mathbf{b}
                                                                \triangleright U will be upper triangular at completion
   for p \leftarrow 1, 2, \ldots, n
                                                                               \triangleright Iterate over current pivot row p
        > Optionally insert pivoting code here
                                                      \triangleright Scale row p to make element at (p, p) equal one
        s \leftarrow 1/u_{pp}
       y_p \leftarrow s \cdot y_p
       for c \leftarrow p, \ldots, n : u_{pc} \leftarrow s \cdot u_{pc}
       for r \leftarrow (p+1), \ldots, n
                                                                                      ▶ Eliminate from future rows
                                                                           \triangleright Scale row p by s and add to row r
           s \leftarrow -u_{rp}
           y_r \leftarrow y_r + s \cdot y_p
           for c \leftarrow p, \ldots, n : u_{rc} \leftarrow u_{rc} + s \cdot u_{pc}
    return U, \mathbf{y}
```

Backward Substitution

$$\begin{pmatrix}
1 & \times & \times & \times & | & \times \\
0 & 1 & \times & \times & | & \times \\
0 & 0 & 1 & | & \times \\
0 & 0 & 0 & 1 & | & \times
\end{pmatrix}$$

$$\begin{pmatrix}
1 & \times & \times & 0 & | & \times \\
0 & 1 & \times & 0 & | & \times \\
0 & 0 & 1 & 0 & | & \times \\
0 & 0 & 0 & 1 & | & \times
\end{pmatrix}$$

$$\begin{pmatrix}
1 & \times & \times & 0 & | & \times \\
0 & 1 & 0 & 0 & | & \times \\
0 & 0 & 1 & 0 & | & \times \\
0 & 0 & 0 & 1 & | & \times
\end{pmatrix}$$

```
function Back-Substitution(U, \mathbf{y})
```

 \triangleright Solves upper-triangular systems $U\mathbf{x} = \mathbf{y}$ for \mathbf{x} .

$$\mathbf{x} \leftarrow \mathbf{y}$$
 \triangleright We will start from $U\mathbf{x} = \mathbf{y}$ and simplify to $I_{n \times n}\mathbf{x} = \mathbf{x}$ for $p \leftarrow n, n-1, \ldots, 1$ \triangleright Iterate backward over pivots $\mathbf{for} \ r \leftarrow 1, 2, \ldots, p-1$ \triangleright Eliminate values above u_{pp} $x_r \leftarrow x_r - u_{rp}x_p/u_{pp}$

return x

Gaussian Elimination (The Algorithm) Complexity

- Each row operation (scaling, elimination, row swap) takes O(n) time (operates on n elements).
- For each pivot, we perform O(n) operations on n rows $\Rightarrow O(n^2)$ per pivot.
- We perform elimination for *n* pivots in total.
- Total cost of Gaussian elimination: $O(n^3)$.

Gaussian Elimination (The Algorithm) Pivoting

Since Gaussian elimination scales by the reciprocal of the pivot, the most numerically stable option is to choose a *large* pivot (in absolute value). Small pivots have large reciprocals, which scale matrix elements to regimes that may lose precision. There are two well-known pivoting strategies:

- 1. Partial pivoting looks through the current column and permutes rows of the matrix so that the element in that column with the largest absolute value appears on the diagonal.
- 2. Full pivoting iterates over the **entire** matrix and permutes rows and columns to place the largest possible value on the diagonal. Permuting columns of a matrix is a valid operation after some added bookkeeping: it corresponds to changing the labeling of the variables in the system, or post-multiplying A by a permutation.

Pivoting (Example)

Example 3.4 (Pivoting). Suppose after the first iteration of Gaussian elimination we are left with the following matrix:

$$\left(\begin{array}{ccc} 1 & 10 & -10 \\ 0 & 0.1 & 9 \\ 0 & 4 & 6.2 \end{array}\right).$$

Applying partial pivoting:

$$\left(\begin{array}{ccc}
1 & 10 & -10 \\
0 & 4 & 6.2 \\
0 & 0.1 & 9
\end{array}\right)$$

Faster speed

Applying full pivoting (rarely needed):

$$\left(\begin{array}{ccc}
1 & -10 & 10 \\
0 & 9 & 0.1 \\
0 & 6.2 & 4
\end{array}\right)$$

Better numerical stability

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization

Motivation

- Sometimes we want to solve for a sequence of linear systems with the same coefficient matrix:
 - $\bullet A\mathbf{x} = \mathbf{b}_1, A\mathbf{x} = \mathbf{b}_2, ..., A\mathbf{x} = \mathbf{b}_n$
- Solving the system is $O(n^3)$, can we do some precomputation on A to speedup the solve?
- \bullet Computing A^{-1} may not be stable, and sparse matrices often have a dense inverse matrix
- Backward-substitution on upper triangular system is actually $O(n^2)$!
- Precompute forward-substitution?

$$\begin{pmatrix}
1 & \times & \times & \times & | \times \\
0 & 1 & \times & \times & | \times \\
0 & 0 & 1 & \times & | \times \\
\hline
0 & 0 & 0 & 1 & | \times
\end{pmatrix}
\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
\hline
0 & 0 & 1 & | \times
\end{pmatrix}$$

Idea

• We will use Gaussian elimination to factorize A as A = LU.

Upper triangular

Lower triangular

• Then $A\mathbf{x} = \mathbf{b}$ becomes $LU\mathbf{x} = \mathbf{b}$.

- This can be solved by:
 - forward-substitution on $L\mathbf{y} = \mathbf{b}$, followed by
 - backward-substitution on $U\mathbf{x} = \mathbf{y}$.
 - They are both triangular systems, and thus $O(n^2)$.

Construction

• After forward-substitution with row operations $M_1, M_2, ..., M_k$:

$$\begin{split} M_k \cdots M_1 A &= U \\ \implies A &= (M_k \cdots M_1)^{-1} U \\ &= (M_1^{-1} M_2^{-1} \cdots M_k^{-1}) U \text{ from the fact } (AB)^{-1} = B^{-1} A^{-1} \\ &\coloneqq LU, \text{ if we make the definition } L \coloneqq M_1^{-1} M_2^{-1} \cdots M_k^{-1}. \end{split}$$

- ullet *U* is upper triangular by design, to show that *L* is lower triangular:
 - M_i is either a scaling matrix, or $M_i = I + c\mathbf{e}_l\mathbf{e}_k^T$, where l > k (lower triangular)
 - Thus M_i^{-1} is either a scaling matrix, or $M_i^{-1} = I c\mathbf{e}_l\mathbf{e}_k^T$, where l > k (lower triangular)
 - We just need to proof that the product of lower triangular matrices are still lower triangular

Product of Triangular Matrices

Proposition 3.1. The product of two or more upper-triangular matrices is upper triangular, and the product of two or more lower-triangular matrices is lower triangular.

Proof. Suppose A and B are upper triangular, and define C := AB. By definition of upper-triangular matrices, $a_{ij} = 0$ and $b_{ij} = 0$ when i > j. Fix two indices i and j with i > j. Then,

$$c_{ij} = \sum_{k} a_{ik} b_{kj}$$
 by definition of matrix multiplication
$$= a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}.$$

The first i-1 terms of the sum are zero because A is upper triangular, and the last n-j terms are zero because B is upper triangular. Since i > j, (i-1) + (n-j) > n-1 and hence all n terms of the sum over k are zero, as needed.

If A and B are lower triangular, then A^{\top} and B^{\top} are upper triangular. By our proof above, $B^{\top}A^{\top} = (AB)^{\top}$ is upper triangular, showing that AB is lower triangular.

Implementation

Let's examine what happens when we multiply two elimination matrices:

$$(I_{n\times n} - c_{\ell}\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top})(I_{n\times n} - c_{p}\mathbf{e}_{p}\mathbf{e}_{k}^{\top}) = I_{n\times n} - c_{\ell}\mathbf{e}_{\ell}\mathbf{e}_{k}^{\top} - c_{p}\mathbf{e}_{p}\mathbf{e}_{k}^{\top}.$$

- The remaining term vanishes by orthogonality of the standard basis vectors \mathbf{e}_i since $k \neq p$.
- Thus, the product of elimination matrices that forward-substitutes a single pivot has the form:
- Products of this kind of matrices performed in forward-substitution order combine the values below the diagonal:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 6 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 5 & 1 & 0 \\ 4 & 6 & 7 & 1 \end{pmatrix}$$

$$M = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & imes & 1 & 0 \ 0 & imes & 0 & 1 \end{array}
ight)$$

Implementation (Pseudo-Code)

- Without scaling A, L's diagonal entries are all 1 no need to explicitly store.
- Thus, we can factorize A in place, the upper triangular part becomes U, and we store L below the diagonal:

```
function LU-FACTORIZATION-COMPACT(A)▷ Factors A \in \mathbb{R}^{n \times n} to A = LU in compact format.for p \leftarrow 1, 2, ..., n▷ Choose pivots like in forward-substitutionfor r \leftarrow p + 1, ..., n▷ Forward-substitution rows \leftarrow -a_{rp}/a_{pp}▷ Amount to scale row p for forward-substitutiona_{rp} \leftarrow -s▷ L contains -s because it reverses the forward-substitutionfor c \leftarrow p + 1, ..., n▷ Perform forward-substitutiona_{rc} \leftarrow a_{rc} + sa_{pc}return A
```

Implementation (Pivoting)

Following the construction in §3.5.1, if we pivot by swapping *columns* of our matrix, in effect we have factored

$$M_k \cdots M_1 A P_1 \cdots P_\ell = U,$$

where the P_i 's are permutation matrices used to swap columns. Rearranging this expression leads to a factorization A = LUP, where $P = P_{\ell}^{\top} \cdots P_{1}^{\top}$ is a permutation matrix.

Solving linear systems of equations with this expanded LU factorization is no more difficult asymptotically. In particular, rewriting $A\mathbf{x} = \mathbf{b}$ as $(LUP)\mathbf{x} = \mathbf{b}$ suggests the following algorithm to find $x = A^{-1}b = P^{\top}U^{-1}L^{-1}$:

- 1. Solve $L\mathbf{y} = \mathbf{b}$ for y using forward substitution $(O(n^2)$ time).
- 2. Solve $U\mathbf{z} = y$ for \mathbf{z} using back substitution $(O(n^2)$ time).
- 3. Permute to compute $\mathbf{x} = P^{\top}\mathbf{z}$ (O(n) time).

Implementation (Pivoting Remarks)

- If we pivot rows, then A = PLU with different P, L, and U from column pivoting.
- Pivoting both rows and columns leads to A = PLUQ for two permutations P and Q.
- Any square matrix A (even not invertible) has the above factorizations.
- Beyond stability, some algorithms design P and Q to improve sparsity of L and U, i.e., the number of nonzero entries need to be stored in the matrices.

Table of Content

- Solvability of Linear Systems
- Gaussian Elimination
 - A Simple Example
 - Encoding Row Operations
 - The Algorithm
- LU Factorization