
Instructor: Minchen Li

Lec 2: Numerics and Error Analysis
15-369/669: Numerical Computing

Table of Content

• Storing Numbers with Fractional Parts

• Understanding Error

Table of Content

• Storing Numbers with Fractional Parts

• Understanding Error

Storing Numbers with Fractional Parts
Fixed-Point Representation
• Most computers store data in binary format, e.g. we can convert 463 to binary:

• Negative numbers can be represented by

• introducing a leading sign bit, or

• using a “two’s complement” trick.

• The binary system admits an extension to real numbers by including negative powers of two,
e.g., 463.25 can be decomposed by adding two slots:

Storing Numbers with Fractional Parts
Fixed-Point Representation (An Example of Approximation)
• Writing the fraction 1/3 in binary requires infinitely many digits:

• All irrational numbers, e.g. , have infinitely long expansions regardless of which (integer)
base we use.

• Thus, we have to approximate, which leads to many points of confusion while coding:

π

Needs to be adjusted depending on context!

Storing Numbers with Fractional Parts
Fixed-Point Representation (Pros and Cons)
• Primary advantage: many efficient integer arithmetic operations can be reused, e.g. summation.

• Serious precision issues:

• Suppose we include one decimal point of precision,

• Most programming languages do not include a fixed-point data type.

• Some lower-end GPUs implement only fixed-point operations and are still found in embedded
or real-time systems with strict performance and power constraints.

represented as after truncation!0calculated as

Storing Numbers with Fractional Parts
Floating-Point Representations
• Motivation: extreme range of scales, e.g. in physics-based simulation:

• Young’s modulus of metal: ~ , thickness of a shell: ~

• Inspiration: scientific notation, e.g.

• Avoids writing a lot of zeros, indicates precision

• Floating-point numbers:

• : significant

• : exponent

1010Pa 10−4m

a

e

4 digits of precision

Storing Numbers with Fractional Parts
Floating-Point Representations (Parameters and Expansion)

*Can assume to save storage, but
requires special treatment to represent .

d0 = 1
0

Storing Numbers with Fractional Parts
Floating-Point Representations (Machine Precision and Number Distribution)

• Machine precision : the smallest such that is representable. (Numbers like
 are not expressible because is too small.)

ϵm ϵm > 0 1 + ϵm
b + ϵm ϵm

Here, .ϵm = 0.25

Storing Numbers with Fractional Parts
IEEE 754 Floating-Point Standard (most widely used)
• Specifies several classes, e.g., double-

precision in base b=2:

• 1 sign bit

• 52 bits for significand (fraction)

• Exponent range: −1022 to 1023

• Supports special values:

• ±∞, NaN (“not-a-number”)

• Used for undefined results (e.g., 1/0)

• Rounding Convention

• Common default: round to nearest, ties to
even

• Breaks ties by choosing the value with an
even least-significant bit

• Ensures consistent behavior across platforms

• Standardization enables reproducible results
in scientific computing

Storing Numbers with Fractional Parts
Other Representations
• Rational numbers

• Motivation: rounding errors are sometimes unacceptable, e.g. hard to distinguish between
nearly and completely parallel lines.

• Pros: basic arithmetic without any loss in precision, e.g.

• Cons: the representation is not unique; may require many digits, e.g.

• Tracking the error

— Maintaining error bars keeps
track of confidence in a given value.

Table of Content

• Storing Numbers with Fractional Parts

• Understanding Error

Understanding Error
Sources of Error (Rounding and Discretization)
• Rounding or truncation error

• can only use a finite number of digits to represent values

• e.g. impossible to write exactly as an IEEE 754 floating-point value

• Discretization error

• comes from computerized adaptations of continuous mathematics

• e.g. is only accurate to some number of digits because of a finite

π

ϵ > 0

Understanding Error
Sources of Error (Modeling and Input)
• Modeling error

• comes from incomplete or inaccurate descriptions of the problems we wish to solve

• e.g. a simulation predicting motion of a heavy ball may choose to neglect air damping

• Input error

• can come from user-generated approximations of parameters of a given system

Understanding Error
Sources of Error (Example)

Understanding Error
Absolute and Relative Error

e.g.:

Understanding Error
Catastrophic Cancellation

Understanding Error
Catastrophic Cancellation (A Practical Example)

Understanding Error
Forward and Backward Error
• Suppose we wish to solve the equation f(x) = 0 for x given a function f : R → R.

• Our computational system may yield some satisfying f() = ε for some ε with |ε| 1.

• If is the true root satisfying f() = 0, we may not be able to evaluate| − | since is
unknown.

• But by evaluating f we can compute |f() − f()| ≡ |f()| since f() = 0. This difference of
f values gives a proxy for error that still is zero exactly when = .

xest xext ≪

x0 x0 x0 xest x0

xest x0 xest x0
xest x0

Forward errorBackward error

Understanding Error
Conditioning
• In nearly any numerical problem, zero backward error zero forward error.

• In practice, we terminate our numerical solver when backward error is sufficiently small.

• But does small backward error small forward error? It depends!

⇔

⇒

Understanding Error
Condition Number

Usually as hard as
computing …x0

Small c: well-conditioned;

Large c: bad-conditioned.

Understanding Error
An Example of Approximating Condition Number

Table of Content

• Storing Numbers with Fractional Parts

• Understanding Error

