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Storing Numbers with Fractional Parts
Fixed-Point Representation
• Most computers store data in binary format, e.g. we can convert 463 to binary:


• Negative numbers can be represented by 


• introducing a leading sign bit, or 


• using a “two’s complement” trick.


• The binary system admits an extension to real numbers by including negative powers of two, 
e.g., 463.25 can be decomposed by adding two slots:



Storing Numbers with Fractional Parts
Fixed-Point Representation (An Example of Approximation)
• Writing the fraction 1/3 in binary requires infinitely many digits:


• All irrational numbers, e.g. , have infinitely long expansions regardless of which (integer) 
base we use.


• Thus, we have to approximate, which leads to many points of confusion while coding:

π

Needs to be adjusted depending on context!



Storing Numbers with Fractional Parts
Fixed-Point Representation (Pros and Cons)
• Primary advantage: many efficient integer arithmetic operations can be reused, e.g. summation.


• Serious precision issues:


• Suppose we include one decimal point of precision,

• Most programming languages do not include a fixed-point data type. 


• Some lower-end GPUs implement only fixed-point operations and are still found in embedded 
or real-time systems with strict performance and power constraints.

represented as  after truncation!0calculated as



Storing Numbers with Fractional Parts
Floating-Point Representations
• Motivation: extreme range of scales, e.g. in physics-based simulation:


• Young’s modulus of metal: ~ , thickness of a shell: ~

• Inspiration: scientific notation, e.g.


• Avoids writing a lot of zeros, indicates precision


• Floating-point numbers:


• : significant


• : exponent

1010Pa 10−4m

a

e

4 digits of precision



Storing Numbers with Fractional Parts
Floating-Point Representations (Parameters and Expansion)

*Can assume  to save storage, but 
requires special treatment to represent .

d0 = 1
0



Storing Numbers with Fractional Parts
Floating-Point Representations (Machine Precision and Number Distribution)

• Machine precision : the smallest  such that  is representable. (Numbers like 
 are not expressible because  is too small.)

ϵm ϵm > 0 1 + ϵm
b + ϵm ϵm

Here, .ϵm = 0.25



Storing Numbers with Fractional Parts
IEEE 754 Floating-Point Standard (most widely used)
• Specifies several classes, e.g., double-

precision in base b=2:


• 1 sign bit


• 52 bits for significand (fraction)


• Exponent range: −1022 to 1023


• Supports special values:


• ±∞, NaN (“not-a-number”)


• Used for undefined results (e.g., 1/0)

• Rounding Convention


• Common default: round to nearest, ties to 
even


• Breaks ties by choosing the value with an 
even least-significant bit


• Ensures consistent behavior across platforms


• Standardization enables reproducible results 
in scientific computing



Storing Numbers with Fractional Parts
Other Representations
• Rational numbers


• Motivation: rounding errors are sometimes unacceptable, e.g. hard to distinguish between 
nearly and completely parallel lines.


• Pros: basic arithmetic without any loss in precision, e.g.


• Cons: the representation is not unique; may require many digits, e.g. 


• Tracking the error

— Maintaining error bars keeps 
track of confidence in a given value.



Table of Content

• Storing Numbers with Fractional Parts


• Understanding Error



Understanding Error
Sources of Error (Rounding and Discretization)
• Rounding or truncation error


• can only use a finite number of digits to represent values


• e.g. impossible to write  exactly as an IEEE 754 floating-point value


• Discretization error


• comes from computerized adaptations of continuous mathematics


• e.g.                                        is only accurate to some number of digits because of a finite 

π

ϵ > 0



Understanding Error
Sources of Error (Modeling and Input)
• Modeling error


• comes from incomplete or inaccurate descriptions of the problems we wish to solve


• e.g. a simulation predicting motion of a heavy ball may choose to neglect air damping


• Input error


• can come from user-generated approximations of parameters of a given system



Understanding Error
Sources of Error (Example)



Understanding Error
Absolute and Relative Error

e.g.:



Understanding Error
Catastrophic Cancellation



Understanding Error
Catastrophic Cancellation (A Practical Example)



Understanding Error
Forward and Backward Error
• Suppose we wish to solve the equation f(x) = 0 for x given a function f : R → R. 


• Our computational system may yield some  satisfying f( ) = ε for some ε with |ε|  1. 


• If  is the true root satisfying f( ) = 0, we may not be able to evaluate|  − | since  is 
unknown. 


• But by evaluating f we can compute |f( ) − f( )| ≡ |f( )| since f( ) = 0. This difference of 
f values gives a proxy for error that still is zero exactly when  = .

xest xext ≪

x0 x0 x0 xest x0

xest x0 xest x0
xest x0

Forward errorBackward error



Understanding Error
Conditioning
• In nearly any numerical problem, zero backward error  zero forward error.


• In practice, we terminate our numerical solver when backward error is sufficiently small.


• But does small backward error  small forward error? It depends!

⇔

⇒



Understanding Error
Condition Number

Usually as hard as 
computing  …x0

Small c: well-conditioned; 

Large c: bad-conditioned.



Understanding Error
An Example of Approximating Condition Number
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