Lec 3: Linear Systems and

LU Decomposition
15-369/669/769: Numerical Computing

Instructor: Minchen Li

Table of Content

® Solvability of Linear Systems
® Gaussian Elimination

e A Simple Example

® Encoding Row Operations

® The Algorithm

e |.U Factorization

Table of Content

® Solvability of Linear Systems

Solvability of Linear Systems

Definition of Linear Systems

systems of linear equations like

3T+ 2y =06
—4dr+y="7

can be written in matrix form as in
3 2 xr \ (6
—4 1 y)] \ 7

More generally, we can write linear systems in the form Ax = b for A € R™*", x € R", and
b € R™. Algorithms for solving the linear system Ax = b input a matrix A and a vector
b, and they output a vector x satistying the equation—should such an x exist.

Solvability of Linear Systems
The 3 Cases

The solvability of Ax = b must fall into one of three cases:

1. The system may not admit any solutions, as in:

1 0 r\ [—1 |
1 0 Y — 1 - Overdetermined

This system enforces two incompatible conditions simultaneously: £ = —1 and x = 1.

2. The system may admit a single solution; for instance, the system at the beginning of this
section is solved by (x,y) = (—8/11,45/11).

3. The system may admit infinitely many solutions, e.g., 0x = 0. If a system Ax = b admits
two distinct solutions xg and x;, then it automatically has infinitely many solutions of
the form txy + (1 — t)x; for all ¢ € R, since

A(tX() + (1 — t)Xl) — tAXO —+ (1 — t)AXl — tb —+ (1 — t)b _ b

Because it has multiple solutions, this linear system is labeled underdetermined.

Solvability of Linear Systems

A Geometric View

The solvability of the system Ax = b depends both on A and on b. For instance, if we
modify the unsolvable system above to

1 O x \ (1
1 0 y)] \ 1)’
then the system changes from having no solutions to infinitely many solutions of the form

(1,y). Every matrix A admits a right-hand side b such that Ax = b is solvable, since
Ax = 0 always can be solved by x = 0 regardless of A.

Since Ax can be viewed as a linear combination of A’s column vectors with coefficients in x:

C1

. | ¢
(Vi Vg -V .| =avitevet o+ ey
. | :

Cn

Ax = b is solvable exactly when b is in the column space of A

Solvability of Linear Systems
Assumptions on A

The shape of the matrix A € R™*"™ has considerable bearing on the solvability of Ax = b.

No wide matrix system admits a unique solution.

For every tall matrix A, there exists a by such that Ax = by is not
solvable for x.

e We will consider only square A € R"*",

e We will assume that A is nonsingular, that is, that Ax = b is solvable for any b.

Solvability of Linear Systems
Practical Considerations

We do not have to solve Ax = b by explicitly computing the entire inverse matrix A= €
R™*X™ and then multiplying to find x = A~ 'b. While this procedure is valid mathematically,
it can yield a considerable amount of overkill and potential for numerical instability for
several reasons:

e The matrix A~! may contain values that are difficult to express in floating-point precision,
in the same way that /e — co as € — 0.

e It may be possible to tune the solution strategy both to A and to b, e.g., by working with
the columns of A that are the closest to b first. Strategies like these can provide higher
numerical stability.

e Even if A is sparse, meaning it contains many zero values that do not need to be stored
explicitly, or has other special structure, the same may not be true for A=!.

Avoid computing A~! explicitly unless you have a strong
justification for doing so.

Table of Content

® (Gaussian Elimination

e A Simple Example

Gaussian Elimination (A Simple Example)

Overview
We will consider the following system:
y—z=—1
3r—y+z2=4
r+y—22=—3.

e Strategy: “isolate” variables, iteratively simplifying individual equalities until each is of the
form x = const.

¢ Alongside each step, we maintain a matrix encoding the current state:

0O 1 -—-1]-1
3 —1 1 4
1 1 -2 -3

Gaussian Elimination (A Simple Example)
Simplification Steps

Perhaps we wish to deal with the variable x first. For convenience, we can permute the
rows of the system so that the third equation appears first:

r+y—2z=-3 1 1 -2|-3
y—z=—1 0O 1 -—-1] -1
3r—y+z2=4 3 —1 1 4

We then substitute the first equation into the third to eliminate the 3x term. This is the
same as scaling the relationship £ + y — 22 = —3 by —3 and adding the result to the third
equation:

rT+y—22=-3 1 1 -2|-3
y—2z=—1 0O 1 —-1|-1
—4y + 72 =13 0 —4 7 | 13

Gaussian Elimination (A Simple Example)
Simplification Steps

Similarly, to eliminate y from the third equation, we scale the second equation by 4 and
add the result to the third:

r+y—2z=-3 1 1 -2 -3
y—z=—1 0 1 —-1/|-1
32 =9 0 0 3 9

We have now isolated z! We scale the third row by 1/3 to yield an expression for z:

r+y—2z=-3 1 1 -2 -3
y—z=—1 0 1 —-1/|-1
z2 =3 0 0 1 3

Gaussian Elimination (A Simple Example)
Simplification Steps

Now, we substitute z = 3 into the other two equations to remove z from all but the final
rOw:

r+y=3 1 1 013
Yy = 2 0 1 02
z =3 0 0 1|3

Finally, we make a similar substitution for y to reveal the solution:

r =1 1 0 011
Yy = 2 0 1 0] 2
z =3 0 0 113

Gaussian Elimination (A Simple Example)

Summary

Revisiting the steps above yields a few observations about how to solve linear systems:

e We wrote successive systems A.x = b, that can be viewed as simplifications of the original Ax = b.

e We solved the system without ever writing down A~

e We repeatedly used a few elementary operations: scaling, adding, and permuting rows.

e The same operations were applied to A and b.

e The steps did not depend on b. All our decisions were motivated by eliminating nonzero values in A.
e We terminated when we reached the simplified system [, x = b,.

We will use all of these general observations about solving linear systems to our advantage.

Table of Content

® (Gaussian Elimination

® Encoding Row Operations

Gaussian Elimination (Encoding Row Operations)

Matrix Representation

o Like the previous example, we can solve ® The following are equivalent:
any linear systems using these 3 row
operations: 1. Scale the first row of A by 2.

® permutation, 2. Replace A with Sy A, where Ss is defined by:

. 2 0 0 0
®
row scaling, and 91 0 0
. . g..—| 0 0 1 0
¢ adding a multiple of one row to another 2 :
® For convenience of analysis, we can use 0 0 0 --- 1

matrices to represent them.

® But in the algorithms, constructing matrices
may not be necessary

Gaussian Elimination (Encoding Row Operations)

Permutation

¢ Indexing the rows of a matrix using the integers 1, . . ., m, a permutation of them is a function:
o:{1,...,m} —» {1,...,m} such that {c(1),...,0(m)} = {1,...,m}
where 6 maps every index to a different target.

If e, is the k-th standard basis vector, then the product e,;rA is the k-th row of the
matrix A. We can “stack” or concatenate these row vectors vertically to yield a matrix
permuting the rows according to o:

o(1)
€o(2)

€o(m)

The product P, A is the matrix A with rows permuted according to o.

Gaussian Elimination (Encoding Row Operations)

Permutation (Example)

Example 3.1 (Permutation matrices). Suppose we wish to permute rows of a matrix in
R3*3 with o(1) = 2, 0(2) = 3, and 0(3) = 1. According to our formula we have

e P_has 1’s in positions indexed (k, 6(k)) and 0’s elsewhere

O O
OO =
o = O

e If we put 1’s in (6(k), k) and 0’s elsewhere, we get P!, and it undoes the permutation

e Thus, PI1P_ =P P! =] or P = P!

Gaussian Elimination (Encoding Row Operations)

Row Scaling

Suppose we write down a list of constants a1, ..., a,, and seek to scale the k-th row of A
by ai for each k. This task is accomplished by applying the scaling matrix S,:
a1 0 0
0 a9 0
Sa = : :
0 0 --- a,,

Assuming that all the a’s satisfy ax # 0, it is easy to invert S, by scaling back:

1/CL1 0 0
0 1as O

S;1 — Sl/a = : . .
O 0 “ o l/am

If any a; equals zero, then S, is not invertible.

Gaussian Elimination (Encoding Row Operations)

Elimination

® Suppose we wish to scale row k by a constant
¢, and add the result to row £; (k #£ [).

e We first construct the matrix that extract a row
of a matrix and move it to another row: Example:

° e,{A picks out the k-th row of A. esel A = (

o Ot N

O O W
\—/

1
)(0 0 1)(4
7
)

ee, A that is 0 except on its £-th row, which
is equal to the k-th row of A.

~J
Q0
O

—

OO OO OO

O oo O

e Pre-multiplying it by e, yields a matrix (

o © O
__/

Gaussian Elimination (Encoding Row Operations)

Elimination (Matrix Form)

We have succeeded in isolating row k£ and moving it to row £. Our original elimination
operation was to add ¢ times row k to row £, which we can now carry out using the sum
A—l—cege,;rA = (Inxn -{—cege,I)A. Isolating the coeflicient of A, the desired elimination matrix

iIsM:=1,«, +cege,;r.

The action of M can be reversed: Scale row k by ¢ and subtract the result from row Z£.
We can check this formally:

T

(LIpxn — Cege,;r)(Ian + cege;, T) 20,e, €€,

-
) = Inxn + (—cere, + cege,) — c epe, epe,

=1 v, — CQGE(G;CI_eg)eZ

= I« Since e,;reg =er ey, and k # /.

Gaussian Elimination (Encoding Row Operations)
A System-Solving Example

Example 3.3 (Solving a system). We can now encode each of our operations from Sec-
tion 3.2 using the matrices we have constructed above:

1. Permute the rows to move the third equation to the first row:

P =

O = O
—— O O
o O =

2. Scale row one by —3 and add the result to row three:

1
B, =1I343—3ese; = | 0
-3

O = O
O O

Gaussian Elimination (Encoding Row Operations)
A System-Solving Example

3. Scale row two by 4 and add the result to row three:

o O =
- = O

E2 :I3x3—|—4e3e; — (

—_— O O
N—_—

4. Scale row three by 1/3:

o O =
o = O

S = diag(1,1,1/3) = (

oo
w2
\——/

5. Scale row three by 2 and add it to row one:

OO =
O = O

Es = IBX3 —+ 2616; — (

= O N
N—

Gaussian Elimination (Encoding Row Operations)
A System-Solving Example

6. Add row three to row two:

o O -
o = O

by = I3x3+ eze; = (

— - O
\—/

7. Scale row two by —1 and add the result to row one:

1

o O =
—_— O O

-
by = I343 — €1€, = (

) .

1
0

Gaussian Elimination (Encoding Row Operations)
A System-Solving Example

Combining these matrices, the inverse of A in Section 3.2 satisfies

A ' =E-E,E;SE,EP

1 -1 0 1 0 0 1 0 2 1 0 0
=0 1 o0 0 1 1 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 13

1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 1 0 0

0 4 1 -3 0 1 0 1 0

(/3 1/3 0)
=| 73 Y3 -1 |.
4/3 1/3 —1

Table of Content

® (Gaussian Elimination

® The Algorithm

tion (The Algorithm)

imina

Gaussian El

Forward Substitution
(A]b)= (

X X X X

X X X X

X X X X

X X X X

X
X
X

Gaussian Elimination (The Algorithm)
Forward Substitution (Pseudo-Code)

function FORWARD-SUBSTITUTION(A, b)

> Converts a system Ax = b to an upper-triangular system Ux =y.
> Assumes invertible A € R"*™ and b € R".

Uy <+ ADb > U will be upper triangular at completion
forp<1,2,...,n > Iterate over current pivot row p
> Optionally insert pivoting code here

s < Yu,, > Scale row p to make element at (p,p) equal one

Yp < S Yp
for c<—p,...,n 1 Upc < 5 Upe

forr < (p+1),...,n > Eliminate from future rows
S < —Upp > Scale row p by s and add to row r

yr<_yr+3'yp
for c<p,...,n: Upc & Upc + S - Upc

return U,y

Gaussian Elimination (The Algorithm)

Backward Substitution

X 1 x x 0 | X 1 x 0 0] x @

X 0 1 x 0 | X 0 1 0 O0]X 0

x 0 0 1 0 |x 0 0 (1) 0]x 0

X 0 0 0 (1)]x 0 0 0 1]x 0
function BACK-SUBSTITUTION(U, y)

> Solves upper-triangular systems Ux = y for x.

X <Yy > We will start from Ux = y and simplify to I,,xn,X = X

forp+<n,n—-1,...,1
for r<—1,2,...,p—1
Ty < Ty —urpmp/upp

return x

> Iterate backward over pivots
> Eliminate values above u,,,

o O = O

O = O O

—_— O O O

X X X X

Gaussian Elimination (The Algorithm)
Complexity

e Each row operation (scaling, elimination, row swap) takes O(n) time (operates on n elements).
e For each pivot, we perform O(n) operations on n rows = O(n?) per pivot.
e We perform elimination for z pivots in total.

e Total cost of Gaussian elimination: O(n?).

Gaussian Elimination (The Algorithm)
Pivoting

Since (Gaussian elimination scales by the reciprocal of the pivot, the most numerically
stable option is to choose a large pivot (in absolute value). Small pivots have large re-
ciprocals, which scale matrix elements to regimes that may lose precision. There are two
well-known pivoting strategies:

1. Partial pivoting looks through the current column and permutes rows of the matrix so
that the element in that column with the largest absolute value appears on the diagonal.

2. Full pivoting iterates over the entire matrix and permutes rows and columns to place
the largest possible value on the diagonal. Permuting columns of a matrix is a valid
operation after some added bookkeeping: it corresponds to changing the labeling of the
variables in the system, or post-multiplying A by a permutation.

Gaussian Elimination (The Algorithm)
Pivoting (Example)

Example 3.4 (Pivoting). Suppose after the first iteration of Gaussian elimination we are
left with the following matrix:

1 10 -10
o @) 9
0 4 6.2
Applying partial pivoting: Applying full pivoting (rarely needed):

(0@) e

Faster speed Better numerical stability

Table of Content

e |.U Factorization

LU Factorization

Motivation

® Sometimes we want to solve for a sequence of linear systems with the same coefficient matrix:
e Ax=Db,Ax=Db,, ..., Ax=Db,

e Solving the system is O(n°), can we do some precomputation on A to speedup the solve?

e Computing A~! may not be stable, and sparse matrices often have a dense inverse matrix

e Backward-substitution on upper triangular system is actually O(n?)!

® Precompute forward-substitution?

X X X X
O@Or—*
o(@) - x
S = X X
H@OO
X X X X

LU Factorization

I d ca Upper triangular

!

e We will use Gaussian elimination to factorize A as A = LU.

!

Lower triangular

e Then AX = b becomes LUx = b.

® This can be solved by:
e forward-substitution on Ly = b, followed by
e backward-substitution on Ux =y.

e They are both triangular systems, and thus O(n?).

LU Factorization

Construction

o After forward-substitution with row operations M, M,, ..., M,:
My---M{A=U
— A= (M- ---M;)"'U
= (M;{'M; - M_")U from the fact (AB)™' = B~'A™!
= LU, if we make the definition L :== M; 'M,; " .. -Mk_l.

e [/ is upper triangular by design, to show that L is lower triangular:
e M, is either a scaling matrix, or M; = I + ce,, where [> k (lower triangular)
e Thus M is either a scaling matrix, or M;! = I — ceje;, where [> k (lower triangular)

® We just need to proof that the product of lower triangular matrices are still lower triangular

LU Factorization
Product of Triangular Matrices

Proposition 3.1. The product of two or more upper-triangular matrices is upper trian-
gular, and the product of two or more lower-triangular matrices is lower triangular.

Proof. Suppose A and B are upper triangular, and define C' := AB. By definition of upper-

triangular matrices, a;; = 0 and b;; = 0 when ¢ > j. Fix two indices ¢ and 7 with 7 > 7.
Then,

Cij Z a;rbr; by definition of matrix multiplication
k

a;1b1; + a;2ba; + -+ ainbn;.

The first 7 — 1 terms of the sum are zero because A is upper triangular, and the last n —
terms are zero because B is upper triangular. Since ¢ > j, (i — 1)+ (n —j) >n —1 and
hence all n terms of the sum over k£ are zero, as needed.

If A and B are lower triangular, then A' and B' are upper triangular. By our proof
above, B' A" = (AB)' is upper triangular, showing that AB is lower triangular.

LU Factorization

Implementation

Let’s examine what happens when we multiply two elimination matrices:

T T T T

e The remaining term vanishes by orthogonality of the standard basis vectors e; since k # p.

® Thus, the product of elimination matrices that forward-substitutes a single pivot has the form:

I 0 0 0
® Products of this kind of matrices performed in forward-substitution v—| 0 (1) 0 0
order combine the values below the diagonal: 0 x 1 0
0 x 0 1
1 0 0 O 1 0 0 O 1 0 0 O 1 0 0 O
2 1 0 0 01 0 0 01 001| | 2100
3 0 1 O 0 56 1 O 0 01 0| |35 10
4 0 0 1 0 6 0 1 0 0 7 1 4 6 7 1

LU Factorization

Implementation (Pseudo-Code)

e Without scaling A, L’s diagonal entries are all 1 — no need to explicitly store.

e Thus, we can factorize A in place, the upper triangular part becomes U, and we store L below
the diagonal:

function LU-FACTORIZATION-COMPACT(A)
> Factors A € R"*™ to A = LU in compact format.

forp<—1,2,...,n > Choose pivots like in forward-substitution
forr<—p+1,...,n > Forward-substitution row

S < —rpla,, > Amount to scale row p for forward-substitution

Qrp ¢ —8 > L contains —s because it reverses the forward-substitution
forc+—p+1,...,n > Perform forward-substitution

a/:rc (_ a/rrc + Salpc

return A

LU Factorization
Implementation (Pivoting)

Following the construction in 83.5.1, if we pivot by swapping columns of our matrix, in
effect we have factored

My - M{AP;--- P, = U,

where the P;’s are permutation matrices used to swap columns. Rearranging this expression
leads to a factorization A = LUP, where P = P,' --- P,' is a permutation matrix.

Solving linear systems of equations with this expanded LU factorization is no more

difficult asymptotically. In particular, rewriting Ax = b as (LUP)x = b suggests the
following algorithm to find x = A= 'b = P'U-1L~1:

1. Solve Ly = b for y using forward substitution (O(n?) time).
2. Solve Uz = y for z using back substitution (O(n?) time).

3. Permute to compute x = P'z (O(n) time).

LU Factorization

Implementation (Pivoting Remarks)

o If we pivot rows, then A = PLU with different P, L, and U from column pivoting.
e Pivoting both rows and columns leads to A = PLUQ for two permutations P and Q.
® Any square matrix A (even not invertible) has the above factorizations.

e Beyond stability, some algorithms design P and Q to improve sparsity of L and U, i.e., the
number of nonzero entries need to be stored in the matrices.

Table of Content

® Solvability of Linear Systems
® Gaussian Elimination

e A Simple Example

® Encoding Row Operations

® The Algorithm

e |.U Factorization

